
Genetic State-Space Search for Constrained Optimization Problems 

Jan Paredis 
Research Institute for Knowledge Systems 

PO Box 463, NL-6200 AL Maastricht, The Netherlands 

Abstract 

This paper introduces GSSS (Genetic State-Space 
Search). The integration of two general search 
paradigms — genetic search and state-space-search -
provides a general framework which can be applied to 
a large variety of search problems. Here, we show 
how GSSS solves constrained optimization problems 
(COPs). Basically, it searches for "promising search 
states" from which good solutions can be easily found. 
Domain knowledge in the form of constraints is used 
to limit the space to be searched. Interestingly, our ap­
proach allows the handling of constraints within ge­
netic search at a general domain independent level. 

First, we introduce a genetic representation of 
search states. Next, we provide empirical results 
which compare the relative merit of the introduction 
of constraints during the generation of the initial pop­
ulation, during the fitness calculation, and during the 
application of genetic operators. Finally, we describe 
some extensions to our method which came about 
when applying it to factory floor scheduling problems. 

1. Introduct ion 

A large number of problems originating from different 
fields of study (e.g. economics, engineering) belong to 
the class of COPs. As a result, research into efficient 
solution methods for COPs has become a field of 
study in its own right. 

Constrained optimization problems typically 
consist of a set of n variables xi (i < n) which have an 
associated domain Di of possible values. There is also 
a set C of constraints which describe relations between 
the values of the xi. (e.g. the value of x1 should be dif­
ferent from the value of x3). Finally, an objective func­
tion f is given. An optimal solution consists of an as­
signment of values to the xi such that: 1) all con­
straints in C are satisfied, i.e. the solution is valid, and 
2) the assignment yields an optimal value for the ob­
jective function, f. 

COPs typically exhibit a high degree of epistasis: 
the choices made during the search are closely cou­
pled. In general, highly epistatic problems are charac­
terised by the fact that no decomposition in indepen­
dent subproblems is possible. In that case, it is difficult 
to combine subparts of two valid solutions into an­
other valid solution. That is why the efficiency of ge­
netic algorithms (GAs) - which typically search by 
combining features of different "solutions" - decreases 
significantly for higher degrees of epistasis. 

The last couple of years a number of methods for 
constraint handling have been proposed within the 
GA community. The first one - genetic repair 
[Miihlenbein, 1992] - removes constraint violations in 
invalid solutions generated by the genetic operators, 
such as mutation and crossover. The second one uses 
decoders such that all possible representations give 
rise to a valid solution [Davis, 1988]. A third one uses 
penalty functions, see for example [Richardson et al., 
1989]. This approach defines the fitness function as the 
objective function one tries to optimize minus the 
penalty function which represents the "degree of inva­
lidity" of a solution. Al l three approaches are however 
problem specific: for every COP one has to determine 
a good decoder, a good genetic repair method or a 
penalty function which balances between convergence 
towards suboptimal valid solutions (when the penalty 
function is too harsh) or towards invalid solutions 
(when too tolerant a penalty function is used). 

A subclass of COPs, those involving only numer­
ical linear (in)equalities, can be elegantly solved with 
GAs. In this case, the space of valid solutions is known 
to be convex. Michalewicz and Janikow [1991] used 
this property to define genetic operators which always 
generate valid solutions. 

We tackle here the general class of COPs. The 
problem description of a COP typically contains con­
straints which implicitly describe which portions of 
the search space contain valid solutions. Here, we dis­
cuss how these constraints, which come with the prob­
lem specification anyway, can be used to improve the 
search efficiency of a GA by limiting the search space 

Paredis 967 



it has to explore. Hence, the constraints provide cheap 
domain specific knowledge which can be used to aug­
ment domain independent search methods such as 
GAs. GSSS gets its generality from its embedding in 
the standard state-space search paradigm. 

We first describe the general framework for the 
integration of constraint programming in GAs. Next, 
we discuss empirical results on a simple COP. Finally, 
we describe some extensions of our approach in the 
context of factory scheduling. 

2. Constraint Programming for COPs. 

Constraint programming has established itself as a 
good technique for solving COPs. The effective use of 
constraints during the search for solutions made it 
possible to solve "real-world" COPs, even when these 
exhibit a combinatorial nature. 

