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Abstract

In this paper, we propose a convergent Rein-
forcement Learning algorithm for solving opti-
mal control problems for which the state space
and the time are continuous variables.

The problem of computing a good approxima-
tion of the value function, which is essential
because this provides the optimal control, is a
difficult task in the continuous case. Indeed, as
it has been pointed out by several authors, the
use of parameterized functions such as neural
networks for approximating the value function
may produce very bad results and even diverge.
In fact, we show that classical algorithms, like
Q-learning, used with a simple look-up ta-
ble built on a regular grid, may fail to con-
verge. The main reason is that the discretiza-
tion of the state space implies a lost of the
Markov property even for deterministic contin-
uous processes.

We propose to approximate the value func-
tion with a convergent numerical scheme based
on a Finite Difference approximation of the
Hamilton-Jacobi-Bellman equation. Then we
present a model-free reinforcement learning al-
gorithrn, called Finite Difference Reinforce-
ment Learning, and prove its convergence to
the value function of the continuous problem.

1 Introduction

This paper is concerned with convergence results of Re-
inforcement Learning (RL) algorithms in the continuous-
time, continuous-state-space case. We discuss the prob-
lem of the necessary discretization of the state space and
propose a RL algorithm that converges to the optimal
solution.
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The objective of RL is to find -thanks to a reinforce-
ment signal- an optimal strategy for solving a dynamical
control problem, such as target or obstacle problems, vi-
ability or optimization problems. The technique used
belongs to the Dynamic Programming (DP) methods
which define an optimal feed-back control by approxi-
mating the value function (VF), which is the best ex-
pected cumulative reinforcement as a function of initial
state.

In the continuous case, the VF has to be represented"
with a function approximator with a finite number of pa-
rameters. Several author have pointed out that the com-
bination of RL algorithms with general approximation
systems (such as neural networks, fuzzy sets, polynomial
approximators, etc.) may produce unstable or divergent
results even for very simple problems (see [Boyan and
Moore, 1995], [Baird, 1995], [Gordon, 1995]). Here we
show that classical RL algorithms, like Q-learning (see
[Watkins, 1989]), used with a look-up table built from
a simple discretization of the state space may produce
a very bad approximation of the value function. The
main reason is that the discretization of a determinis-
tic continuous process is not Markovian. So algorithms
such as Q-learning which estimate the value of a state
as an average of the values of successive states according
to their occurrence will not converge. We propose as an
alternative an algorithm that averages the values of the
next states according to the state dynamics.

Section 2 proposes a formalism for optimal control
problems in the continuous case. The VF is intro-
duced and the Hamilton-Jacobi-Bellman (HJB) equation
is stated. Section 3 discusses the lost of the Markov
property with the discretization of the state space and
studies the Q-learning algorithm with a look-up table.
Section 4 describes the discretization of the HJB equa-
tion by a Finite Difference (FD) method, which leads
to a DP equation for a finite Markov Decision Process
(MDP) and whose solution approximates the VF. Sec-
tion 5 presents the algorithm, called Finite Difference
Reinforcement Learning (FDRL), that converges to the



value function of the continuous process. Appendir A
gives the proof of convergence of the algorithm.

2 A formalism for Reinforcement
Learning in the continuous case

In this paper, we consider deterministic controlled sys-
tems with infinite time horizon and discounted reinforee-
ment. Let z(t) € O be the state of the system with O
¢ IR” an open and hounded subset, The evolution of the
system (the stale dynamics f) depends on the current
state x{t} and control u{t); it is defined by a controlled
differential equation :

d

S(t) = G (t),u(0) (M

where the control u{t) is a bounded, Lebesgue measur-
able function with values in a compact /.

From any initial state x, the choice of & control u(f)
leads to a unique trajectory r(t). Let 7 he the exit time
of z(t) from O (with the convention that if x({t) always
stays in 0, then 7 = ). Then, we define the discounted
reinforcement. functional of state &, control uf.} :

T

J{rul)) = /ﬂ (), u(t)dt + 7 R{z{r))

Where r{xr, u) is the running reinforrement and R{x) the
boundary reinforeement. 7y is the discount faetor (0 <
¥ < 1)

The objective of the control problem is to find
the optimal feed-back contro} u*(a) that optimizes the
reinforcement funciiobal for any state «.

2.1 The Reinforcement Learning approach

RL techniques belongs to the class of DP methods which
compute the optimal control by the means of the value
function, which is the maximum value of the functicusl
as a function of initial state r :

V(z) =sup J{w;ul.))
uf.)

