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Abst rac t 
Many of the challenges faced by the field of 
Computational Intelligence in building intell i­
gent agents, involve determining mappings be­
tween numerous and varied sensor inputs and 
complex and flexible action sequences. In ap­
plying nonparametric learning techniques to 
such problems we must therefore ask: "Is 
nonparametric learning practical in very high 
dimensional spaces?" Contemporary wisdom 
states that variable selection and a "greedy" 
choice of appropriate functional structures are 
essential ingredients for nonparametric learning 
algorithms. However, neither of these strate­
gies is practical when learning problems have 
thousands of input variables, and tens of thou­
sands of learning examples. We conclude that 
such nonparametric learning is practical by us­
ing a methodology which does not use either 
of these techniques. We propose a simple non­
parametric learning algorithm to support our 
conclusion. The algorithm is evaluated first on 
10 well known regression data sets, where it 
is shown to produce regression functions which 
are as good or better than published results 
on 9 of these data sets. The algorithm is fur­
ther evaluated on 15 large, very high dimen­
sional data sets (40,000 learning examples of 
100, 200, 400, 800 and 1600 dimensional data) 
and is shown to construct effective regression 
functions despite the presence of noise in both 
inputs and outputs. 

1 In t roduc t i on 
Nonparametric learning algorithms are designed for 
learning problems where relatively l i t t le information is 
available a priori about the what type of model struc­
ture is required, or which set of variable inputs are im­
portant. Such problems are common in many domains 
of computational intelligence. As a simple example, con­
sider the problem of autonomous navigation in a clut­
tered environment. As researchers we must decide which 
features (inputs) in the environment are important, and 
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what kind of computational models are required. Non-
parametric learning techniques are of potential value to 
us because they are designed to define their own model 
structure, and to determine which set of inputs are most 
relevant to effectively predict the task output. There are 
a number of effective non-parametric learning techniques 
in the literature, including C4.5 [Quinlan, 1993], CART 
[Breiman et a/., 1984], and MARS [Friedman, 1991] (See 
[Michie et a/., 1994] for a more complete l ist). 

Almost without exception, contemporary implemen­
tations of nonparametric learning algorithms have two 
common properties. First, some form of variable selec­
t ion is done to determine which of all possible inputs 
best predict the output. And second, they utilize some 
type of "greedy" search procedure which attempts to 
pick the best model structure, from some set of possi­
ble structures. Such techniques are feasible when there 
are relatively few input variables (< 100). However, 
neither of these two algorithmic properties are practi­
cal when large numbers of potential inputs are available. 
Consider the learning example where there are 100 po­
tential inputs, and assume that not all of these inputs 
are necessary to predict the output. In order to pick the 
best 50 of these 100 inputs, one would need to construct 

models, and then evaluate them all 
to see which set of 50 inputs best predict the output. 
Such an exhaustive search is currently not feasible, and 
is unlikely to be in the near future. Similarly, if we use 
some greedy search procedure to determine which of all 
possible model structures is the best, we would further 
increase our search space by the total number of possible 
model structures. 

Certainly, the flexibility of nonparametric learning rec­
ommends it as a useful tool for constructing intelligent 
agents. This has been clearly demonstrated in numer­
ous publications [Michie et a/., 1994]. However, in almost 
all applications of nonparametric learning, the number 
of inputs have been relatively low (< 100), and the 
number of learning examples have been relatively few 
( < 20,000). Thus, given that many challenges faced 
by the field of Computational Intelligence in building in­
telligent agents, involve determining mappings between 
numerous (thousands or more) and varied sensor inputs 
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and complex and flexible action sequences requiring tens 
of thousands of training examples, we must ask whether 
nonparametric learning can be usefully applied to such 
problems? Given our argument in the previous para­
graph, the in i t ia l response to this question is no: the 
computational complexity associated wi th applying ex­
isting algorithms to such large problems makes them im­
practical. In fact, all currently published nonparamet­
ric learning algorithms, utilize search strategies which 
are impractical in high dimensional spaces. Even algo­
rithms such as projection pursuit [Friedman and Stuet-
zie, 1981], which do not perform tradit ional exhaustive 
searches, build models using all input variables simulta­
neously, making them impractical for very high dimen­
sional problems. 