A typical constraint program proceeds as fol­
lows. First, a constraint network is generated. This in­
volves the creation of the variables xi, their domains 
Di, and the constraints between the variables. Next, 
the constraint based search algorithm repeats the fol­
lowing selection-assignment-propagation cycle: select a 
variable whose domain contains more than one ele­
ment, select a value from the domain of that variable, 
assign the chosen value to the chosen variable (i.e. the 
variable's domain becomes a singleton containing this 
value)1, finally propagation is performed. This propa­
gation process executes all constraints defined on the 
reduced domain. This might further reduce the do­
main of other variables. For every domain which be­
comes reduced to a singleton the propagation process 
is recursively applied. The propagation algorithm 
above is known under the name forward checking. 

The search algorithm described above can easily 
be described as a standard state-space search. With 
each search state a set of potential solutions can be as­
sociated. This set is simply the product of all domains, 
i.e. DlxD2x... x Dn. At each choice point (assignment), 
the domain of a variable is reduced to a singleton, fol­
lowed by constraint propagation. This reduces the set 
of solutions associated with a state because the do­
mains get smaller. Whenever a domain becomes 
empty no solution exists for the given choices. Or, in 
other words, the current state is a dead end. When f i ­
nally all domains are reduced to a singleton a solution 
has been found. 

The use of constraints allows for early detection 
of dead ends. Hence, the search procedure can skip 
branches of the search tree which do not lead to a 
valid solution. This may considerably reduce the 
amount of back-tracking. Another advantage of con-

1 Here we use pure random variable and value selection. The 
use of more intelligent selection heuristics would obviously 
further improve the results presented in this paper. 

straint programming is that one can state the con­
straints of the problem domain in a natural way. A 
good introduction to constraint programming can be 
found in [Van Hentenrijck, 1989]. 

3. A Genetic Representation for Search 
States 

GSSS operates on search states instead of on complete 
solutions. Or, in other words, it operates on partial so­
lutions instead of on complete solutions. For highly 
epistatic problems this is particularly advantageous 
because it is much easier to generate valid partial solu­
tions than valid complete solutions to these problems. 
The same is true for the genetic operators: combining 
two valid complete solutions into another valid com­
plete solution often turns out to be difficult. As we will 
see below, search states leave more flexibility for com­
bining them in a "more complete" search state. We will 
also discuss how the quality (i.e. fitness) of a search 
state can be defined in terms of the quality of the po­
tential solutions associated with the search state. 

The representation of the search states on which 
GSSS operates is straightforward. It heavily relies on 
the fact that a search state is uniquely determined by 
the choices (i.e. value assignments) made to reach it 
from the initial search state. In the standard selection-
assignment-propagation algorithm the number of 
choices is at most equal to the number of variables xi. 
Hence, a string of length n (the number of xi) is used. 
If at the search state to be represented the variable xi is 
not yet assigned a value, i.e. its domain is not a single-
ton, then the i-th element of the string consists of a ?. 
If, on the other hand, the search state contains the as-
signment (choice) xi=v then the i-th element is filled in 
with v. Consider, for example, the string ?15???2?. It 
represents a search state in which x2, x3, and x7 are 
assigned the values 1, 5, and 2, respectively. The rep­
resentation used here was originally introduced by 
Hinton and Nowlan [1987] to study how individual 
learning can guide evolution. We use the term PIG-
representation when referring to this Partially 
Instantiated Genotype representation. 

4. The Algorithm 

Our algorithm is based on GENITOR [Whitley, 1989], 
a well known genetic algorithm. After the generation 
of an initial population, GENITOR repeats the follow­
ing steps: 1) select two parents from the population. 
This selection is biased towards individuals with a 
high rank in the population which is sorted on fitness; 
2) a new individual is generated from these parents 
through the application of genetic operators (see be-
low); 3) its fitness is calculated; 4) if this fitness is 
higher than the worst individual in the population 
then the child is inserted in the sorted population. At 

968 Machine Learning 



the same time, the worst individual in the population 
is removed. 

New, however, is the use of constraints in three 
components of the GA: during the creation of the ini­
tial population, during the fitness calculation, and dur­
ing the application of the genetic operators. In these 
three modules GSSS uses both representations dis­
cussed above: the PIG-representation of a search state, 
and its corresponding constraint network. The indi­
viduals in the population are PIG-strings. The con­
straint network is used during the generation of the 
strings, during the application of genetic operators, 
and during the fitness calculation. Below, we describe 
how this is done. 

