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Abst rac t 

Reinforcement learning is a technique to learn 
suitable action policies that maximize ut i l i ty, 
via the clue of reinforcement signals: reward 
or punishment. Q-learning, a widely used re­
inforcement learning method, has been ana­
lyzed in much research on autonomous agents. 
However, as the size of the problem space in­
creases, agents need more computational re­
sources and require more time to learn appro­
priate policies. Whitehead proposed an archi­
tecture called modular Q-learning, that decom­
poses the whole problem space into smaller sub-
problem spaces, and distributes them among 
multiple modules. Thus, each module takes 
charge of part of the whole problem. 
In modular Q-learning, however, human de­
signers have to decompose the problem space, 
and create a suitable set of modules manu­
ally. Agents wi th such a fixed module architec­
ture cannot adapt themselves to dynamic en­
vironments. Here, we propose a new architec­
ture for reinforcement learning called AMQL 
(Automatic Modular Q-Learning), that enables 
agents to obtain a suitable set of modules by 
themselves using a selection method. 

Through experiments, we show that agents can 
automatically obtain suitable modules to gain 
a reward. Furthermore, we show that agents 
can adapt themselves to dynamic environments 
efficiently, through reconstructing modules. 

1 In t roduc t i on 
Reinforcement learning is one of the techniques by which 
agents can learn suitable action policies that maximize 
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their util it ies, via reinforcement signals of reward or pun­
ishment. There have been various investigations of au­
tonomous agents using this learning technique. How­
ever, reinforcement learning wi th monolithic methods 
lacks scalability, since agents require much more time 
to learn suitable action policies when dealing with more 
complex and larger problems. Addit ionally, agents use 
more computational resources to memorize the util it ies 
of all states and actions. 

To tackle this problem, some methods that decompose 
the problem space have been suggested. Whitehead pro­
posed an architecture called modular Q-learning [1993] 
that decomposes the whole problem space into smaller 
subproblem spaces and distributes them among mul t i ­
ple modules. The goals of mult iple goal problems are 
decomposed into subgoals, which are then distributed as 
subgoals among multiple modules. Since each module 
learns only to accomplish its own goal, the number of 
states that each module can take decreases in compari­
son with monolithic Q-learning. As a result, Whitehead 
showed that modular Q-learning improves on learning 
time and requires less computational resources. 

Modular Q-learning and other methods that decom­
pose the problem into modules need a human designer 
to decompose the whole problem and design an appropri­
ate set of modules. This is because the learning perfor­
mance depends on the design of the module set. How­
ever, agents wi th fixed modules might not be able to 
adapt to dynamic environments flexibly. 

In this paper, we propose a new architecture that en­
ables agents to obtain a suitable set of modules through 
interaction wi th the environment, so that agents can flex­
ibly adapt to dynamic environments. Also, we experi­
mentally evaluate this architecture. As an example of 
a learning problem that is computationally intractable 
for agents, we take the pursuit gam,e problem. We inves­
tigate the suitabil ity of this architecture and its adapt­
abil i ty under dynamic environments. 

2 Learn ing w i t h the M o d u l a r Approach 
In this section, we describe the basics of Q-learning and 
modular Q-learning. Also, we show an example that uses 
modular Q-learning. 
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2.1 Re in forcement Learn ing (Q- learn ing) 
Autonomous creatures generally receive reinforcement 
signals from the environment for their actions or action 
sequences. Reinforcement learning is a technique for an 
agent to learn suitable action policies that maximize a 
ut i l i ty from the clues of reinforcement signals. Ut i l i ty 
is often represented by the discounted cumulative rein­
forcement in the future, as follows: 

where Vt is the discounted cumulative reinforcement 
from time t through the future, rt is the reward received 
at time f, and is the temporal discount 
factor. 

Q-learning [Watkins, 1989] is a widely used method 
of reinforcement learning, where learning corresponds to 
building a precise Q-function. 

The Q-function gives the estimated utilities that agents 
receive when they take an action in a state, and the 
agents refer to this function to decide on their actions. 
For deterministic domains, the uti l i ty of an action a in 
response to a state x is equal to the immediate payoff r 
plus the best ut i l i ty that can be obtained from the next 
state y. However, during the course of learning, the Q-
function may not be true. Therefore, the value of Q(x, a) 
is updated in the following way: 

where , i s the learning rate, maxQ(?/,6) i s 
b 

the maximum Q-value at state y, and 7 is the discount 
rate. 

