
Discover ing Admiss ib le Mode ls o f Comp lex Systems 
Based on Scale-Types and I den t i t y Const ra in ts 

Takashi Washio and Hi rosh i M o t o d a 
Institute for the Scientific and Industrial Research, Osaka University 

8-1, Mihogaoka, Ibarakishi, Osaka 567, JAPAN 
e-mail: {washio, motoda}©sanken.osaka-u.ac.jp 

Abs t rac t 
SDS is a discovery system from numeric mea­
surement data. It outperforms the existing sys­
tems in every aspect of search efficiency, noise 
tolerancy, credibil i ty of the resulting equations 
and complexity of the target system that it can 
handle. The power of SDS comes from the use 
of the scale-types of the measurement data and 
mathematical property of identity by which to 
constrain the admissible solutions. Its algo­
r i thm is described w i th a complex working ex­
ample and the performance comparison wi th 
other systems are discussed. 

1 In t roduc t i on 
Finding regularities in the data is a basis of knowledge 
acquisition by induction. One such typical and challeng­
ing task is inducing quantitative formulae of scientific 
laws from measurement data. Langley and others' BA­
CON systems [Langley et a/., 1985] are most well known 
as the pioneering work. They founded the succeeding 
BACON family. FAHRENHEIT [Koehn and Zytkow, 
1986], ABACUS [Falkenhainer and Michalski, 1985], IDS 
[Nordhausen and Langlay, 1990] and KEPLER [Wu and 
Wang, 1989] are such successors that basically use simi­
lar algorithms to B A C O N in search for a complete equa­
tion governing the data measured in a continuous pro­
cess. However, recent work reports that there is con­
siderable ambiguity in their results under noisy data 
even for the relations among small number of quanti­
ties [Schaffer, 1990; Huang and Zytkow, 1996]. Another 
drawback of the BACON family is the complexity of hy­
pothesis generation. This also l imits their applicability 
to f ind a complex relation that holds among many quan­
tities. 

To alleviate these drawbacks, some members of the 
BACON family, e.g. ABACUS, utilizes the informa­
t ion of the quantity dimension to prune the meaningless 
terms based on the principle of dimensional homogene­
ity. However, this heuristic sti l l leaves many types of 
equations in candidates. COPER [Kokar, 1985], another 
type of equation f inding systems based on a principle of 
dimensional analysis called "Buckingham's II-theorem" 

[Buckingham, 1914], can significantly reduce the candi­
date generation by explicit use of the information about 
the quantity dimension. I ts another significant advan­
tage is higher credibil ity of the solution that it is not 
merely an experimental equation but is indeed a first 
principle equation. However, these approaches are not 
applicable when the information of the quantity dimen­
sion is not available. This fact strongly l imits their ap­
plicability to non-physics domains. 

The primary objective of this study is to establish a 
method to discover an admissible complete equation gov­
erning a complex system where its domain is not l im­
ited to physics ensuring as much as possible its prop­
erty being the first principles. Any other technical ar­
eas, including system identification theory [Ljung, 1987], 
have not addressed to automatically derive first princi­
ple based models of complex systems from measurement 
data. Our goal if attained wil l provide an advantageous 
means not only for the field of scientific discovery but 
also for the analysis of complex systems in engineering. 
As a step towards this goal, we developed a quantita­
tive model discovery system "Smart Discovery System 
(SDS)" implementing our new approach. SDS utilizes 
newly introduced constraints of scale-type and identity 
both of which highly constrain the generation of candi­
date terms. Because these are not heuristics but mathe­
matical constraints, the generated candidates are highly 
credible. SDS also adopts bi-variate equation generation 
based on data fitting. But what makes SDS different 
from BACON family is that it employs triplet checking of 
the validity of those bi-variate equations, a quite strong 
mathematical constraint. It should be emphasized that 
SDS does not require the information about quantity 
dimension. The information required besides the mear 
surements is the knowledge of scale-type of each quan­
tity. This feature expands the scope of its applicability 
since the knowledge of scale-types is widely obtained in 
various domains including psychophysics, sociology and 
etc. 

2 O u t l i n e o f M e t h o d 
SDS requires two assumptions on the feature of the ob­
jective system to be analyzed. One is that the objective 
system can be represented by a single quantitative, con-

810 LEARNING 



tinuous and complete equation for the quantity ranges 
of our interest. Another is that all of the quantities in 
the equation can be measured, and all of the quantities 
except one dependent quantity can be controlled to their 
arbitrary values in the range. The latter is a common 
assumption in B A C O N family. The former is the as­
sumption of the original BACON systems, and is also 
assumed by other BACON family (i.e., search made for 
a complete equation for every continuous region in the 
objective system). 