4.1. The Creation of the Initial Population 
GSSS starts from the two representations of the initial 
search state: 1) the PIG-string containing only ?s, and 
2) a constraint network containing the variables, with 
their initial domains and the given constraints. Next, 
the selection-assignment-propagation cycle (see section 2) 
is executed an a priori determined number of times. 
Each cycle replaces a randomly chosen ? of the PIG-
string with a value randomly chosen from the domain 
of the corresponding variable. Next, GSSS updates the 
constraint network: it reduces the domain of the cho­
sen variable to the singleton containing the chosen 
value. Propagation ensures that the domains - from 
which the values are chosen - are consistent with the 
assignments made so far. 

Interestingly, this generation of individuals is a 
constraint satisfaction problem itself. It is however 
simpler than the original problem because only a por­
tion of the total number of choices need be made: the 
?s represent choices which are left open. Because of 
this we are often able to insist on validity of the states 
in the initial population (with respect to the given con­
straints). Hence, no domain becomes empty as a result 
of the choices present in the individual. In our experi-
ments, only a small amount of back-tracking was the 
price to be paid. 

4.2. Fitness Calculation 
We define the fitness of a search state as the value of 
the objective function for the best solution which can 
be reached from it through further assignments. 
Obviously, an exhaustive search through the set of 
potential solutions wil l often be far too expensive. 
Hence, we explore only an h priori determined num­
ber of "randomly chosen search paths". The constraint 
network corresponding with the search state to be 
evaluated is used as a starting point for each search 
path. Each path consists of a number of selection-as­
signment-propagation cycles. The random selection 
mechanism accounts for the random nature of the 
search process whereas the propagation enforces con­

sistency between the choices. Search along a path 
stops when a) all domains are reduced to a singleton, 
i.e. a solution has been found, or b) propagation re­
sults in an empty domain, i.e. no valid solution exists 
for the choices made so far. We can effectively say that 
the searches explore the regions around a given search 
state. We define the fitness of a search state as the 
value of the objective function of the best solution 
found. Obviously, there is no guarantee that a valid 
solution wi l l be found during the random searches 
starting at a given state. It is useful to give such states 
a (low) fitness. This fitness value should reflect the 
usefulness of the individual choices made to reach this 
state so that recombination can make use of valuable 
genetic material. We wil l see examples of this later. 

The fewer ?s in a search state description the 
higher the probability that the searches find the same 
solutions. In the limit, every search starting from a 
fully instantiated search state - containing no ?s - al­
ways returns the same solution: itself. In order to pro­
vide selective pressure towards states containing 
fewer ?s, a secondary criterion is used to order states 
for which the best search yields the same quality. In 
that case, the state from which this solution quality is 
found most often is considered the fittest. Hence, this 
state is inserted before the other one in the sorted 
population. 

Notice that the fitness value is a lower bound for 
the best solution which can be reached from the search 
state. It is important to stress here the usefulness of the 
propagation. It considerably limits the chances of 
ending up in a dead end. Hence, the chances of find­
ing valid solutions are much higher than when no 
propagation were used. This way the promise of the 
state is estimated more reliably. The empirical compar­
isons later in this paper demonstrate this. 

4.3. The Genetic Operators 
Let us now look how crossover can be augmented 
through the use of constraints. As discussed above, 
there is no guarantee that combining choices of two 
"good" search states yields a search state from which a 
solution can be reached. GSSS uses constraint checking 
to remove inconsistencies introduced by crossover. 
Figure 1 illustrates this mechanism on a problem 
where the constraints require that all (eight) variables 
get a different value. In a first step, a (one-point) 
crossover operator generates the PIG-string, ?15???25. 
In this case, the randomly chosen crossover point is lo­
cated after the fourth element. Obviously, the search 
state represented by this string cannot be expanded 
into a valid solution because of the two 5s. That is why 
a second step — constraint checking — is added. 
Starting from the initial constraint network the follow­
ing process is repeated. First, one of the assignments 
in the PIG-string is randomly chosen. This assignment 

