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Abs t rac t 

In this paper we present a technique for au­
tomatically generating constraints on parame­
ter derivatives that reduce ambiguity in the be­
haviour prediction. Starting with a behaviour 
prediction using an init ial library containing 
general domain knowledge the technique em­
ploys feedback about valid and spurious states 
of behaviour and knowledge about the causal 
dependencies between the parameters in the 
model in order to determine the constraints 
that remove the undesired states of behaviour 
that result from spurious ambiguity. In addi­
t ion, the technique points out the assembly of 
physical objects to which the generated con­
straints apply. 

1 I n t r oduc t i on 
A recurring issue in qualitative prediction of behaviour 
is the construction of non-ambiguous models that only 
predict valid states of behaviour. In particular, when us­
ing a library of model fragments that represent general 
domain knowledge (such as processes [Forbus, 1984] and 
device behaviours [de Kleer and Brown, 1984]) the am­
biguity introduced by the qualitative calculus, together 
wi th the requirement of modelling device behaviour in­
dependent from the context in which it operates (the 
'no function in structure' principle [de Kleer and Brown, 
1984]), makes it difficult to define adequate prediction 
models for a specific system. In order to remove unde­
sired ambiguity additional constraints must be specified 
that represent assembly specific behaviour, such as (1) 
order of magnitudes [Raiman, 1986], and (2) conserva­
tion of quantities for the system as a whole. In this paper 
we present a technique that automatically derives these 
constraints by analysing valid and spurious states of be­
haviour and by using a model of the underlying causality. 
In addition, the technique identifies the physical struc­
ture, wi th its specific mode of behaviour, to which the 
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constraints apply. 

2 A u t o m a t i c M o d e l Cons t ruc t ion 

Our approach can be thought of as supporting a knowl­
edge engineer who, on the basis of a library contain­
ing general domain knowledge, has to develop a spe­
cific model that can be used for a behaviour prediction 
task. Given such a library the knowledge engineer is con­
fronted wi th two problems: relating the elements from 
the real-world system that has to be modelled to the 
canonical entities present in the library, and modelling 
additional constraints to reduce the ambiguity in the be­
haviour prediction. In other words the construction of 
a qualitative model amounts to finding the applicable 
model fragments and augmenting them with additional 
constraints to capture the device specific overall be­
haviour. Typically, the knowledge engineer goes through 
a debugging/refinement process, depending upon the be­
haviour prediction that the qualitative prediction engine 
produces. Each predicted state reflects a valid or a spu­
rious form of behaviour and provides feedback for how 
the models from the init ial l ibrary must be modified. 

The problem of modelling is complex and cannot be 
automated all at once. In this paper we concentrate 
on deriving additional constraints on the derivatives of 
parameters that are required to remove undesired states 
of behaviour that result from ambiguity. An assumption 
therefore is that the ini t ial knowledge in the library is 
sufficient for predicting at least all possible behaviours, 
but that it is too general in the sense that it may also 
predict behaviours that in fact do not occur. 

After the knowledge engineer has classified (c.q. mod­
elled) some system from the real-world in terms of the 
canonical elements present in the init ial l ibrary (input 
system), the prediction engine generates a graph of pos­
sible behaviours. Although in principle this graph may 
include all behaviours (valid and spurious) that can be 
derived on the basis of the general knowledge in the l i ­
brary, it is usually necessary to l imi t the number of states 
to a subset that can sti l l be understood and used by the 
knowledge engineer (partial prediction). Next, for each 
state of behaviour the knowledge engineer determines 
whether it represents a valid or a spurious state of be­
haviour by comparing it wi th the actual behaviour of the 
system in the real-world. The sets of valid and spurious 
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states of behaviour are input for the process of refining 
the knowledge in the library. 

The technique presented in this paper automates a 
part of this refinement cycle by proposing new con­
straints that wi l l exclude false predictions (without ex­
cluding the valid predictions). The technique diagnoses 
the set of valid and spurious behaviours and determines 
which constraints have to be added to which parts of the 
knowledge in the l ibrary in order to remove the undesired 
ambiguity. 