The simplest way to express the Q-function is to make 
a Q-table that contains each Q-value for every pair of 
state and action. However, as the size of the problem 
space increases, this takes more computational resources 
and requires much more time for learning. 

2.2 M o d u l a r Q-Learn ing 
Some research shows that methods which decompose 
a problem space improve learning performance in re­
inforcement learning [Dayan and Hinton, 1993] [Singh, 
1992]. One investigation of the modular approach shows 
the improvement of learning performance [Whitehead et 
a/., 1993]. 

A modular Q-learning architecture contains a number 
of modules, each of which dedicates itself to the corre­
sponding subproblem. This architecture makes the Q-
table smaller and improves learning time for problems 
wi th multiple goals. 

In modular Q-learning, each module has its own sub-
goal and decides its action policy according to its sub-
goal. An arbiter is used to mediate global action wi th 
a certain strategy (decision by majority, etc.). Each 
module includes a Q-table for the pairs of partial states 
and actions. Modules learn to achieve their respective 

Figure 2: Pursuit Game 

goals through updating their Q-values. Since individ­
ual modules cannot consider other modules' goals, learn­
ing agents may yield suboptimal performance. What is 
worse, even if human designers succeed in designing an 
appropriate set of modules for a situation, such a pre­
determined method reduces agents' abil i ty to adapt to 
dynamic environments. 

Ono [1996] applied modular Q-learning to the learning 
of cooperative behavior of multi-agents in a pursuit game 
(Figure 2(a)). The pursuit game that was presented by 
Benda [1985] is a basic problem of distributed artificial 
intelligence. The purpose of this problem is to capture 
a prey agent by making four hunter agents surround the 
prey (Figure 2(b)). In Ono's research, hunter agents 
learned the optimal action policy to capture the prey. 
Ono's learning agents consist of three modules. Each 
module takes the relative position of the prey and of one 
of the other hunters as its state. 

Considering the state space, for example, in the case of 
each hunter agent having a l imited visual field of depth 
(5 x 5), as shown in Figure 2(a), the possible number 
of states that agents may encounter reaches (52 + 1)4 = 
456976. This means a learning agent wi th a monolithic 
Q-table needs enormous memory resources. However, 
when only two agents organize separate Q-tables, the 
possible number of states decreases to (52 + l ) 2 1 676. 
Through experimenting wi th architectures in the pursuit 
game, Ono showed that agents wi th modular Q-learning 
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not only solve state space issues but also learn cooper­
ative behavior. However, the method which Ono took 
was to decompose the state space and allocate suitable 
modules of modular Q-learaing in advance. 

Figure 3: A M Q L architecture: (a) element selection 
phase, (b) fitness allocation phase, and (c) module se­
lection phase. 

3 A M Q L Arch i tec tu re 
In modular Q-learning, human designers have made 
modules suitable for the environment. The resulting 
agents wi th fixed modules cannot adapt to dynamically 
changing environments. Here, we propose a new archi­
tecture, called AMQL (Automatic Modular Q-Learning), 
that enables agents to obtain a suitable set of modules 
by themselves. Also, we experimentally show the avail-
abil i ty of this architecture. 

The A M Q L architecture has three phases when it ob­
tains the set of modules. Firstly, modules in agents select 
elements of the environment, and make a Q-table (Fig­
ure 3(a)). While agents learn, the A M Q L mechanism 
provides fitness estimates for modules that contribute 
a reward acquisition action (Figure 3(b)). At selection 
time, modules are evaluated and selected according to 
fitness (Figure 3(c)). After repeating these three phases, 
agents obtain a suitable set of modules. In short, A M Q L 
executes module selection like a genetic algorithm. The 
specific mechanisms are as follows. 

3.1 E lement Select ion Phase 
In the A M Q L architecture, agents have a fixed number 
of modules. Each agent recognizes the environment as a 
state of n elements(E1, E2, • • •, En). In other words, the 
input of an agent is as follows. 