Paredis 969 



is then done, i.e. the corresponding domain is reduced 
to a singleton. Next , propagat ion is activated. This 
process is repeated for al l assignments in the str ing in 
random order. Each t ime a domain becomes empty the 
last assignment is discarded, i.e. the constraint net­
work is restored to i ts state before that assignment. 
Furthermore, that last assignment is also deleted f rom 
the search state descript ion. As a result, on ly a set of 
assignments mutua l ly consistent w i t h the constraints 
is retained. That is why , in our example, constraint 
checking on ly retains one 5 (see f igure 1). Notice the 
generality of this approach: it is independent of the 
particular crossover used. As a matter of fact, it con­
sists of a general genetic repair method for search 
states. 

The first line above prohibits two queens to be placed 
in the same row. The second ensures that no two 
queens are on a same diagonal. Note that the column 
constraint (only one queen is allowed per column) is 
implicit in the representation. 

In order to turn the n-queens problem into an 
optimization problem we randomly assign a real 
number between 0 and 10 to each of the locations on 
the board. The COP-variant of the n-queens problem 
can now be described as follows: find a solution to the 
n-queens problem such that the sum of the values as­
sociated with the n locations where the queens are po­
sitioned is maximized. 

We concentrate here on 30-queens COPs. The 
members of the initial population contain 15 assign­
ments, and hence also 15 ?s. Furthermore, 25 searches 
are done to evaluate a state. The objective function for 
a valid solution is the sum of the values associated 
with the 30 locations where the queens are positioned. 
For invalid solutions this sum is divided by two. In the 
latter case, only the assigned variables contribute to 
the fitness. This way, the fitness value also yields in­
formation on sets of good locations even when none of 
the 25 searches find a valid solution. 

In order to allow for empirical comparison we 
construct a "constraint-free" algorithm for the three 
components described above. For the generation of the 
initial population and the calculation of the fitness we 
simply drop the propagation from the selection-as­
signment-propagation cycle. This way the value-as­
signments in the initial individuals are randomly 
drawn from the initial domains, i.e. no consistency is 
enforced between the choices. Obviously, this algo­
rithm often generates invalid search states which can­
not be completed into valid solutions. 

The constraint-free version of fitness calculation 
starts with the constraint network corresponding with 
the search state to be evaluated. The domains in this 
network reflect the assignments of the search state and 
the reductions resulting from propagation. During the 
25 searches no further propagation is done, i.e. the 
domains are not changed anymore. Or, in other 
words, the domains - from which the values are cho­
sen - do not reflect the choices made during the search. 

The last constraint-free component involves the 
genetic operators. We used the same mutation opera­
tor as described above, only crossover is changed. It 
uses a conventional operator (here one-point) without 
constraint checking. 

Up to now we introduced six algorithms. Let us 
call these i+, f+, o+, i-, f-, o-. The letters i, f, and o refer 
to the component, i.e. the creation of the initial popula­
tion, the calculation of the fitness, and the application 
of the genetic operators. A minus refers to the variant 

Finally, mutation is applied to the result of 
crossover. The probability of mutating a PIG-string el­
ement is proportional to (n - di fO/n2 . Where n is the 
length of the string (i.e. the number of variables), and 
diff is the number of locations on the PIG-string which 
are different for both parents. Mutation changes a ? in 
an element randomly chosen from the domain of the 
corresponding variable. Values, on the other hand, are 
replaced by another randomly selected value from the 
domain or by a ?. 

5. An Empirical Study 

In this section, we introduce the bench-mark problem 
- an optimization variant of the well known n-queens 
problem — that allows us to illustrate our approach 
and to test it empirically. The n-queens problem con­
sists of placing n queens on a nxn chess board so that 
no two queens attack each other (i.e. they are not in 
the same row, column, or diagonal). A typical con­
straint programming representation of this problem 
uses n variables xi. Each variable represents one col­
umn on the chess board. The assignment x2=3 indi-
cates that a queen is positioned in the third row of the 
second column. Initially, the domains associated with 
the xi are instantiated to {1,2, ...,n). The constraints for 
this problem are simple: 

970 Machine Learning 



which uses no constraints, whereas a plus refers to the 
algorithm which does use constraints. A triplet con­
sisting of one i, one f and one o algorithm represents a 
GA. We use i-f-o-, "the constraint-free GA", as a base-
line for comparison. 