3 Representat ional Contex t 
The framework for qualitative prediction of behaviour 
that we use, is implemented as a domain independent 
qualitative reasoning shell, called GARP, which can be 
used by a knowledge engineer for developing predic­
tion models [Bredeweg, 1992]. In contrast to using a 
pure component oriented approach [de Kleer and Brown, 
1984] (modelling the physical world as components con­
nected by conduits) or a pure process oriented approach 
[Forbus, 1984] (modelling the physical world as physi­
cal objects that interact via processes), we claim that it 
is essential to use both component and process oriented 
abstractions in a single prediction model. 

Similar to these approaches, GARP uses the notion of 
model fragments for determining the behaviour of some 
real-world system. Model fragments can be either static, 
process or agent models. Static model fragments repre­
sent general properties of physical objects, process mod­
els represent changes that occur between physical ob­
jects based on inequalities between interacting param­
eters and agent models represent changes imposed on 
the system by external agents. A l l model fragments 
have associated with them a set of conditions under 
which they are applicable and a set of consequences that 
are given once their conditions hold. Conditions and 
consequences are stated in terms of: System elements: 
abstractions of entities in the physical world; Parame­
ters: relevant quantities; Parameter values: the values 
(intervals and derivatives) of quantities; Parameter re-
lations: dependencies between quantities; Model frag-
ments: other model fragments that must be true. The 
behaviour of a system during a particular time period is 
described by the set of applicable model fragments. The 
behaviour over different time periods is determined by 
the application of transformation rules. 

Important for the technique discussed in this paper 
are the different types of parameter relations within the 
framework. Proportionalities and influences are used in 
a similar way as defined by Forbus [Forbus, 1984]: for 
modelling causal dependencies. Additional (non-causal) 
constraints on derivatives are modelled through inequal­
ities, such as: < , < , = , > , > • Inequalities can be defined 
for a single derivative or a sum of derivatives with re-
spect to zero, or for sets of derivatives with respect to 
each other. Inequalities are used to further constrain 
the ambiguity introduced by causal relations or for mod­
elling constraints on derivatives that lack a clear causal 
dependency. As argued in Bredeweg [Bredeweg, 1992] 
both the causal and non-causal dependencies are essen­
tial features of a qualitative model. 

4 Causes of A m b i g u i t y 
This section describes how several types of ambiguities 
result from the use of influences and proportionalities. 
The ideas are illustrated wi th a model of a refrigerator. 
Figure 1 visualises the important physical objects of this 
system. In order to reason about the behaviour of these 

Figure 1: A model of the refrigerator 

objects, model fragments are required for representing 
device behaviour and for representing processes between 
physical objects (see [Bredeweg, 1992] for more details). 
The thrott le valve and the compressor can be modelled 
as 'agent models' influencing the amount of substance 
in the condensor (Amountcon) and in the evaporator 
(AmountEvap)- The thrott le valve also influences the 
pressure of the substance in the evaporator (PressEvap) 
directly (expansion of fluid into gas leads to higher pres-
sure). The substances in the condensor and the evapora­
tor are both modelled as a 'closed contained substance' 
(cf. [Forbus, 1984]). In this model fragment temperature 
is proportional to pressure, which in turn is proportional 
to amount and to heat. The world and the cooling area 
can be modelled in this way too, omitt ing amount and 
pressure. A direct proportional relation between temper­
ature and heat is sufficient for modelling the behaviour 
of these entities. Finally, model fragments are needed 
that represent processes such as heat-flow, evaporation 
and condensation. The causal relations (proportionali­
ties and influences) that result from using these model 
fragments are depicted in figure 2. 

Presenting the model as sketched above to the pre­
diction engine (GARP) results in 179 derived states of 
behaviour (total envisionment). The first specification 
step (finding all sets of model fragments that apply to 
the input system) produces already 15 states, 14 of them 
being spurious. The values of the parameter derivatives 
in these states are shown in table 1. 