In an effort to develop methods to address the high 
dimensional mappings required for intelligent agents, we 
challenge the need for variable selection and greedy func­
tion search in nonparametric learning. Instead, we pro­
pose an algorithm which has two basic characteristics: 
first, very l i t t le computational effort is spent on variable 
selection; and second, the model selection strategy does 
not explode in computational complexity, as the dimen­
sion of the problem increases. Our intent is to show that 
a model having these properties is capable of building 
practical, effective nonparametric models, for both small 
low dimensional learning problems, as well as larger, very 
high dimensional problems. 

The basic premise behind the proposed algorithm is 
that very high dimensional regression can be done us­
ing a finite number of low dimensional structural units, 
which are added one at a t ime to the regression func­
t ion. These structural units are by necessity low dimen­
sional, because high dimensional structures suffer from 
the curse of dimensionality (see [Friedman, 1994] for a 
detailed discussion). The inputs to new structural units 
can be the outputs of previously added units as well as 
input variables. However, both the choice of which struc­
tural unit to add next, and which inputs will act on these 
structural units, must be done using minimal computa­
tional effort for the algorithm to be practical in high di­
mensional spaces. 

In the current paper, we implement and evaluate the 
simplest algorithmic structure which is consistent with 
the ideas outlined above. The proposed algorithm has a 
very simple structure, using only one type of structural 
unit, and variables are added to the model in a random 
order. The surprising conclusion of this paper is that 
this simple, in essence random structure, produces highly 
effective nonparametric models. 

Much of the work in computational learning has been 
directed towards the classification problem. However, 
many real problems in Az- involve controlling agents 
which manipulate the world using continuous values con­
trol signals. Hence, in this paper we have chosen to 
directly address the continuous valued regression prob­
lem, instead of the discrete valued classification problem. 
However, as discussed in [Friedman, 1994], classification 
problems can be solved using regression techniques in 

a number of ways. Therefore the high dimensional re­
gression techniques studied in this paper are, at least in 
theory, applicable to classification problems. 

In the remainder of this paper we give a detailed de­
scription of the proposed algori thm, followed by an ex­
tensive numerical evaluation. Our evaluation is done in 
3 parts. First we compare the performance of our algo­
r i thm to published results on 10 well known regression 
problems from the literature. This gives us a good mea­
sure of the performance of the proposed algorithm on 
some standard regression problems. Next we test the al­
gorithm on 15 large very high dimensional, highly non­
linear regression problems. This allows us to test the 
efficacy of the algorithm on the type of problems we are 
most interested in addressing. Our final evaluation of 
the algorithm is on the 10-bit parity problem (or equiv-
alently the 10 input XOR problem). This problem was 
chosen to show that the proposed algorithm is capable 
of solving problems which have an intrinsic dimension 
(10 inputs) greater than that of its highest dimensional 
functional unit (2 dimensional). A common criticism of 
algorithms which build functions using low dimensional 
structural units is that they cannot model high dimen­
sional XOR functions. In this paper, we demonstrate 
that this is not true for the proposed algorithm. 
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used during the construction of the regression function. 
For all experimental results presented, these learning pa­
rameters are set to the same theoretically motivated and 
data independent values. The function of each learning 
parameter is explained in the following algorithmic de­
scription, and is further elaborated on below. A single 
cascade of gi(•) functions is constructed in a series of sec­
tions. When the current section 
of the cascade can no longer reduce mean squared er­
ror, learning outputs y are replaced by residual errors 
due to iRj and a new section is begun starting from 
the last error reducing function g j( .). Stated in detail, 
the construction of the regression function, RL(X) (equa­
tion (1)), proceeds as follows: 

S T E P 1: Initialize algorithm: Initialize the 2 coun­
ters i = l and p = 1, where i and p are used as follows: 
i indexes the function g i( .). at the start of the current 
section; p is a subscript indicating that section p of the 
cascade wi l l be constructed in step 2. Throughout this 
algorithm, the subscripts k0, •••, kL (used to identify the 
independent variables) are randomly selected, one at 
at t ime, from the set { 1 , . . . , N } , without replacement. 
When this set is empty, it is re-initialized to { 1 , . . . , AT}, 
and the process of selecting these subscripts continues. 

806 LEARNING 



Table 1: Low Dimensional Data Sets 

S R e s u l t s a n d D i scuss i on 

3.1 Low D imens iona l D a t a Sets 
In this section we evaluate the efficacy of the proposed 
algorithm by applying it to 10 well known regression 
problems from the literature (Table 1). 