Where Si is a state of element Ei, elements correspond 
to the sensors of robot agents. Each module randomly 
selects 1 - m elements (1 < rn < n) from the set of 
elements E, and makes a Q-table for the states of se­
lected elements. Through this process, the state space is 
allocated to multiple modules. 

3.2 Fi tness A l l o c a t i o n Phase 
When agents receive a reward by an action, the modules 
that contribute to this action are allocated a fitness. This 
fitness indicates the degree of contribution of a module. 

Agents decide their action by using the greatest mass 
(GM) strategy, proposed by Whitehead [1993]. 

The expression, where f9m(S) is an action policy of an 
agent, represents that the Q-values of / modules are 
summed up for all possible actions, and the action that 
has the largest sum is selected. 

When agents receive a reward at state S and action 
a, the Q-value at state S is compared for each mod­
ule. Modules that have the Q-value of action a have the 
largest sums. In other words, all modules that desire 
action a increase their fitness. The fitness is cleared at 
every stage of module selection, and is added whenever 
the module contributes to the acquisition of a reward. 

Modules do not refer to other modules' Q-tables and 
each updates its own Q-table individually. The goal of 
the module is to learn appropriate action policies for 
inputs of elements to which the module should pay at­
tention. Modules that pay attention to the appropriate 
subset of elements can learn appropriate action policies. 
Therefore, appropriate modules achieve greater fitness. 

3.3 M o d u l e Select ion Phase 
At every period of module selection T, agents evalu­
ate their own modules. In evaluating modules, selection 
mechanisms assess the fitness of each module. Modules 
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whose fitness is over the threshold remain, but if fitness 
is under the threshold, modules select elements of the 
environment again, and make a new Q-table. Threshold 
at module selection is represented as follows: 

k = (number of reward acquisition) x p 

In the case that p(0 < p < 1) is a constant that deter­
mines how good modules must be to be retained, the 
closer p is to 1, the higher the quality of the module 
selected. 

3.4 Algorithm 
The A M Q L architecture consists of the above three 
phases. The actual algorithm is as follows: 

1. Each module selects 1 — m elements from n elements 
that organize the environment. Modules then make 
a Q-table and set an init ial Q-value. 

2. Set the fitness of all modules to 0. 

3. Set the execution counter t of agents to 0. 

4. Set agents to init ial states. 

5. Agents receive the current state x. 

6. If state x is the goal state, then t = t + 1 and go to 
11. 

7. Agents select their own action by the GM strategy 
and execute i t . 

8. Update Q-tables of each modules. 

9. If agents receive a reward with action a, then set the 
fitness of the module, that Q-value of action a is the 
biggest in every action, to fitness — fitness + 1. 

10. Go to 5. 

11. If t < T (the period of select), then go to 4. 

12. Calculate a fitness threshold and evaluate fitness of 
all modules. Modules where fitness is under the 
threshold select 1 - m elements again. These mod­
ules then make a Q-table and set an init ial Q-value. 
Go to 2. 

4 Implementation and Evaluation 
In this paper, we use the pursuit game as a problem that 
is computationally intractable. Specifically, we investi­
gate the following. Firstly, we compare the performance 
of the A M Q L architecture wi th previous architectures. 
Also, we investigate the adaptability of AMQL architec­
ture in dynamic environments compared to fixed module 
Q-learning. 

4.1 S imu la t i on Env i r onmen t 
We assume that the fundamental simulation environ­
ment of the pursuit game is as follows: 

• The environment consists of a 10 x 10 grid. Edges 
are connected (torus). 

• In i t ia l positions of each agent are determined ran­
domly. 

Figure 4: Time steps t i l l caption at each tr ial 

• At each time step, agents choose an action from 
any of 5 actions (move north, east, south, west, 
or stay at their current position). More than one 
hunter agent can share the same grid. However, 
hunter agents cannot share wi th the prey. There­
fore, hunter agents that t ry to move to the grid al­
ready occupied by the prey, cannot move and must 
stay at their current positions. The prey agent se­
lects its own action randomly. . 

• Hunter agents have a 5 x 5 sight, as shown in Fig­
ure 2(a). Each agent is assigned an identifier (Agent 
1 -4 ) . A hunter agent can recognize the relative po­
sition and identifier of any other agents in its sight. 

• A trial ends when the goal is accomplished (the prey 
agent is captured) or at 2,000 t ime steps. 

