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Abst ract 

In order to rank the performance of machine 
learning algorithms, many researchers conduct 
experiments on benchmark data sets. Since 
most learning algorithms have domain-specific 
parameters, it is a popular custom to adapt 
these parameters to obtain a minimal error rate 
on the test set. The same rate is then used 
to rank the algorithm, which causes an opt i­
mistic bias. We quantify this bias, showing, 
in particular, that an algorithm with more pa­
rameters wi l l probably be ranked higher than 
an equally good algorithm with fewer parame­
ters. We demonstrate this result, showing the 
number of parameters and trials required in or­
der to pretend to outperform C4.5 or FOIL, 
respectively, for various benchmark problems. 
We then describe out how unbiased ranking ex­
periments should be conducted. 

1 In t roduc t ion 
Estimating the accuracy of a classifier is a topic that has 
experienced much attention in the ML community. One 
of the main results is that TV-fold cross validation pro­
vides a bias-free [Sto74] though not variance-free [Zha92; 
Koh95], estimate of the true accuracy, n-fold cross 
validation means that n classifiers are learned from 
((n — l ) / n ) ths of the available data, and tested on the 
remaining ( l / n ) t h of the training set. The averaged ac­
curacies are a bias-free estimate of the accuracy of a 
classifier that is learned by the same algorithm on the 
complete data set. If the data set is too large, the accu­
racy is usually estimated on a test set that was not used 
for learning (one-shot training and test), which causes 
a slight pessimistic bias. For model selection purposes, 
a .632 bootstrap [Efr79] may be preferable. Bootstrap 
experiments are conducted by re-sampling a number of 
training sets of size n from an original data set of size n 
by randomly drawing samples with replacement. On the 

average, .632m distinct samples wil l ap­
pear in the training set, and the averaged accuracies on 
the remaining test sets provide an optimistically biased 
estimate. The variance is claimed to be lower in many 
cases than the variance of cross validation [Efr83], which 
is important when choosing an opt imal model. 

Many papers propose new or modified machine learn­
ing algorithms, with claims such as "my new algorithm 
B is way better than algorithm A" , or "extension X im­
proves algorithm A a lot" typically supported by ranking 
experiments on a well known set of benchmark problems. 
There is also a book [MST94], resulting from the Euro­
pean StatLog project, that is dedicated to the compari­
son of learning algorithms for benchmark problems. 

Vir tual ly any learning algorithm possesses a number 
of parameters (e.g., learning rates, number of learning 
steps, pruning thresholds, etc.). Selecting values for 
these parameters is the model selection task, which has 
to be considered a part of the training process. Unfortu­
nately, it has become custom to adjust these parameters 
such that the error on either the test set, or, in case of 
n-fold cross validation, the averaged error on the n test 
sets, is minimized. Since the error on the test set is used 
as the quality criterion for the model selection task, the 
test set influences the training process. Hence, the as­
sumption that the test sets are not used for learning, 
which is essential to the result that 71-fold cross valida­
tion is bias-free, is violated. 

Many authors are aware of that problem and prop­
erly separate model selection from accuracy estimation, 
e.g., [KJ97], but a major i ty of authors seem to consider 
the resulting distortion of the results negligible. One of 
many examples is the StatLog project [MST94], where it 
has not been taken into account by all contributing part­
ners. A slight bias would not be dramatic, if all learning 
algorithms would be effected equally, such that ranking 
results would sti l l remain valid. But we argue that the 
parameters form a communication channel from the test 
set to the learning algorithm (see Figure 1), and that 
the resulting bias depends on the capacity of this chan-
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Figure 1: If model selection and accuracy estimation 
are mixed, the parameters for a communication channel, 
delivering information about the test set to the learning 
algorithm 

nel, i.e., the number of parameters, and the number of 
different parameter settings which are tested. The main 
reason why many authors conduct their experiments in 
the naive way is that unbiased experiments imply a lot 
of additional computational effort, especially when the 
parameters are manually adjusted. Our main contribu­
tion is to quantify this parameter-bias, identifying some 
cases where it actually is negligible and showing others 
where it makes ranking results invalid. 