Figure 2 depicts the results of our tests. The x-
axis of this graph represents the number of offspring 
generated. The y-axis represents the average best-so-
far fitness value, i.e. the fitness value of the best search 
state found so far averaged over 20 runs. All test runs 
use a population size of 200 and generate 5000 off­
spring. Performance data is collected every time fifty 
children have been generated. 

A couple of interesting observations can be made 
from figure 2. The performance of i+f+o+ and i-f+o+ is 
virtually the same. Although the difference in the av­
erage value of the best element of the initial popula­
tion is quite large (183.7 for i+f+o+, only 48.172 for i-
f+o+) this difference has virtually disappeared after 
the creation of 50 children (184.45 versus 186.057). This 
because i- is unlikely to generate valid search states. 
Hence the low fitness value of the individuals in the 
initial population. The crossover of i-f+o+, however, 
ensures validity of the offspring with respect to the 
constraints. Hence, the performance of both algo­
rithms quickly becomes similar. From this one can 
conclude that it is not worthwhile to insist on validity 
of the members in the initial population. These initial 
individuals only seem to act as a source of genetic di­
versity. 

The performance of two other GAs (i+f-o+ and 
i+f+o-) demonstrate the pay-off of using constraints 
during the calculation of the fitness and the genetic 
operators, respectively. The average best-so-far of i+f-
o+ after the creation of 5000 children is considerably 
lower than that of the initial population of i+f+o- and 
i+f+o+ (see figure 2). This because the random 
searches of f- are unlikely to find a valid - let alone an 

optimal - solution. Hence, i+f-o+ often considerably 
underestimates the fitness value of a search state. As a 
result many individuals from which good solutions 
can be reached may not get the chance to reproduce at 
all. Or, in other words, their genes might be lost. This 
lack of focus during the genetic search not only causes 
a low average quality of solution. It is also responsible 
for the large variation between the best solution qual­
ity found in different runs. The standard deviation of 
the best-so-far at the end of each of the 20 runs is 5.33 
and 49.17 for i+f+o+ and i+f-o+, respectively (see table 
1). This while their average best-so-far equals to 220.9 
and 160.96, respectively! Some of the runs of i+f-o+ 
did not even find any valid solution during the gen­
eration of 5000 offspring. Table 1 also shows an aver­
age increase in solution quality of 7% when constraint 
checking is used during crossover (the average best so 
far of i+f+o+ and i+f+o- is 220.9 and 206.5, respec­
tively. 

6. Job Shop S c h e d u l i n g 

The general framework described in this paper grew 
out of earlier work on the use of constraint program­
ming for scheduling [Paredis and Van Rij 1992]. 
Paredis [1992] describes an interesting modification to 
the general approach described here. It takes into ac­
count the volatile environment in which scheduling 
takes place: orders may be cancelled, machine break­
downs may occur etc. In such a volatile environment 
one should be able to reactively revise schedules in re­
sponse to unexpected events. Instead of putting a 
large effort in finding one optimal schedule, we aim at 
finding states from which a number of different good 
schedules can be reached. Whenever one cannot stick 
to a given good schedule, then one can - to some ex­
tent at least - search locally around these states for 
another feasible schedule. In order to achieve this the 
fitness calculation takes into account not only the best 
solution found during the random searches but also 
the number of different solutions and the average 
quality of the solutions. By changing the relative im­
portance of these features the search process explores 
other regions of the search space trading off the den­
sity and variation of solutions, the quality of the best 
solution, and the average quality of the solutions. 

Paredis 971 



7. Discussion 

In the previous sections we saw that the combination 
of constraint programming and GAs considerably en­
hances the solution quality. Here, we investigate the 
differences between our approach and standard GAs. 

Holland showed that for problems with a mod­
erate degree of epistasis, operators that splice together 
parts of two different individuals might yield good so­
lutions. For such problems, sets of functionally de­
pendent genes are relatively small. In that case, it be­
comes possible to use a string representation in which 
"correlated" genes are placed close to each other. Once 
the GA finds good values for these genes, they are un­
likely to be split apart during sexual reproduction. 
Analogously, independent genes should be located far 
apart from each other on the string. Otherwise there 
wi l l be too little exploration: suboptimal values for 
these genes are unlikely to become disrupted. This 
typically results in premature convergence. In general, 
a linear string might not be sufficient to place interact­
ing bits close to each other, and to place non-interact­
ing bits far apart. This is particularly the case when 
addressing problems with a high degree of epistasis. 