The information required from the user besides the 
actual measurements is a list of the quantities and their 
scale-types. The rigorous definition of scale-type was 
given by Stevens [Stevens, 1946]. He defined the mea­
surement process as "the assignment of numerals to ob­
ject or events according to some rules.'" He claimed that 
different kinds of scales and different kinds of measure­
ment are derived if numerals can be assigned under dif­
ferent rules, and categorized the quantity scales based on 
the operation rule of the assignment. The quantitative 
scale-types are interval scale, ratio scale and absolute 
scale, and these are the majorities of the quantities. Ex­
amples of the interval scale quantities are temperature in 
Celsius and sound tone where the origins of their scales 
are not absolute, and are changeable by human's defi­
nitions. Its operation rule is "determination of equality 
of intervals or differences", and its admissible unit con­
version follows "Generic linear group: x' — kx + c". 
Examples of the ratio scale quantities are physical mass 
and absolute temperature where each has an absolute 
zero point. I ts operation rule is "determination of equal­
i ty of ratios", and its admissible unit conversion follows 
"Similari ty group: x' — kx" . Examples of the absolute 
scale quantities are dimensionless quantities. It follows 
the rule of "determination of equality of absolute value", 
and "Identity group: x' = x " . Here, we should note that 
the scale-type is different from the dimension. For in­
stance, we do not know what the force (ratio) divided 
by the acceleration (ratio) means within the knowledge 
of scale-types. 

In the following sections, the details of the algorithm 
of SDS are explained. For clarification purpose, we first 
focus on the case where the model involves only ratio 
and absolute scales in the next section. The extension 
to interval scale is described in the latter section. SDS 
can handle all of the three scale-types. 

3 Equa t ion Search Based on Rat io 
Scale 

3.1 Bi-Variate Test 
The algorithm of SDS is outlined in Figure 1. Step ( 1 - 1 ) 
significantly reduces the search space of bi-variate equa­
tions by using the "scale-type constraint" Two well-
known theorems in the dimensional analysis provides the 
basis of this step [Buckingham, 1914]. 
B u c k i n g h a m I I - t h e o r e m // is a com­
plete equation, and if a l l of its arguments are either ratio 
or absolute scale-types, then the solution can be written 

Given a set of ratio scale quantities, R Q , and a 
set of absolute scale quantities, A Q , 

(1-1) Apply bi-variate test fo r an admissible equa­
tion of ratio scale to every pair of quantities 
in RQ. Store the resultant bi-variate equa­
tions accepted by the tests into an equation 
set RE and the others not accepted into an 
equation set N R E . 

(1-2) Apply triplet test to every triplet of associ­
ated bi-variate equations in R E . Derive al l 
maximal convex sets fo r the accepted triplets, 
and compose al l bi-variate equations into a 
multi-variate equation in each maximal con­
vex set. Define each multi-variate equation 
as a term. Replace the merged quantities by 
the generated terms in RQ. 

(2) Let AQ = AQ + RQ. Given candidate for­
mulae set C E , repeat steps (2-1) and (2-2) 
unt i l no more new term become generated. 

(2-1) Apply bi-variate test of a formula in CE 
to every pair of the terms in A Q , and 
store them to A E . Merge every group 
of terms into a unique term respectively 
based on the result of the bi-variate test, 
if this is possible. Replace the merged 
terms with the generated terms of mult i ­
variate equations in AQ. 

(2-2) Apply identity constraints test to every 
bi-variate equation in A E . Merge every 
group of terms into a unique term re­
spectively based on the result of the iden­
tity constraints test, if they are possible. 
Replace the merged terms with the gen­
erated terms of multi-variate equations 
in AQ. Go back to step (2-1). 

The candidate models of the objective system are 
derived by composing the terms in AQ. 

Figure 1: Outl ine of SDS algorithm 
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These theorems state that any meaningful complete 
equation consisting only of the arguments of ratio and 
absolute scale-types can be decomposed into an equa-
tion of absolute scale-type quantities having an arbitrary 
form and equations of ratio scale-type quantities having 
products form. The former is 
called an "ensemble and the latter 

"regime's. 
Because we know that any pair of ratio scale quanti­

ties in a given complete equation has a product relation 
if both belong to an identical regime, SDS searches bi-
variate relations having the following product form in 
RQ, which is the unique admissible equation that hold 
in such a regime. 