Spurious ambiguities are behaviours predicted by a 
qualitative simulator that do not represent actual be-
haviour of a device. They occur because particular 
globed properties of device behaviour are not modelled by 
individual model fragments and hence do not appear in 
the aggregate of model fragments that forms the model of 
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the device. There are two types of these context depen­
dent properties. The first one is the relative magnitude 
of multiple causal interrelationships originating from dif-
ferent model fragments. In the refrigerator example, the 
Amountcon is positively influenced by the compressor 
while the thrott le valve influences it negatively. Since 
there is no knowledge of the relative magnitudes of these 
influences, the resulting derivative of the amount is am­
biguous, i.e. it can either increase (the effect of the com­
pressor being greater), stay constant (the effect of com­
pressor and thrott le valve being equal) or decrease (the 
effect of the throttle valve being greater). This ambigu­
ity is spurious in the sense that it allows the amount, and 
thus the pressure and temperature, to decrease which al­
lows a heat flow from the world to the condensor. This 
does not represent actual behaviour of a refrigerator. If 
the compressor is 'working' the Amountcon might in­
crease or stay constant but never decrease (the reverse 
goes for the AmountE v a p ) . Another spurious ambiguity 
exists with respect to the Press con and Press Evap. The 
pressure is proportional to the amount but is also influ­
enced by a heat flow process. If these effects are opposite 
the derivative of the pressure is ambiguous too. 

The second cause for spurious ambiguity concerns 
missing constraints for conservation of quantities in the 
system as a whole. In the case of the refrigerator the 
total amount of substance in the system remains con­
stant. However, if this constraint is missing a qualita­
tive simulator may predict an increase of the Amountcon 
while the Amount E v a p increases too, which is impossi­
ble. Constraints for conservation of quantities are es-
sential for disambiguating these faults in the prediction 
model. 

5 De te rm in ing Candidate Constra ints 

Both valid and spurious states of behaviour provide in­
formation for generating inequality constraints that re­
move spurious ambiguity. However, using information 
from spurious states of behaviour is problematic, because 
these behaviours may result from multiple, possibly inde-

Table 1: First 15 states for the refrigerator (11 is valid) 

nitude (Amountcon always increases or stays constant, 
but never decreases) or by a lack of knowledge about 
conservation of quantities (changes in Amountcon and 
AmountEvap should equal zero). 

The process is even more complicated when the pre­
diction is partial, which is usually the case (see section 
2). Although the reliability of the information stem­
ming from the spurious states becomes greater when 
more states of behaviour have been predicted, it is likely 
that not all faults manifest themselves in a certain par­
tial behaviour prediction. In other words, constraints 
which first seemed to represent a discriminating factor 
between valid and spurious states may turn out to be 
inappropriate. That is, there is danger of selecting a 
constraint that rules out valid states of behaviour that 
have not been predicted yet. Specifying, for example, 
that oTempcon > oTempEvap erroneously excludes fu­
ture states of behaviour in which the two temperatures 
are equal. 

In order to cope wi th the two problems described 
above our technique determines constraints for remov­
ing spurious ambiguity on information present in valid 
states of behaviour. For excluding spurious states of be­
haviour the technique searches within the set of all pos­
sible constraints consistent wi th the known valid states 
of behaviour. In other words, candidates for removing 
states that result from spurious ambiguity are based 
on one or more derivatives in the valid states of be­
haviour. Examples of such candidates are oPressEvap < 
0, oPressEvap < 0 and oAmountcon + oHeatcon > 0. 
It is important to realise that this set of constraints rep­
resents all possible constraints that are consistent wi th 
the valid states of behaviour and that therefore the con­
straints for removing the spurious states of behaviour 
must necessarily be part of this list. 

Although the problems associated wi th using spuri­
ous states of behaviour have been circumvented by this 
approach, three new problems appear. Firstly, as the 
number of parameters increases the set of possible con­
straints soon becomes intractable. Therefore, additional 
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knowledge must be applied to significantly reduce the 
number of constraints. Secondly, there is a danger 
of generating constraints that relate parameters which 
are in fact independent from each other (for example: 
Heat world + HeatEvap = 0). Thirdly, not all possible 
constraints actually discriminate between valid and spu­
rious states of behaviour. These issues are discussed in 
the next section. 