In the following sections, we consider different experi­
mental settings: Section 2 quantifies the bias of one-shot 
training and test, Section 3 quantifies the bias of n-fold 
cross validation when different parameters are used for 
each of the n trials, and Section 4 is dedicated to cross 
validation wi th equal parameter settings for each of the 
n trials. Section 5 finally recalls the proper way of con­
ducting ranking experiments. 

2 One-shot t ra in ing and test 

In this section, we assume the following setting. A learn­
ing algorithm L accepts a set of parameters and there are 
2P distinct parameter settings (i.e., the algorithm pos­
sesses logb(2p) parameters wi th b possible values each). 
This set of parameters can be viewed as a communica­
t ion channel f rom the parameter optimizer to the learner 
wi th a capacity of p bits. 

2.1 C o m m u n i c a t i o n 
As Figure 1 illustrates, when the learner is presented 
a set of parameters and a training set, it generates a 
hypothesis h which is used to determine the accuracy of h 
on the test set of size m. The parameter optimizer is told 
this accuracy and responds with a new set of parameters, 
which are again used for training. This cycle is repeated 

t times, and the best observed accuracy on the test set is 
then submitted for publication. Based on the accuracy 
measured on the test set, the parameter optimizer can 
send p bits of information on the test set to the learning 
algorithm. 

If H is the entropy of the test set then the capacity 
of the parameter channel allows to transmit information 
about the class labels of test samples (because H 
bits are required to encode the class label of one sample), 
e.g., if the test set contains 4 uniformly-distributed class 
labels, the entropy wi l l be 2, allowing a parameter chan­
nel of width 4 (16 distinct settings) to transmit the class 
labels of 4/2 = 2 test objects. This leaves two questions 
to be answered: how does the parameter optimizer get 
to know the class labels of the first c test instances, and 
how much wi l l this knowledge improve the result? 

2.2 Parameter ad jus tmen t 
The parameter optimizer guesses parameters and obtains 
the accuracy on the test set in return. We assume that 
the learning algorithm passes these parameters to the 
hypothesis, which uses the information to classify the 
first c test objects that it encounters in some particular 
way, i.e.,the parameters encode class labels for the first c 
test objects. Then the parameter optimizer can use the 
following strategy: 

1. for all objects i, 1 through c 

(a) for all labels /, 1 through \classes\ 
- tell the learner to classify the i th object as 

class / and determine the accuracy acci 
(b) keep the label of i to the class value I* that 

resulted in the highest accuracy accu 

This algorithm tries the assignment of every possible 
class label to each of c test samples, resulting in a com­
plexity of c • \classes\ learning trials, and finds the pa­
rameter setting that encodes correct class labels for c 
samples. We can view this algorithm as greedy search 
for optimal learning parameters, but since the correct 
class label of sample i is independent of the assigned 
class label of any other sample, the greedy algorithm 
wi l l find an optimal assignment after c • \classes\ trials.1 

2.3 Increase in observed accuracy 
Now, after being told the class labels of the first c test 
objects, how much can we hope to improve the accu­
racy on the test set? Assume that we have an init ial 

1Note that this is not a lower bound for the number 
of trials, as we have found an algorithm that needs only 

trials in the worst case, but while the 
algorithm given above essentially performs a gradient search 
in parameter space, the faster algorithm behaves unlike we 
would expect a parameter optimizer to behave, so the first 
result should be somewhat closer to the behavior of a "real" 
learning algorithm. 
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classifier h, learned by C4.5 [Qui92] say, which classi­
fies ph objects of the test set (of size m) correctly. For 
the first c test instances we repeat the class labels that 
we were told by the parameter optimizer, rather than 
using h, we classify the remaining m — c instances us-
ing h. Hence the number of hits is where 
x is the number of hits that h would have obtained on 
the first c test instances (which are now classified cor­
rectly) . We now determine the probabil ity 
that this procedure increases the number of hits by z. 
Drawing c samples from a total of m, we know that ph 
of the m are "hits" (classified correctly by h). Hence, 
the number of hits wi th in the c drawn samples follows a 
hyper-geometric distr ibution (note that m is finite). We 
then replace the c drawn samples wi th c "hits" (because 
the parameter optimizer "tells" us their class labels via 
the parameter channel). 

c 

(1) 

(2) 

(3) 

(4) 

This leads us to the bias and computational effort (ex­
plained in Section 2.2), required to achieve this bias for 
one-shot training and test, t is the expected number of 
learning experiments that need to be conducted in order 
to obtain ph + z hits on the m test samples wi th prob-
abil i ty when ph is the true hit rate of h, 
provided a parameter channel wi th p bits of capacity is 
used. 