where x, y are ratio scale quantities. (1) 
The value of the constant a must be independent of any 
other quantities according to Product Theorem, while 
the constant b is dependent on the other quantities in 
the regime. SDS applies the least square fitting of Eq. 1 
to the bi-variate experimental data of x and y that are 
measured while holding the other quantities constant, 
and determines the values of a, its expected standard 
error da, and b. For ease of linear fitting, the logarithmic 
form of Eq. 1, is used instead of Eq. 
1 itself. The judgment is made whether this equation 
fits the data well enough by the following two types of 
statistical tests. 
(1) F-test of the ratio between variances of regressive 

component and residual error 
component 

(2) test if da is larger than the absolute value of a itself. 
The test (1) is to check if the equation accurately fits 
to the given data in terms of the power (variance) of 
residual component. The test (2) is to simply check if 
the value of the constant a is meaningful. When any of 
the tests fail, x and y are judged not to have the prod­
uct relation. For identical pair of ratio scale quantities, 
this procedure is repeated k = 10 times to check the 
independence of the constant a while holding the other 
quantities at randomly chosen different values. Then the 
following test is applied to the set of values of a and da 
to check the independence. 
(3) x2-test of the ratio between variance of the values 

of a and the average of da over the k data set. 
If all these tests are passed, the pair of x and y is 
judged to have the admissible product relation. Then 
the bi-variate equation together with the average of a 
and da,i e., and is stored to RE. If any of the tests 
failed, the bi-variate equation, and are stored to 
NRE. 

The procedure in step (1 - 1) is now demonstrated by 
an example of a complex system depicted in Figure 2. 
This is a circuit of photo-meter to measure the rate of 
increase of photo intensity within a certain time period. 
The resistance and switch parallel to the capacitor and 

Figure 2: A circuit of photo-meter 
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Table 1: Identity constraints 

These theorems state that any meaningful complete 
equation consisting of the arguments of interval, ratio 
and absolute scale-types can be decomposed into an en­
semble having an arbitrary form and regimes of inter­
val and ratio scale-type quantities in products and log­
arithmic form. In each regime, every interval scale-type 
quantities appears in linear relation w i th some other in­
terval scale-type quantities. Therefore, specific tasks in 
the equation search associated wi th interval scale quan­
tities are to seek linear forms among interval scale-type 
quantities and to seek the logarithmic relation between a 
linear form and the others. For these tasks, the steps in­
dicated in Figure 3 are inserted in the original algorithm 
of SDS. 

Additionally given a set of interval scale quanti­
ties, IQ, 

(0-1) Apply bi-variate test for an admissible lin­
ear equation of interval scale to every pair 
of quantities in IQ. Store the resultant bi-
variate equations accepted by the tests into 
an equation set IE and the others not ac­
cepted into an equation set NIE. 

(0-2) Apply triplet test to every triplet of associ­
ated bi-variate equations in IE. Derive all 
maximal convex sets MCSs for the accepted 
triplets, and compose all bi-variate equations 
into a multi-variate equation in each MCS. 
Define each multi-variate equation as a term. 
Replace the merged terms by the generated 
terms of the multi-variate equations in IQ. 
Let RQ = RQ + IQ. 

(1-8) Apply bi-variate test for an admissible loga­
rithmic equation between the linear forms of 
interval scale-type quantities and the other 
terms in RQ. Replace the terms in the re­
sultant bi-variate equations accepted in the 
tests by the generated terms in RQ. 

Figure 3: Extended part of algorithm 

The step (0-1) and (0-2) are almost identical w i th the 
steps (1-1) and (1-2) except that the following admissible 
relation is used at the bi-variate data f i t t ing in IQ. 

ax + y = b (11) 

Once a multi-variate linear form is obtained after the 
triplet test, the form is dealt wi th a term in the regime 
formulae based on the extended Product Theorem, and 
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6 Discussion and Related W o r k 
Main features of the discovery system SDS are its low 
complexity, robustness, scalability and wide applicabil­
ity. The basic algorithm of SDS consists of two types 
of procedures. One is the bi-variate test for each pair of 
quantities and terms in steps (0-1), (1-1), (1-3) and (2-1). 
The complexity of this type of procedure is 0(n2m2k) 
where n, m, k are the number of quantities to represent 
the objective system, the number of experimental data 
used for a data f i t t ing and the number of iteration of the 
data f i t t ing in a bi-variate test, respectively. Another is 
the tr iplet test for each tr iplet of quantities and terms 
in steps (0-2), (1-2) and (2-2), where its complexity is 
0(n3). m and k usually do not affect the performance 
of SDS as they are almost independent of the complexity 
of objective system structure. Moreover, the computa­
tional cost required in the bi-variate test is much larger 
than the tr iplet test because the former involves mult i ­
ple experiments, data sampling, data f i t t ing and some 
statistical tests, whereas the latter involves the triplet 
consistency checking among the given coefficients only. 
Thus, the practical complexity is almost proportional to 
the second order of n. Table 2 shows the performance 
of SDS to discover various physical law equations. The 
relative CPU time of SDS normalized by the first case 
shows that its complexity is nearly proportional to n 2 . 
For reference, the relative CPU time of ABACUS is indi­
cated for the same cases except for the circuit examples 
of this pape[Falkenhainer and Michalski, 1985]. Though 
ABACUS applies various heuristics including the infor­
mation of dimension, its complexity is st i l l NP-hard. As 
this feature is shared by BACON family, they can hardly 
derive the model of the electric circuit of this complexity. 