6 D isc r im ina t ing Candidate Constraints 
This section describes how the set of candidate con­
straints can be reduced significantly by focusing on spe­
cific types of constraints, by exploiting the notion of 
causal units and by taking into account the discrimi­
native power of the constraints. 

6.1 T h r e e Types o f Cons t ra in ts 
Not every combination of parameter derivatives results 
in a constraint that represents valid knowledge about 
physics. As discussed above, the ambiguity that must 
be dealt with is caused by lack of knowledge about 
orders of magnitude and/or conservation of quantities. 
This knowledge can be represented by a limited num­
ber of constraints. Orders of magnitude between dif­
ferent influences or proportionalities can be represented 
in two forms. Firstly, the net-effect of the interacting 
parameter relations can be modelled as a specific value 
of the derivative of the determined parameter. For in­
stance, 6 Amountcon > 0 is a constraint, specifying that 
the derivative of the amount in the condensor should 
always be greater or equal than zero. Secondly, the 
dominance of one parameter relation over others can 
be modelled as a ratio of a pair of parameter deriva­
tives. If, for example, the pressure is proportional to 
both heat and amount this results in ambiguity. Now, 
if, in the actual device behaviour, changes in the pres-
sure are dominated by the amount, this can be modelled 
as oPresscon = oAmountcon- Various degrees of dom­
inance can be represented as different inequalities be­
tween derivatives. Conservations of quantities are mod­
elled as the sum of quantities being equal to zero (see 
next subsection). 

In order to determine candidate orders of magnitude, 
constraints are generated on the basis of the parame­
ter derivatives in the valid states of behaviour. For each 
individual parameter (net-effect) and for each pair of pa­
rameters fdominance") all constraints are generated that 

The constraint is consistent with both pairs of 
derivatives and is therefore a candidate for disambiguat­
ing the behaviour prediction. 

6.2 E x p l o i t i n g Causal U n i t s 

The causality in the behaviour description can be used 
to further reduce the number of candidate constraints. 
The idea is that dependencies between parameters can 
be factored into clusters that influence each other, but 
are independent of other parameters. This corresponds 
to the idea of 'factoring' (see [Genesereth and Nilsson, 
1987]). We shall refer to these clusters as causal units. 
A causal unit starts wi th a parameter that is being in­
fluenced (by an influence relation), traverses via the pro­
portionally related parameters, and ends with a param­
eter that has no causal effect on any other parameter 
by means of a proportionality. A causal unit is essen­
tially a graph that may have recursive loops, more than 
one starting point and more than one terminal node (no­
tice that a causal unit can consist of one or more causal 
paths). Two examples of causal units in our refrigerator 
model are: Heatcon Presscon Tempcon (see also 
figure 2) and Amountcon Presscon Tempcon 

Instead of generating all possible constraints that rep­
resent orders of magnitude, the notion of causal units can 
be used to focus on those parameters that are actually 
capable of causing ambiguity. Constraints on single pa­
rameter derivatives are generated for (1) parameters that 
are start points of causal units if they are multiply in­
fluenced and for (2) parameters that occur in more than 
one causal unit and are dependent on different parame­
ters in the respective causal units. In these cases they 
might be causing spurious ambiguity. In the refrigerator 
example, instances of the above cases are Amountcon 
and Presscon- Constraints for pairs of derivatives are 
also generated for parameters that occur in more than 
one causal unit and are dependent on different parame­
ters in the respective causal units. These parameters are 
multiply dependent on different parameters. Therefore 
they are parameters that could cause spurious ambiguity. 
Each causing parameter, together with the dependent 
parameter, forms a candidate pair for representing dom­
inance. In the refrigerator Amountcon & Presscon and 
Heatcon & Presscon are two examples of such pairs. 

Constraints for conservation of quantities are gener­
ated for parameters that: (1) belong to different causal 
units, (2) model the same type of quantity, and (3) are 
influenced by the same influence. Usually an influence 
(c.q. a flow rate) consists of two parts, one that decreases 
a quantity and one that increases a quantity. Both are 
required before a conservation constraint may be de­
fined. In the refrigerator example a conservation con­
straint is generated between the parameters Amountcon 
and AmountEvap. 