Our approach is aimed at a large class of combi­
natorial problems which can be stated in terms of 
constraints. No search control knowledge is needed. 
The knowledge present in the problem specification is 
fully exploited through the constraints. We still use 
the standard linear representation. But now depen­
dence need not necessarily be translated into physical 
proximity. The use of constraint propagation allows 
the GA to take into account long-distance interactions. 
The constraints represent the epistatic linkages. 

There is an additional remark to be made here: 
the degree of interaction between a group of "genes" is 
not necessarily constant over the entire search space. 
Our algorithm operates on search states with different 
levels of instantiation. Hence, it searches at different 
hierarchical levels. At different levels, different depen­
dencies may dominate. The opposite goes as well: the 
tightness of a dependency often depends on the as­
signments in the search state. The standard static l in­
ear representation is unlikely to be able to cater for 
these changing dependencies in an adequate way. 
Here again, the constraints explicitly enforce the rele­
vant dependencies even when they span a wide dis­
tance in the genetic representation. 

8. Conclusion. 

GSSS combines the advantages of both: GAs and con­
straint programming. GAs have proven to be good 
search algorithms for large, moderately epistatic, 
problems. Hence, we use genetic search to explore the 
large search spaces of COPs. A more thorough explo­

ration of the region around a search state is done 
through constraint-based search. Furthermore, domain 
knowledge in the form of constraints allows the GA to 
deal with higher degrees of epistasis. 

We presented a genetic representation for search 
states of COPs which allows for the combination of 
both paradigms: genetic search and constraint pro­
gramming. Next, we discussed the incorporation of 
constraints in three components of a GA. Our empiri­
cal study clearly shows the advantage of the use of 
constraints during the fitness calculation and during 
reproduction. Especially, the former plays a crucial 
role in obtaining an efficient hierarchical search. 

References 

[Davis, 1988] Davis, L., Applying Adaptive Algo­
rithms to Epistatic Domains, Proc. IJCAI-88. 

[Hinton and Nowlan, 1987] Hinton, G., Nowlan S.J., 
How Learning Can Guide Evolution, Complex Syst. 
1,1987. 

[Michalewicz and Janikow, 1991] Michalewicz, Z., and 
Janikow, C.Z., Handling Constraints in Genetic 
Algorithms, Proc. Fourth International Conference on 
Genetic Algoritms, Morgan Kaufmann, 1991. 

[Miihlcnbein, 1992] Muhlenbein, H., Parallel Genetic 
Algorithms in Combinatorial Optimization, Proc. 
Computer Science and Operations Research: New 
Developments in their Interfaces, ORSA, Pergamon 
Press, 1992. 

[Paredis, 1992] Paredis, J., Constraints as Background 
Knowledge for Genetic Algorithms: a Case-study 
for Scheduling, Proc. Parallel Problem Solving from 
Nature, Manner, R., Manderick, B., (eds.), Elsevier 
Science Publishers, 1991. 

[Paredis and Van Rij, 1992] Paredis, J., and Van Rij, T., 
Simulation and Constraint Programming as 
Support Methodologies for Job Shop Scheduling , 
Journal of Decision Systems, Vol. 1, nr. 1, Pomerol, J.-
C, (ed.). Editions Hermes, 1992. 

[Richardson et al., 1989] Richardson, J.T. ; Palmer, 
M.R.; Liepins, G.; Hilliard M., Some Guidelines for 
Genetic Algorithms with Penalty Functions. Proc. 
Third Int. Conf. on Genetic Algorithms, Morgan 
Kaufmann, 1989. 

[Van Hentenrijck, 1989] Van Hentenrijck, P., Con-
straint Satisfaction in Logic Programming, MIT Press. 

[Whitley, 1989] Whitley, D., The Genitor Algorithm 
and Selection Pressure: Why Rank-Based Allocation 
of Reproductive Trails is Best. Proc. Third Int. Conf. 
on Genetic Algorithms, Morgan Kaufmann, 1989. 

972 Machine Learning 