(5) 

(6) 

2.4 Affected benchmark problems 
In this section, as well as in Sections 3.1 and 4 .1 , we wi l l 
quantify the bias on concrete data sets. We assume that 
we use a real learning algori thm, C4.5 in most cases, 
which we "tune" w i th additional parameters in order to 
pretend to outperform the learning algorithm one rank 
higher than the in i t ia l learner. We wi l l answer two ques­
tions: How many parameters do we need to succeed wi th 
probability > 90% after performing sufficiently many t r i ­
als (note that this is an exact rather than an empirical 
result) and how many trials do we need in the average 

to obtain this result, provided the parameter optimizer 
performs gradient search in parameter space, which may 
be an inexact result since it depends on the actual opt i­
mizer as well as how strong the parameters influence the 
result. 

Land-sa t sa te l l i t e images: This data set contains 
4435 training and 2000 test instances. The default er­
ror rate is .231. Based on [MST94], C4.5 is ranked 10th 
(error .150, i.e., 1700 hits on the test set). To be ranked 
9th it would have to outperform Bay-tree (error .147) 
for which C4.5 needs only z = 6 extra hits on the test 
set. If we get class labels of c = 60 instances, then 

Hence we need t = 6 • 60 = 360 
trials wi th different parameter settings and since H = 2.5 
we need a parameter channel of 150 bits. Although an 
automatic parameter adjustment system may very well 
run 360 trials, a parameter channel of 150 bits is fairly 
uncommon (e.g., achieved by 45 parameters wi th 10 pos­
sible values each). Using c = 16 samples (parameter 
channel of 40 bits) and 96 experiments, we sti l l have a 
2% chance of being over-ranked. 

D N A : This data set, also described in [MST94], pos­
sesses 2000 training and 1186 test instances. C4.5 is 
ranked 10th (1096 hits). To be ranked 9th it would have 
to outperform INDCart , requiring z = 4 extra hits. We 
need to be told c = 85 class labels to achieve this with 
90%: Since we have 3 classes, we 
need t = 3 • 85 = 255 trials. Since H = 1.4908, we 
need 126 bit of parameters, e.g., 37 parameters wi th 10 
possible values each. 

For both data sets we conclude that only a very ea­
ger scientist may obtain a modest over-ranking of his 
algorithm by using an incremental algorithm and an au­
tomatic parameter-adjustment procedure. 

3 n-fold cross va l idat ion w i t h 
parameter ad justment 

In this section we study the bias caused by parame­
ter adaptation when n-fold cross validation is conducted 
wi th parameter values chosen differently for the n runs 
of the learning algorithm. As an example, the number of 
learning steps is crucial to the performance of back prop­
agation. Often, the opt imal number of learning steps is 
determined by observing the error on the test set and 
selecting the point at which the error rate starts increas­
ing again. The min imum errors that occured in the n 
learning curves are then averaged and published, i.e.,the 
number of learning steps may not be fixed to one value 
wi th in the n folds. Also, this setting is often used when 
the splits of the training set are explicit ly stated (e.g., 
mesh or vehicle silhouettes). 

To achieve an average of z extra hits per fold this way, 
n • z has to equal at least , where X, is the 
number of hits lost by not using h on c samples of fold 
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26%, we need to conduct 65 trials and a parameter chan­
nel of 14 bits, while to achieve 3 1 % we require 104 trials 

(7) and a parameter channel of 23 bits.of The parameter 
adaptation bias is so strong, that accuracy results can 
easily be pushed from 2 1 % to 3 1 % on this data set. 