6.3 T w o Heur is t i cs 

The set of candidate constraints representing orders of 
magnitude can be restricted by applying two heuristics. 
The first one concerns the position of the parameters in 
the causal units: 
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• Prefer constraints on parameters 'early' in the 
causal units. 

The rationale behind this is that the disambiguation 
should start at the beginning of the causal dependen-
cies, i.e. to remove ambiguity at the source. For ex­
ample, a constraint on Amountcon should be preferred 
over a constraint on Presscon- The second heuristic 
concerns the restrictiveness of the constraints. If a pa­
rameter (or a pair of parameters) has both the stronger 
and the weaker constraint then: 

• Prefer weaker constraints over stronger constraints. 
Weaker constraints allow more values than stronger con­
straints. For example, " > " is a weaker constraint than 
either ">" or "=". This rule prohibits that on the basis 
of incomplete information a too restrictive constraint is 
selected. 

Both heuristics can be applied without any danger of 
losing important knowledge. If constraints on early pa­
rameters and/or weak constraints fail to exclude spuri­
ous states of behaviour, constraints on later parameters 
and/or stronger constraints wil l be found when the be-
haviour prediction is extended (see section 8). 

6.4 D i s c r i m i n a t i v e Power o f Cons t ra in ts 
The third source of information for cutting down the set 
of candidate constraints concerns the number of spurious 
states of behaviour that each constraint eliminates. 
N o n - d i s c r i m i n a t i v e const ra in ts can be disregarded 

because they do not exclude any spurious states of 
behaviour. 

I ndependen t cons t ra in ts exclude states of behaviour 
that are not excluded by any other constraint. 
Therefore they are necessary for the disambigua­
tion of the model and must be added to the library 
knowledge. 

Pa r t i a l l y ove r lapp ing cons t ra in ts exclude some 
states of behaviour uniquely, that is, these states 
are not excluded by any other constraint. In addi­
tion they exclude some states of behaviour that are 
also excluded by other constraints. Because they 
exclude some states uniquely these constraints are 
also necessary for the disambiguation of the model 
and must be added to the library knowledge. 

Ove r l app ing const ra in ts exclude only states that are 
also excluded by other constraints. A reasonable 
heuristic in this case seems to be to prefer the con­
straint that excludes most states of spurious be­
haviour. 

If this heuristic concerning overlapping constraints does 
not resolve the problem then an additional heuristic is 
to prefer complex overlapping constraints over simple 
ones, i.e. conservation constraints over derivative pair 
constraints over single derivative constraints. However, 
in the case of a partial behaviour prediction the only 
safe way is to have the knowledge engineer decide upon 
overlapping constraints. In the case of a ful l behaviour 
prediction overlapping constraints introduce no problem 
because all valid states of behaviour are facilitated by 
the constraints and they can thus simply be added to 

the model. In the refrigerator example, the technique as 
described above comes up wi th the constraints as shown 
in table 2. 

7 A l loca t ing Constra ints to Fragments 

Once the appropriate constraints have been determined, 
they should be allocated to model fragments in the l i ­
brary. Two options exist: they are added to an already 
existing model fragment, or they are added to a newly 
defined model fragment. The method for allocating them 
is similar in both cases. 

The first step consists of determining all dependen­
cies that the parameters in the proposed constraint have. 
Each of these relations contributes to the ambiguity that 
wil l be removed by the constraint. For example, a con­
straint between Amount c o n and Presscon resolves spu­
rious ambiguity that results from (1) the influence of the 
compression rate, (2) the influence of the expansion rate, 
(3) the proportional relation wi th the heat and conse­
quently (4) the influence of the flow rate (from the Heat 
flow), (see also figure 2). Again the notion of causal 
units is important, in the sense that the set of contribut­
ing relations is a subset of the causal units to which the 
parameters belong. In particular, this subset starts wi th 
the influencing relations, moves on via proportionalities 
up to the place where the parameters themselves are lo­
cated. The relations located higher in the causal unit do 
not contribute to the ambiguity. 