Iu the RL approach, the systemn tries to approximate this
function without knowing the state dynamics f nor the
reinforcement functions r, B. RL appears as a construc-
tive and iterative process, based on experience, that es-
timates the value function by successive approximations.

2.2 The Hamilton-Jacobi-Bellman
equation

Following the dynamic programming principle, the value

function satisfies a first-order nonlinear partial differen-

tial eguation called the Haomilton-Jacobi-Beliman equa-

tion (see [Fleming and Soner, 1993] for a survey).

Theorem 1 (Hamilton-Jacobi-Bellman) If V s
differentioble ot x € O, let DV (x) be the gradient of V
af x, then the followning HIB equation holds at z.

Via)lny + su?[DV(;r)J(I. u) + r{x,u)] =0
uel/

Besides, V satisfies the following boundary condition ;
Vix) = R{x) for r € 80

Remark 1 The challenge of learning the value function
is motivated by the fact that from V| we can deduce the
Jallowing optimal feed-back control policy :
w(x) = arg sup[ DV (x). f(z,u) + r{x, )
uetf

In the following, we assume that:

- [ and r are bounded with A{; (respectively M, } and
Lipschitzian: |f{r,u) — f(y,u}| € Lylle—yll, (resp.
I, ) = ()} < L 2~ oll,).

- [t is Lipschitzian: |[R{x) — R{y)| £ Lg e -y, .

with the norm |jzl]; = 2:’;1 ENE

- The boundary 80 is 2,

Besides, we consider the following hypothesis concern-
ing the state dynamics f around the boundary 80 and
we state a theorem of continuity whose proof is in [Bar-
les and Perthame, 1890}, For alt & € 80, let 7{x) be
the outward normal of O at r, we assume that:

- If there exists v € U, such that f{z,u). 7 (z) <0

then there exists v € I/, such that f{r, v)%'(x) < 0.

- If there exists u € U, such that f{z,u). % (z) >0

then there exists v € U, such that f{x,v)7(z) > 0.

Theorem 2 Suppose that these hypotheses held, then
the vadue function is condinuous in Q.

3 The discretization implies a lost of
the Markov property

Let us discretize the state space into a regular grid and
define a finite discretized state space composed of cells
X. Consider a trajectory x(t) and the cortesponding
sequence of cells X, containing it: x#{(t) € X; for t €
;. t,41]. Suppose that the control u; is kept constant
inside X;. We ohserve that the transition from a cell X
to an adjacent cell X; not only depends on X but also
on the place from which the trajectory enters inside X
{see figure 1). Thus, in general, the succession of cells
X, does not provide &£ MDP even when the continuous
process is deterministic.

Q-learning with a look-up table:

RL algorithms such as Q-learning (see [Watkins,
1989]) are classicaily used in order to approximate the
value function. Here, the updating rule conld be:

AQ(Xiuy = el V(Xip1) — Q(X5, u) + mer( X))

with V(X) sup (X, u)
uwgl!
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Figure 1: Discretization of the state space. The serie of
the successive cells X; containing the current state r{t)
is not & MDP. Here, the transition from X to X, or X,
{occuring for some trajectories x;(t) and x,(t)) depends
on the input points (z; and x2).

for some time 7; and some decreasing learning rate ev,.

This is an iterative recursive equation that incremen-
tally computes the average of the values of successive
cells according to their occurrence. Meanwlile, from the
non-Markovian aspect of the succession of cells, in gen-
eral, this algorithm (whose convergence is proved for fi-
nite MDP) has no chance to converge. For example,
suppose that in figure 1, most of the trajectories comes
inside X from its bottom side thus leaves X from its right
side. Then from the algorithm, Q(X, u) will almost ex-
clusively depend on V{X1). In fact, the values computed
by such algorithms will depend on the exploration strate-
gies and will not converge to the value function.

As the Q-learning with look-up table do not converge,
the combination of similar RL algorithms with function
approximators appears unlikely to converge. As an al-
ternative, we propose that the updating rule should take
into account the state dynamics [ in order to approxi-
mate a convergent FD scheme studied next section.

4 A Finite Difference scheme

Let ey, es,...,eq4 be a basis for IR®. The state dynamics
is: f=(f1,....fa). Let the positive and negative parts
of fl' be : f|’+ = ma'x(ft"o)! fi_ = ma.x{——f,-,(}). For any
discretization step &, let us consider the lattices : §Z¢ =
{6. Z:.Ll j,ve,-} where ji, ..., ja aTe any integers, and £ =
{¢ € 6Z° such that at Jeast one adjacent points £ + fe, €
0}. The interior of T8 is 28 N (. Let 8%, the frontier
of T*, denote the set of points of £f which are not in the
interior of £¥.