Parameters for the A M Q L architecture are as follows. 
A hunter agent has four modules. The period of module 
selection T is 200 trials. The constant p that determines 
the threshold of the module is 0.9. When modules are 
initialized or there are some modules that are regarded 
as not adaptable at the module selection phase, these 
modules select any 1 - 3 other agents randomly and make 
a Q-table. 

Parameters for Q-learning are as follows. The learning 
rate is = 0 . 1 , the discount factor is = 0.9, a reward 
is r = 1, and the init ial value of the Q-value is 0.1. 

4.2 Compar ison among A M Q L and 
Prev ious A rch i tec tu res 

We have compared the A M Q L architecture wi th pre­
vious architectures: monolithic Q-learning and a fixed 
module architecture. Hunter agents wi th the monolithic 
architecture have one Q-table for all possible states. In 
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the case of fixed modules, hunter agents have three mod­
ules that pay attention to each different hunter agent and 
the prey agent. This set of modules is the same as Ono's 
[1996]. One execution is performed in up to 4000 trials. 
Figure 4 shows the time steps taken for capture at each 
t r ia l . Each experiment is repeated ten times, and the 
averages of these are plotted. 

The results of the monolithic architecture show that 
it takes a long time to learn suitable behaviours. This 
is because the number of states that the monolithic Q-
table has to take increases to 264 = 456976, so that it 
takes a long time to update Q-values suitably. However, 
using A M Q L or the fixed module architecture, agents 
can capture the prey agent wi th less time steps. In al­
most every experiment, the A M Q L architecture selected 
the module that takes states of two or three agents as 
an input. Therefore, the number of states that A M Q L 
modules take becomes 262 = 676 or 263 = 17576, and 
agents wi th the A M Q L architecture can learn to capture 
the prey faster. Comparing learning speed and quality 
of solution for this simple case, the fixed module archi­
tecture previously designed by human designers is bet­
ter than the A M Q L architecture. After learning, agents 
wi th A M Q L took about 15 time steps more on average 
than the well formed modules. However, in every ex­
periment, agents wi th A M Q L succeeded in obtaining a 
suitable set of modules. 

The reason why convergence of A M Q L is slower is that 
the A M Q L architecture takes time to find a suitable set 
of modules. In other words, in the case of fixed mod­
ule architecture, human designers are needed to design a 
suitable set of modules. The A M Q L architecture cannot 
only learn faster, but can also obtain suitable modules 
automatically. These two features are important for au­
tonomous agents. This result shows that the A M Q L 
architecture has the capability to obtain suitable sets of 
modules wi th improvement of learning speed due to the 
modular architecture. 

4.3 A d a p t a t i o n to Chang ing E n v i r o n m e n t s 
In the next experiment, we evaluate the adaptabil ity 

to problem change. To change the problem dynamically, 
we set the following additional conditions. 

• There are four hunter agents and two prey agents 
in the grid field. Each prey agent has an identifier 
(prey l , prey2). 

• From the beginning to tr ial 2000, hunter agents re­
ceive a reward only when the prey agent 1 is cap­
tured, but no reward when the prey agent 2 is 
caught. However, from tr ia l 2001, the environment 
changes so that hunter agents receive a reward only 
when prey 2 is captured. 

In this experiment, we compare the adaptabil ity to 
dynamic environments, between the A M Q L architecture 
and the fixed module architecture that is designed by 
human designers. The fixed module architecture in this 
experiment is the same as that in the previous experi­
ment: hunter agents have three modules that pay at ten-

Figure 5: Time steps t i l l caption at each tr ial . Compar­
ison between A M Q L and fixed module architecture in a 
changing environment. 

Table 1: Elements of modules of hunter1 in a changing 
environment 

Module 
ModuTel 

Module2 

Module3 

Module4 

Before change 
Hunter2 
Hunter3 

Preyl 
Hunter2 
Hunter3 
Hunter4 
Hunter3 
Hunter4 

Prey l 
Hunter2 
Hunter3 

After change 
Hunter2 
Hunter4 

Prey2 
Hunter2 
Hunter3 

Prey2 
Hunter3 

Prey l 
Prey2 

Hunter4 
Prey2 

tion to each different hunter agent and prey agent 1. No 
modules pay attention to prey agent 2. 