The second step is to f ind the set of model fragments 
that introduced the relations that cause the ambiguity. 
They are conditional for the model fragment to which the 
new constraint should be added. In the example men­
tioned above these model fragments are: (1) the heat 
flow process, (2) the active compressor, (3) the active 
throttle valve, and (4) the closed contained substance 
(=the condensor). For allocating the new constraint ei­
ther a model fragment exists for which these model frag­
ments are conditional or a new aggregate model fragment 
has to be created. In the latter case, which is more likely, 
the model fragments that introduce the ambiguous de­
pendencies are conditional to the new model fragment. 
In the above example this new model fragment could be 
referred to as the 'condensing assembly' of the refriger­
ator. 

8 Ex tend ing the Behaviour Pred ic t ion 

Further behaviour prediction can be useful or even nec­
essary in some cases. Instead of immediately adding all 
proposed constraints to the l ibrary, the behaviour pre­
diction can be enlarged to create more discriminative 
power for grounding the constraints. In our example we 
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might have added one transformation step creating 38 
states of behaviour. 

However, even if candidate constraints have been 
added to the library it may sti l l be necessary to further 
specify the knowledge in the library. There are in fact 
three reasons why this may be the case. Firstly, weaker 
constraints may have to be replaced by stronger ones 
and/or constraints on early parameters by constraints on 
later parameters. Secondly, parameters appearing to be 
correct, may start behaving in ways that are incorrect 
and/or undesired. Finding these parameters requires 
further specification. Finally, it may be the case that 
some model fragment introduces parameters that were 
not present in the behaviour prediction yet. Spurious 
ambiguity introduced by their dependencies should also 
be removed. 

9 Conclusions 
In this paper we have presented a technique for au­
tomated generation of the constraints that are needed 
for disambiguation of a behaviour prediction. Based 
on general domain knowledge a behaviour prediction is 
generated that contains valid states as well as spurious 
states. The technique removes the spurious states us­
ing feedback about the validity of states and knowledge 
about the causal dependencies in the model. This is 
achieved by generating additional constraints on param­
eter derivatives and by adding these to the assembly of 
physical objects to which they apply. 

In the machine learning field the work of Mozetic is 
most similar to our technique (e.g. [Mozetic, 1987]). By 
representing models in a logical language the refinement 
problem becomes similar to refinement of logic programs. 
To our knowledge there has been no previous work on 
refining knowledge that is represented as qualitative con­
straints. DeJong's work ([DeJong, 1989]) focuses on 
explanation-based learning in the context of plausible 
reasoning rather than refinement. 

The refinement algorithm presented in this paper is 
similar to general incremental learning techniques. It 
is special in the representation and inference engine. An 
important addition is the learning bias that is introduced 
by factoring into causal units and the search for specific 
types of constraints. 

In the literature on automated modelling two ap­
proaches can be distinguished. One approach derives 
a qualitative model of a system from data on its ac­
tual behaviour (cf. [Richards et al., 1992; Coiera, 1989; 
Bratko et ai, 1992]). In contrast with these data driven 
techniques, the more commonly adopted approach, as 
introduced in [Forbus, 1984; de Kleer and Brown, 1984], 
entails the selection of the appropriate set of readily 
available model fragments for a particular system. Our 
technique uses both approaches: generally applicable 
model fragments are reusable and a model can be tuned 
to actual device specific behaviour. 

The scope of our technique is sti l l l imited in that it 
only deals with derivatives. E.g., spurious behaviours 
indicated by incorrect parameter values cannot be dealt 
with (although it seems likely that parts of the technique 
can be used for this purpose as well). Also the technique 

requires that the knowledge present in the initial library 
is correct and sufficient, i.e. it should at least predict all 
valid states of behaviour. 

However, these problems are not caused by limitations 
of the technique. Instead, they refer to different aspects 
of the modelling process that must be dealt with in or­
der to further automate the process of qualitative model 
construction. The technique for generating the disam­
biguating constraints for parameter derivatives presents 
an important step in this direction. 
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