For the data sets found in [Breiman, 1996] and [Ras-
mussen, 1996], the regression functions were constructed 
using 10 fold cross-validation: the Learning Data set was 
divided into 10 approximately equally distributed sets, 
and then 10 regression functions were constructed using, 
in turn, 9 of these sets as training sets, and the remain­
ing set as a validation set. For each Test Data point 
(Test Data was not used during learning), the outputs 
of the 10 regression functions were averaged to produce 
the final approximation output, for which error results 
are reported. To test reproducibility, 100 independent 
approximations (independent wi th respect to random 
sequences of input variables and bootstrap samples as 
defined in Section 2) were generated using the Learning 
Data: Table 1 reports the best Test Set error, along with 
the average and standard deviation (s.d.) over the 100 
independent runs. 

For the data sets found in [Breiman, 1996], we fol­
lowed the reported experimental setup. For each of the 
4 data sets, 100 learning and 100 test sets were created 
randomly according to the guidelines given in [Breiman, 
1996]. For each of the 100 learning sets a regression 
function was constructed (using 10 fold cross-validation 
as described above) and evaluated on the corresponding 
test set. Experimental results for the 100 experiments 
are given in Table 1. The previously published error for 
the [Breiman, 1996] data refers to the average bagged 
error reported. 

For the data sets found in [Rasmussen, 1996], we re­
port results for the largest learning sets only (we used 80 
learning examples of auto price data, 104 of cpu data, 
256 of housing data, 192 of mpg data, and 88 of servo 
data). For each of these 5 fixed data sets, the regression 
functions were constructed using 10 fold cross valida­
tion as described above. We generated 100 independent 
approximations in order to determine what effect the 

stochastic aspect of the proposed algorithm has on its 
performance. As reported in Section 2, the ordering of 
the independent variables is random, and the construc­
tion of the 2 dimensional functions gi() is done using 
a (random) bootstrap sample of the training data. The 
best and average relative mean squared test set error, 
and its standard deviation, are reported in Table 1. From 
Table 1, it is evident that although there is some varia­
tion in error performance from run to run, the stochastic 
effect of the algorithm is mostly negligible. The previ­
ously published error given in Table 1 under the [Ras­
mussen, 1996] data sets is the best reported error (indi­
cated by brackets) of the 5 algorithms evaluated, and was 
obtained from the graphs presented in the paper. For 
both the [Breiman, 1996] and [Rasmussen, 1996] data 
sets, the average learning time ranged from about 1 to 10 
minutes per approximation (all learning times reported 
in this paper are for proposed algori thm running on a 
Pentium Pro 150 using L INUX) . The average size of a 
single cascade was about 90 K-bytes. 

Finally, for the forward dynamics data reported in 
[Jordan and Jacobs, 1994], our evaluation was done us­
ing the experimental setup described by Jordan and Ja­
cobs for the on-line back-propagation algori thm: learn­
ing was done using 15,000 training examples, and learn­
ing stopped when the error could no longer be reduced 
on 5000 validation examples. The regression functions 
for this data consisted of a single cascade per output: 
due to the large data size, 10 fold cross validation was 
not necessary. In order to estimate the reproducibil­
ity of proposed algorithm on this data, we constructed 
10 independent approximations. The best and average 
relative error on the validation set (in accordance with 
[Jordan and Jacobs, 1994]), and its standard deviation 
over these 10 independent experiments, is reported in 
Table 1. The previously published error, shown in Ta­
ble 1, is the best relative error (on the validation data) 
of the 7 algorithms studied in [Jordan and Jacobs, 1994]. 
The forward dynamics data consists of 12 inputs and 4 
outputs, which requires 4 of our regression functions (1 
for each output). The algorithm required about 10 hours 
of computation to build all 4 cascades, and the average 
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size of each cascade was about 1 M-byte. 

Figure 1: No Noise Data: Increase in Approximation 
Size wi th Dimension 

From Table 1, it is evident that the proposed algo­
r i thm demonstrated as good or better error results on 
all but 1 (the servo data) of the data sets. However, this 
result should be interpreted wi th caution. The specific 
goal of the proposed algori thm is to build a regression 
function which best represents the learning data in the 
mean squared error sense. The regression function con­
tinues to grow in parameter size unt i l the mean squared 
error can no longer be reduced: this is beneficial if one 
wants the "best" approximation, but detrimental if one 
wants a representation of fixed size. Most algorithms 
referred to in Table 1 are parametric and therefore of 
fixed size. Two exceptions are MARS and CART. How­
ever, even comparing these to the proposed algorithm 
should be done wi th caution: unlike our algori thm, both 
MARS and CART can be used to analyze the signifi­
cance of various inputs and how they interact wi th one 
another. 