(8) D iabe tes : There are 768 samples wi th 2 classes, 
H = .9331. C4.5 achieves 561 hits (rank 13), we need 
to outperform Quadisc (.5 additional hits per fold). We 

(9) only need c = 4 class labels to succeed wi th probabil ity 
92%, i.e.,we need a parameter channel of 3.7 bits and 
have to conduct 8 trials. 

In this experimental setting (parameter optimization 
in each of the n folds) almost arbitrari ly good results 
are easily achievable. Ranking results achieved wi th this 
setting are distorted wi th high probability. 

4 n-fold cross val idat ion w i t h f ixed 
parameters 

While in the last section the parameter optimizer was 
able to communicate the class labels of the first c test 
objects to the learner, the best the parameter optimizer 
can do here is to communicate the most frequently ob-

(10) served class label of test object i in all folds for the first 
c objects. If, for example, we have 3 folds and in two 
of them the first presented test object is of class A, the 
parameter optimizer may tell the learner that the first 
presented test object is of class A, which entails 2/3 of 

(11) an extra hit averaged over the three folds. 
Now what is the probability that the number of extra 

hits Y gained this way takes value y? We study this 
problem for two class labels. In this case, for each posi-

(12) 
t ion in the test set j, 1 < j < c, we choose the class that. 
the majori ty of the n samples (drawn from position j of 
the n folds) belongs to. There wi l l be max{y, n — y) rep-
resentatives of this class. Assuming that c is significantly 
less than m and the probabil ity of choosing y samples is 

(13) 
binomially distributed B(n,p)(y) , where p is the proba-
bi l i ty of the default class, i.e.,the most frequent class in 
the data set2. Hence: 

3.1 Af fec ted benchmark prob lems 
F E M mesh des ign : [DM94], a relational problem pop­
ular in inductive logic programming. It is explicitly split 
into five learning problems. There are 277 samples and 
13 classes and he entropy is H = 2.87. FOIL [Qui90] 
achieves an accuracy of 2 1 % (59 hits). To achieve 26% 
accuracy wi th a probabil i ty of 99%, FOIL needs c = 5 
class labels, while to achieve 3 1 % with a probability of 
93% FOIL would need c = 8 class labels. To achieve 

The total number of nz additional hits on n folds is the 
difference between the number of extra hits as explained 
in the last paragraph and the number of lost hits by not 
using the hypothesis h calculated in the last section: 

(15) 

2 Without this assumption the probability would be hyper-
geometrically distributed, but the number of parameters 
needed to determine the class labels of a number of samples 
that gets close to the size of the test set would be outrageous. 
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Note that in this situation the probabil i ty of being 
ranked too high depends on the hi t rate of a default 
classifier and the hit rate of the in i t ia l hypothesis: if the 
default hit rate is high and the in i t ia l classifier performs 
poorly, the probabil ity of being over-ranked is high. 

4 . 1 A f f e c t e d b e n c h m a r k p r o b l e m s 

D iabe tes : In this setting, we need c = 7 parameters to 
achieve .5 extra hits per fold wi th a probabil i ty of 2%. 
Increasing the number of parameters further decreases 
the probability, since the expected number of samples 
wi th equal class labels at some position in n folds, d i ­
vided by the number of folds, is small compared to the 
hit rate of the ini t ia l hypothesis. In this experimental 
setting, diabetes is "safe". 

H e a r t disease: In this data set [MST94] there are 
270 samples, 2 classes, H = .991. Since C4.5 performs 
poorly for this problem we only need c = 2 extra hits, 
a parameter channel of 2 bits and 4 trials are sufficient 

Figure 2: If model selection and accuracy estimation are 
separated properly, n-fold cross validation grants a bias-
free estimate of the true accuracy 

to succeed wi th > 90%. If we use k-NN as true learning 
algorithm (16 hits per fold), we need 6 extra hits to be 
ranked one rank better. W i t h c = 9 samples, we succeed 
wi th probabil ity of 90%. This is due to the fact that the 
default probabil ity is not much worse than our ini t ia l 
hypothesis. We need a parameter channel of 8 bits and 
have to conduct 18 trials. We see a strong bias on this 
data set. 

