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Abs t rac t 

In this paper, we propose a convergent Rein­
forcement Learning algorithm for solving opt i­
mal control problems for which the state space 
and the time are continuous variables. 

The problem of computing a good approxima­
t ion of the value function, which is essential 
because this provides the optimal control, is a 
difficult task in the continuous case. Indeed, as 
it has been pointed out by several authors, the 
use of parameterized functions such as neural 
networks for approximating the value function 
may produce very bad results and even diverge. 
In fact, we show that classical algorithms, like 
Q-learning, used w i th a simple look-up ta­
ble bui l t on a regular grid, may fail to con­
verge. The main reason is that the discretiza­
t ion of the state space implies a lost of the 
Markov property even for deterministic contin­
uous processes. 

We propose to approximate the value func­
t ion w i th a convergent numerical scheme based 
on a Fini te Difference approximation of the 
Hamilton-Jacobi-Bellman equation. Then we 
present a model-free reinforcement learning al-
gorithrn, called Finite Difference Reinforce­
ment Learning, and prove its convergence to 
the value function of the continuous problem. 

1 I n t r o d u c t i o n 
This paper is concerned w i th convergence results of Re­
inforcement Learning (RL) algorithms in the continuous-
time, continuous-state-space case. We discuss the prob­
lem of the necessary discretization of the state space and 
propose a RL algorithm that converges to the optimal 
solution. 
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The objective of RL is to find -thanks to a reinforce­
ment signal- an opt imal strategy for solving a dynamical 
control problem, such as target or obstacle problems, v i ­
abil i ty or optimization problems. The technique used 
belongs to the Dynamic Programming (DP) methods 
which define an optimal feed-back control by approxi­
mating the value function (VF) , which is the best ex­
pected cumulative reinforcement as a function of ini t ial 
state. 

In the continuous case, the VF has to be represented" 
wi th a function approximator w i th a finite number of pa­
rameters. Several author have pointed out that the com­
bination of RL algorithms wi th general approximation 
systems (such as neural networks, fuzzy sets, polynomial 
approximators, etc.) may produce unstable or divergent 
results even for very simple problems (see [Boyan and 
Moore, 1995], [Baird, 1995], [Gordon, 1995]). Here we 
show that classical RL algorithms, like Q-learning (see 
[Watkins, 1989]), used w i th a look-up table bui l t from 
a simple discretization of the state space may produce 
a very bad approximation of the value function. The 
main reason is that the discretization of a determinis­
tic continuous process is not Markovian. So algorithms 
such as Q-learning which estimate the value of a state 
as an average of the values of successive states according 
to their occurrence wi l l not converge. We propose as an 
alternative an algorithm that averages the values of the 
next states according to the state dynamics. 

Section 2 proposes a formalism for opt imal control 
problems in the continuous case. The VF is intro-
duced and the Hamilton-Jacobi-Bellman (HJB) equation 
is stated. Section 3 discusses the lost of the Markov 
property w i th the discretization of the state space and 
studies the Q-learning algorithm wi th a look-up table. 
Section 4 describes the discretization of the HJB equa­
tion by a Finite Difference (FD) method, which leads 
to a DP equation for a finite Markov Decision Process 
(MDP) and whose solution approximates the V F . Sec-
tion 5 presents the algorithm, called Finite Difference 
Reinforcement Learning (FDRL) , that converges to the 
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6 Conclusion 
This paper uses FD methods for approximating the VF 
and generating a convergent RL algorithm. It need to be 
compared to the Finite Element method used in [Munos, 
1996] that approximates the VF wi th piecewise linear 
functions defined on a triangulation of the state space. 

In practical use of this algorithm, and in general, for 
all approximation systems of continuous functions, we 
are faced to the combinatorial explosion of the num­
ber of values to be estimated. Future work should 
consider adaptive multi-resolutions techniques (like the 
parti-game algorithm of [Moore, 1994] or the mult igr id 
methods of [Akian, 1990]). 

An other improvement should be to study the stochas-
tic case for which a Q-learning version of F D R L could 
be relevant. 
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