3.2 H i g h D imens iona l D a t a 
In this section, our goal is to study the proposed algo­

r i thm when applied to very high dimensional regression 
data, under various noise conditions. Since no large, 
high dimensional regression data examples were found 
in the literature, we applied the proposed algorithm to 
15 artificial data sets ranging f rom 100 to 1600 input di­
mensions. For 5 of these data sets no noise was present, 
while the remaining 10 data sets had noise. For the first 
5 of these "noisy" data sets, noise was present only in 
the output, while the remaining 5 data sets had both 
input and output noise. Input noise was generated by 

Figure 2: Output Noise Data: Increase in Approxima­
tion Size wi th Dimension 

simply allowing only half of all inputs to contribute to 
the output (thus half of the inputs used in constructing 
the regression function had no effect on output). Out­
put noise was generated using a normal distribution with 
the standard deviation selected to give a signal to noise 
ratio of 3 to 1, thus imply ing that the true underlying 
function accounts for 90%. of the variance in learning and 
test data. 

0 200 400 600 800 1000 1200 1400 1600 
Data Dimension 
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t ion (7) allows us to generate highly nonlinear data of 
any dimension, while at the same time controlling the 
complexity of the data via the appropriate selection of 
functions ri(.) and s i(•). By data complexity, we are 
referring to the number of random sample points re­
quired to build sufficient non-parametric models of the 
data, w i th respect to least squared error. The more 
complex the generating function, the more data points 
are required for non-parametric modeling. For the pur­
poses of this paper, we have chosen functions r i ( . ) and 
si(•) such that 40,000 random sample points are suffi­
cient in order to effectively model the data. For spe­
cific details on how r i ( . ) and s , ( ) are constructed see 
http://www.ee.ubc.ca/~gregg for C code and documen­
tat ion. 

The simulation results for the 12 high dimensional 
data sets are presented in Table 2. For each data set 
there are 40,000 learning examples and 40,000 testing 
examples. Each learning set is further divided into 
30,000 training examples and 10,000 validation exam­
ples: these are used to construct one cascade which forms 
the approximation for that data set. The 3 right most 
columns of Table 2 contain the test set average relative 
mean squared error and corresponding standard devia­
tions over 10 independent runs. Relative mean squared 
error is defined, in the usual sense, as the mean squared 
error on the test data, divided by the variance of the test 
data. From Table 2 it is evident that the relative error 
is small when no noise is present. W i th the addition of 
noise the relative error approaches the theoretical l imi t 
(due to the 3 to 1 signal to noise ratio) of 0.1. Learning 
time for each data set w i th no noise was approximately 7 
hours and produced cascades which were between 3 and 6 
M-bytes in size. In contrast, learning time for each data 
set containing noise was about 1 hour and produced ap­
proximations of between 200 and 600 K-bytes in size. It 
is interesting to observe that the dimension of the data 
did not affect either learning time or the size of the ap­
proximation. This is clearly demonstrated in Figures 
1 through 3, which show an increase in approximation 
size, as a function of the number of input variables. Note 
that the no noise data generated approximations which 
where much larger than those generated by data which 
had noise. This is because the proposed algorithm stops 
adding levels to the regression function when error can 
no longer be reduced on the validation set. This con­
dit ion occurs much earlier when there is noise in the 
training data, hence generating much smaller regression 
functions. 

3.3 10 I n p u t X O R P r o b l e m 
Because the proposed algorithm constructs approxima­
tions 2 dimensions at a t ime, one may be lead to conclude 
that it is not capable of solving XOR problems of 3 or 
more inputs, however, this is not the case. The proposed 
algorithm was able to solve the 10 input XOR problem in 
10 minutes of learning t ime (the size of the resulting re­
gression function was 40 K-bytes). The theoretical basis 
for this surprising fact is the subject of ongoing theo­

retical study, however, we postulate that it is the direct 
result of our use of bootstrap samples during learning. 