Let U? C U be a finite control set that approximates
Uinthesense: § <8 = U c U% and UglU® = /.

By replacing the gradient DV(£) by the forward and
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backward difference quotients of V in £ -

ATVIE) = §IV(E+be) - V(E)]

i

ATVE) = §VIE-be) - V(E)]

we can approximate the HJB equation by the following
equation :
d .
Vi€ ny + sup {Z £ (6.w).0FVE(E)
uel!* |55
+I7 (G )] + €} =0 (2)

Knowing that (Atlnv} ix an approximation of (y&* —
1} as Al tends to (3, and by introducing the gualities
QG{E, u) such that V¢{£) = BUP epra Q* (€, u), (2) gives:

).A7 VA

& — TT[{_W |f1(£ 'h')l &
Qg u) = AT ZH“ oV €
]
—{f 3
RIEDI A @
with £, = £ + be; if fo{l& u) > 0 and £, = & — de; if

fil&w) <0

This equation can be interpreted as a DP equation for
a finite MDP (see [Fleming aud Souer, 1993]) whose state
spuce is T°, the control space is U® and the probabilities
of transition p(£,u, &) from state £, control u to next

state &; are the coordinates I’J{I(EE;-‘;IM (see figure 2 for a
geometrical interpretation).

]
! Bp(ﬁ,ul 3

| I

Figure 2: A geometrical interpretation of the F'D scheme.
The transition probabilities p(€, u, £,) of the correspond-
ing MDP are the coordinates of the vector 3£n with 7
the projection of £ onto the segment (£,£,) in a direction
parallel to f(g,u).

Thanks to a contraction property due to the discount
factor v {see [Bertsekns, 1987]}, DP theory insures that
there exists & unique solution (the fixed-point) V? to



equation (3) for ¢ interior to £ with the boundary con-
dition V() = R(£) for £ € 952,

The following theoremn, whose proof uses the general
convergence result of [Barles and Souganidis, 1991)] and
the strong comparison result between sub- and super-
viscosity solution (see [Crandall et ol, 1992])) of HIB
equations of [Barles, 1994, insures that V® is a conver-
gent approximation of V.

Theorem 3 (Convergence of the FD scheme) Let

us assume that the hypotheses of section 2 hold, then
V* converges to V as 6 tends to 0 :

lim V4(&) =

52-1
Remark 2 The MDP built here depends on the state
dynamics [ and is independent of the running of trajec-

tories which generates o non-Muarkov succession of cells
as if has been seen in section .

Viz) uniformly on any compuct 1 C €)

In the next section, we propose a RL algorithm that
approximates this FD scheme.

5 The FDRL algorithm

Let us consider a grid G* O O composed of regular cells
X such that the center of the cells arc the previously de-
fined vertices € of the lattice. Lot 9G% = {X € G" Xn
80 # W} its boundary. Let Q2 (X, u) and V(X)}, the
values of cell X computed by the algorithm at stape
n, intend to approximate Q*{€, ) and V*(£). We have
the relation VA(X) = sup, Q% (X, u). Let A > 0 be any
{small) constant.

Let a trajectory z;(t) enters a cell X at some point
x; : then a control u € U? is chosen and kept constant.

- If X ¢ 8G® then the trajectory exits at some point
¥ € X N X; for some adjucent. cell X; (see figure 1). Let
r{zi,u) he the current reinforcement obtained at some
point z; of the trajectory inside X. Let 7; be the running
time of the trajectory inside X

The algorithm is inspired by tlie DP equation (3) for
which f{£,u) is approximated by =% :

If [F7]l, = A.6 then update some valuo QA (X, 1 X1):

QX u, Xi) "--H*(X)+ (2, u) (4)

"T—:”l
Then we consider an other trajectory ; () going through
X from x; till y; € X X, with control u, which leads to
update Q5(X,u, X;), and the process is repeated until
all possible transitions (X,u) — Xi for ¥ = 1..d are
carried out at least once. Then we consider a vecior
T = Fzgt for some k (for example, corresponding to
the most recent trajectory) and compute:

) I
5 (X0 = Zlﬁzﬂ XuX) 0

where (.); denote the i*h coordinate, For example, in
figure 1, if 1 (t) occurs first, Q4 (X, u, X} is computed,
then when z3(t) occurs, Q8{X,u, X2) and Q5 (X, u)
are updated).