Figure 5 shows the t ime steps for capture at each tr ia l . 
Each experiment is also repeated ten times, and the aver­
ages of these are plotted. Before the problem is changed, 
the convergence of learning wi th the fixed module ar­
chitecture is faster than wi th the A M Q L architecture. 
However, the fixed module architecture cannot capture 
well in the environment after the problem changes. This 
is due to the set of modules being designed for the en­
vironment before the change. However, agents wi th the 
A M Q L architecture can capture well even after chang­
ing the problem, because the architecture changes the 
modules when the target is changed. 

Table 1 shows the changes of elements to which the 
modules of hunter agent1 pay attention. This result 
shows that agents have some modules that pay atten­
tion to prey l before changing, and that these modules 
pay attention to prey2 after changing, because agents 
always have to pay attention to elements that are re-
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lated to reward. Moreover, when agents pay attention 
to elements that are not related to reward, agents waste 
learning time and computational resources. 

Human designers cannot design a suitable set of mod­
ules in dynamically changing environments, since they 
cannot predict the future environment. However, agents 
wi th A M Q L architecture obtain suitable, though still not 
opt imal, sets of modules that consider their own reward 
and learning performance in a current environment. 

Figure 5 shows that convergence of A M Q L , immedi­
ately after changing environment, takes longer to con­
verge than at the beginning. This is because Q-functions 
immediately after changing have learned to catch prey1. 
This obstructs the module in learning the new problem. 
However, this feature can be an advantage, if what mod­
ules have learned can be used even after the environment 
has changed. 

These experimental results show that an agent with 
the A M Q L architecture is able to obtain a suitable set 
of modules and to adapt according to changing problems. 

5 Discussion 
There has been much research dealing with modular 
architectures for reinforcement learning. Thrun and 
Schwartz offered the SKILLS algorithm which obtains 
the structure of problem space that can be used among 
multiple tasks and called skills, and considered both per­
formance loss and description length [1995]. However, to 
obtain useful skills takes more time than to find optimal 
policies wi th a monolithic Q-function. A M Q L makes 
the description length smaller and learning convergence 
faster than monolithic architecture, though not optimal. 
We consider that the idea of considering performance 
and description length is useful for AMQL. 

At the present t ime, modules in A M Q L have lookup 
tables, because these are easy to treat and to anal­
yse. Also, general function approximators such as neural 
networks have been applied to reinforcement learning. 
Sabes and Jordan discussed the association between rein­
forcement learning and expert networks [1996]. We con­
sider that this model also can be applied to AMQL. In 
this case, each module obtains an appropriate part of in­
put using A M Q L . Such an architecture can be expected 
to have faster learning convergence and more adaptabil­
i ty than a monolithic architecture. 

It is important to know how autonomous agents should 
design their adaptive mechanism for the environment. 
The real world is an open system, and changes dynami­
cally. Thus, it is difficult to predict the behavior of fu­
ture environments perfectly and to design optimal struc­
tures. In that respect, A M Q L seems a promising archi­
tecture, because it can dynamically and automatically 
obtain suitable module structures through interactions 
wi th the environment, and learn faster than monolithic 
Q-learning architectures. We consider the A M Q L archi­
tecture to be applicable to various autonomous agents in 
order to improve both the adaptability and the learning 
time. 

6 Conclusions and Future W o r k 
In this paper, we proposed an A M Q L architecture that 
obtains a suitable set of modules through the interac­
t ion wi th the environment. We showed the availability 
of the architecture and its adaptabil ity to dynamic en­
vironments, through experiments on pursuit game prob­
lems. Simulation results showed that agents wi th the 
A M Q L architecture can not only learn faster but also 
can obtain suitable sets of modules automatically. More­
over, through experiments where the problem changed 
dynamically, we showed that agents wi th the A M Q L ar­
chitecture can adapt themselves to dynamically changing 
environments, in a way that was impossible for agents 
wi th the previous fixed method. These features enable 
autonomous agents to adapt more flexibly and efficiently. 

When the environment changes drastically, the cur­
rent A M Q L architecture may abandon modules which 
have learned strategies that are no longer relevant. It 
seems useful to keep such modules, in case a similar sit­
uation arises in the future. We plan to investigate this 
architecture. 
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