4 C o n c l u s i o n 
We have demonstrated that nonparametric learning is 
practical for very high dimensional learning problems. 
We did this by proposing a simple nonparametric learn­
ing methodology, which neither requires computation­
ally expensive variable selection, nor an expensive search 
procedure to find the best model representation. An 
algorithm based on this methodology was successfully 
applied to several high dimensional learning problems, 
which no other currently published algorithm could effec­
tively address. The size of the regression functions pro-
duced by the proposed algorithm depended on the learn­
ing data's complexity, and not on its dimension. Our 
current ongoing efforts are being directed to a more com­
plete theoretical analysis of nonparametric algorithms 
having these properties, as well as the application of 
our methodology to real world agents. In addition, we 
are interested in exploring the efficacy of the proposed 
methodology as an analytical tool for exploring the rela­
tive importance of input variables, and for defining con­
fidence intervals for model predictions. 
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Abs t rac t 
SDS is a discovery system from numeric mea­
surement data. It outperforms the existing sys­
tems in every aspect of search efficiency, noise 
tolerancy, credibil i ty of the resulting equations 
and complexity of the target system that it can 
handle. The power of SDS comes from the use 
of the scale-types of the measurement data and 
mathematical property of identity by which to 
constrain the admissible solutions. Its algo­
r i thm is described w i th a complex working ex­
ample and the performance comparison wi th 
other systems are discussed. 

1 In t roduc t i on 
Finding regularities in the data is a basis of knowledge 
acquisition by induction. One such typical and challeng­
ing task is inducing quantitative formulae of scientific 
laws from measurement data. Langley and others' BA­
CON systems [Langley et a/., 1985] are most well known 
as the pioneering work. They founded the succeeding 
BACON family. FAHRENHEIT [Koehn and Zytkow, 
1986], ABACUS [Falkenhainer and Michalski, 1985], IDS 
[Nordhausen and Langlay, 1990] and KEPLER [Wu and 
Wang, 1989] are such successors that basically use simi­
lar algorithms to B A C O N in search for a complete equa­
tion governing the data measured in a continuous pro­
cess. However, recent work reports that there is con­
siderable ambiguity in their results under noisy data 
even for the relations among small number of quanti­
ties [Schaffer, 1990; Huang and Zytkow, 1996]. Another 
drawback of the BACON family is the complexity of hy­
pothesis generation. This also l imits their applicability 
to f ind a complex relation that holds among many quan­
tities. 

To alleviate these drawbacks, some members of the 
BACON family, e.g. ABACUS, utilizes the informa­
t ion of the quantity dimension to prune the meaningless 
terms based on the principle of dimensional homogene­
ity. However, this heuristic sti l l leaves many types of 
equations in candidates. COPER [Kokar, 1985], another 
type of equation f inding systems based on a principle of 
dimensional analysis called "Buckingham's II-theorem" 

[Buckingham, 1914], can significantly reduce the candi­
date generation by explicit use of the information about 
the quantity dimension. I ts another significant advan­
tage is higher credibil ity of the solution that it is not 
merely an experimental equation but is indeed a first 
principle equation. However, these approaches are not 
applicable when the information of the quantity dimen­
sion is not available. This fact strongly l imits their ap­
plicability to non-physics domains. 

The primary objective of this study is to establish a 
method to discover an admissible complete equation gov­
erning a complex system where its domain is not l im­
ited to physics ensuring as much as possible its prop­
erty being the first principles. Any other technical ar­
eas, including system identification theory [Ljung, 1987], 
have not addressed to automatically derive first princi­
ple based models of complex systems from measurement 
data. Our goal if attained wil l provide an advantageous 
means not only for the field of scientific discovery but 
also for the analysis of complex systems in engineering. 
As a step towards this goal, we developed a quantita­
tive model discovery system "Smart Discovery System 
(SDS)" implementing our new approach. SDS utilizes 
newly introduced constraints of scale-type and identity 
both of which highly constrain the generation of candi­
date terms. Because these are not heuristics but mathe­
matical constraints, the generated candidates are highly 
credible. SDS also adopts bi-variate equation generation 
based on data fitting. But what makes SDS different 
from BACON family is that it employs triplet checking of 
the validity of those bi-variate equations, a quite strong 
mathematical constraint. It should be emphasized that 
SDS does not require the information about quantity 
dimension. The information required besides the mear 
surements is the knowledge of scale-type of each quan­
tity. This feature expands the scope of its applicability 
since the knowledge of scale-types is widely obtained in 
various domains including psychophysics, sociology and 
etc. 

2 O u t l i n e o f M e t h o d 
SDS requires two assumptions on the feature of the ob­
jective system to be analyzed. One is that the objective 
system can be represented by a single quantitative, con-
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