The robustness of SDS against the noisy experimental 
environment has been also evaluated. The upper l imita­
t ion of the noise level to obtain the correct result in the 

Table 2: Statistics on complexity and robustness 

cases of more than 80% of 10 trials was investigated for 
each physical law, and they are indicated in the last col­
umn of Table 2. The noise levels shown here are the std. 
of Gaussian noise relative to the real values of quantities, 
and were added to both controlled (input) quantities and 
measured (output) quantities at the same time. Thus ac­
tual noise level is higher than these levels. The results 
show the significant robustness of SDS. SDS can provide 
appropriate results under any practical noise condition. 

The low complexity and the high robustness shown 
here ensure the significant scalability of SDS to engineer­
ing problems. Many systems in BACON family adopt 
generate and test in the search. In contrast, the low 
complexity of SDS comes from its straightforward algo­
r i thm to apply only product and linear forms in polyno­
mial t ime order in concert w i th the highly restrictive but 
domain independent constraints. By adding some more 
basic functional equations to CE, the search of SDS wi l l 
become more powerful. The robustness of SDS comes 
from the bi-variate direct fitting to data and the struc­
ture of the tr iplet test. The systems in BACON family 
repeat formulae f i t t ing to coefficients resulted from the 
other f i t t ing if it is necessary. This method accumulates 
the error of data f i t t ing, and derives erroneous results. 
On the other hand, SDS uses only the bi-variate and di­
rect f i t t ing to the given data, and efficiently composes 
the result in statistically accurate manner. The mul t i ­
ple statistical tests provide quite conservative judgment 
on the selection of equations, which contributes to re­
ducing the ambiguity of reasoning. Bu t it also requires 
following up of missed equations. This is done by re­
constructing MCSs in the tr iplet test by assuming some 
missed equations in the derived MCS. 

The wide applicability is another advantage of SDS, 
as it does not require any information on dimensions 
of quantities. For example, the following equation is 
known to be the law of spaciousness of a room in 
psychophysics[Kanet a/., 1972]. 
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where SP , R, Li and Wi are average spaciousness of a 
room, room capacity, average light intensity and solid 
angle of window at the location i in the room. Though 
the dimension of Sp is unclear, its scale-type is known to 
be ratio scale based on its definition. L and R are ratio 
scale, and W is absolute scale. We applied SDS to this 
system for the case of n — 3, and easily obtained the 
above expression. The dimension based approach such 
as COPER may not be applicable to this case. 

The weakness of the approach of SDS is some l im­
its on the class of formulae to be discovered. First, 
the regimes and ensemble formulae must be read-once 
formulae, where each quantity appears at most once 
in it. Second, the relations among quantities must be 
arithmetic, where the operators are limited to addition, 
subtraction, mult ipl ication, division, exponentiation and 
logarithm because of the l imited contents of C E . Thi rd , 
the formula of every pair of quantities searched in the 
bivariate test is l imited to the relation of a simple bi­
nary operator. These restrictions should be relaxed, 
even though the majorities of the first principle for­
mulae fall into this class. Bshouty et al, proposed 
an approach to find three unary arithmetic functions 
g(x) , h(y) and / ( • ) related by a binary arithmetic op­
erator, e.g., f ( g ( x ) + h(y)) for a given arithmetic rela­
tion F (x , y). It is based on an invariance principle of 
this structure under the linear conversion of g(x) and 
h(y)[Bshouty, 1994). Their approach may not be very 
adequate for the data-driven discovery, because it as­
sumes an init ial ly given precise relation of F (x , y) and 
its derivatives. However, this invariance principle on the 
binary relation has a possibility to provide an efficient 
remedy to the th i rd l imitat ion. The second l imitation 
can be relaxed by increasing the variety of the contents 
of C E . The first is also a challenging issue, and some 
invariance or identity principle can be used for the re­
laxation. A l l of these issues are left for the future work. 

7 Conclusion 

SDS implements newly introduced constraints of scale-
type and identity in the algorithm of bi-variate and 
tr iplet equation test. This architecture has shown to 
have low complexity, high robustness, promising scala­
bi l i ty and wide applicability. It is true that the most of 
the scientific discoveries have been made through a large 
number of experiments and observations. However, the 
scientists have not solely relied on the data but some 
admissible conditions such as invariance of light speed, 
symmetry for t ime inverse and continuity of relations. 
The constraints of scale-type and identity are two of such 
conditions having wide applicability. Our future plan is 
to extend this work to further larger systems and also to 
seek new laws in non-physical domains. 
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