5 Unbiased assessment 
In this section we want to review how unbiased ranking 

experiments are supposed to be conducted. What has to 
be kept in mind is that model selection must not be con­
fused wi th accuracy estimation. The impact of this well 
known result on accuracy estimation of parameterized 
learning algorithms has to be realized. As Figure 2 i l ­
lustrates, parameter adaptation needs to be performed 
without considering the test set. In order to get a reliable 
estimate of the opt imal parameter settings, m-fold cross 
validation or .632 bootstrap should be conducted. The 
best parameter setting is then used to learn a classifier 
on the whole training set, and the hypothesis is assessed 
on the test set. In order to get an unbiased estimate, 
n-fold cross validation has to be conducted making n • m 
learning trials in total . Averaged over sufficiently many 
learning problems, this procedure clearly grants an un­
biased estimate of the average performance of a learning 
algorithm, but it may be painful, since n • m trials need 
to be conducted for each problem. 

6 Discussion 
Our calculation clearly shows that adapting the param­
eters such that the accuracy on the test set is optimized 
causes an optimistic bias that depends on the number 
of parameters and the number of trials. We quantified 
the bias that wi l l be observed when sufficiently many 
trials are conducted and the learner makes opt imal use 
of the available parameters, and we calculated the ex­
pected number of trials needed, assuming the parameter 
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optimizer follows a gradient descent-like search. 
It shows that it is hard to be over-ranked in the one-

shot training and test situation if the test set is large. 
In the n-fold cross validation situation, the probability 
of being over-ranked is high if the difference between de­
fault hi t rate and true accuracy is low. If in the n-fold 
cross validation setting different parameter values are 
used (i.e.,the parameters are optimized locally) a highly 
over-ranked result can be achieved, so experiments con­
ducted this way do not yield valid results. 

Our considerations do not prove that any learning al­
gori thm actually is much worse than claimed, but they 
do show that such claims are not validly supported by 
experiments in the naive setting. Our results are con­
structive in some sense: using the provided equations it 
can easily be proven that in some situations - depending 
on the properties of the data set - the naive but inexpen­
sive experimental setting yields perfectly valid results. 

Based on our calculations, the validation of perfor­
mance evaluations for new learning algorithms seems to 
be difficult: many authors do not document their ex­
perimental settings to a sufficient degree, and empirical 
results that are based on the naive setting are likely to 
be distorted and cannot be compared to those obtained 
wi th unbiased experiments. Heuristic modifications that 
add new parameters may easily be over-estimated. Even 
if the modification does not improve the true accuracy 
of the hypothesis, a new parameter may improve the 
ranking results. 

An important question is which additional assump­
tions were made in our calculation. To summarize them: 
we assumed that the test sets are in random order (in 
contrast to ordered by their class labels), but that the 
order is fixed, as experiments wi th different parameter 
settings are conducted. We also assumed that the pa­
rameter optimizer conducts a gradient descent for op­
t imal parameters and showed that it wi l l find optimal 
parameters if the parameters encode class labels for the 
first c test samples. Hi l l climbing algorithms for parame­
ter adaptation are fairly common. Also, different param­
eter settings wi l l result in different classification of some 
of the test samples, although not every distinct parame­
ter setting may yield a different classifier. However, the 
correlation between parameters and class labels of test 
set samples is usually less direct than assumed, hence 
the number of experiments required to gain z extra hits 
may be higher, and—depending on the learner—the bias 
may be smaller in real world situations than in our cal­
culation. 

Parameters of learning algorithms are undesirable 
since the more parameters an algorithm has the less ro-
bust the algorithm is, and the harder it is to obtain a 
satisfactory result for a new problem. Buchanan, para­
phrased by [Cat9l ] , called this the China syndrome: 

Some learning algorithms have so many parameters that 
the only person who can make the program run is wi th 
high probabil i ty currently in China. Here we have illus­
trated the following extension of this syndrome, which 
might be considered Murphy's law on machine learning 
algorithms: the algorithm that is ranked most highly, 
and is therefore considered most suitable for a given 
problem, is the one that is least likely to run and grant 
a satisfactory result because it has so many parameters 
that the only person who claims to be able to make it 
run is, wi th high probability, currently unavailable. 
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