- If X € 8G?® and if the trajectory reaches the bound-
ary y; € (7 inside X, update:

Via(X) = Riw) (8

The following thecrem states that with the following
hypothesis of exploring-every-possible-transition :

We consider series of trajectories such that
the FDRL algorithm leads to the updating of
every cell X ¢ G with rule (4) for all control
u and all possible successive cell X any (finite)
uumber of times and every cell X € 8G? with
rule (8) at least once.

the values computed by the algorithm converge to the
VF of the continuous problem :

Theorem 4 (Convergence of the algorithm)
Suppose that the hypotheses of section 2 and the one of
exploring-every-possible-transition hold, then :
For any compact & C (O,¥e > 0, A st. V5§ < A, by
using the FDRL algorithm, AN, ¥Yn > N,

sup V(X 3) - V(z) <e.

TEN
Remark 3 The FDRL is o kind of Real Time {or asyn-
chronous) DP und not a kind of Q-learnung (there is no
learning rate o, thot averages the suécessive values ac-
cording to their occurrence). This seems more relevant
kere because the averaging (with rule (5)) of the values of
next cells comes from the discretization process itself and
not from the state dynamics of the continuous process
which is deterministic.

Remark 4 Once the Q4(X,u) values have been com-
puted, the current optimal control in cell X 1s:

u* = argsup,e e Q5 (X, u).

6 Conclusion

This paper uses FD methods for approximating the VF
and generating a convergent RL algorithm. It need to be
compared to the Finite Element method used in [Munos,
1996] that approximates the VF with piecewise linear
functions defined on a triangulation of the state space.

In practical use of this algorithm, and in general, for
all approximation systems of continuous functions, we
are faced to the combinatorial explosion of the num-
ber of values to be estimated. Future work should
consider adaptive multi-resolutions techniques (like the
parti-game algorithm of [Moore, 1994] or the multigrid
methods of [Akian, 1990]).

An other improvement should be to study the stochas-
tic case for which a Q-learning version of FDRL could
be relevant.
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A Appendix: proof of theorem 4
A.1 Idea of the proof

The idea of the demonstration is to prove that for any
gy > 0, for small encugh valucs of §,
ViX 3¢)-

sup | Vi) < eq (7)

{30
Then for all ¢ > 0, we can find £; > 0 and £ > 0 such
that ¢; + 2 = ¢ and from the convergence of the scheme
V# (theorem 3), sup,cq (V¥{x) - V(2)| < ¢, for small 4.
Thus:
sup [VEHX 2 2) ~V{x)| <e1+eg=¢
e
In order to prove (7), we need to estimate the dif-
ference [Q4, (X, 1) — Q%(€,u)| after having updated
Q% (X, u) with rule (5).
With E} = sup;cps 1V (X2 -
section A.2 that :

|QF 41 (X, 1) — QME w)| < (1 - kO)EL + €(8).6

VE(£)], we prove in

for some constant & and some function e(&) that tends
to 0. Then we give in section A.3 a sufficient condition
for E% < e, and summarize the proof in section A.4. In
the following of this section, we give some comparisons.
* * ] &
Comparison of the times TR and IE:

From Taylor’s theorem, [|7§ — f(e,u).7|h < IL;.72
As the state dvnamlcs is bounded from below, the time
7 is bounded by %2, From the Lipschitz property of f,
[1f{z,u) = (E.u)llz <Ly III—EHl < 2L, But |7 -
el = 7§ — fle,u).7 + 7{f(r, u) — (& ulih,
thus: [|F9 - (6, ).l < 2L L1+ 1) As 79l 2

-— 2!1!1
A8, we have:

8 _ [ 2
= e, ’ s kb

with: &, = TE”L 71+ mL;} We deduce from a prop-

{8)

erty of the exponential function that:

T T < kgt ()

Comparison of —ggﬁ— and A
From the fact that for any couple of vector n and b

such that |je — k.| < £, we have h%[li - {%H < Fﬁ%f-_'h’

we deduce from (8) that

(@), 1AL )l 2my.k,.6
lzgll,  NfCE M, 1-2mysky b
< dmyk. b (im
foranyﬁgAl:ﬁ‘
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A.2 Estimation of [Q4, (X, u) - Q*(¢,u)|

After having updated Q% (X,u) with rule (5), let A de-
note the difference |Q4, (X, u) — Q%(&,u)|. From (3),

(4) and (5),
d
- el N e
A= ';(III(E‘H)H] nfair,)v )
n” ,_: - I -ﬁf) |
+| [y — ), z[lr_v’lll I
R i
e Zlmu, e )]'

), 67 -
o N e e e

i=]

7). | &1 P
Z | (72 - ) e

Let us consider a linear function ¥V : BY — IR such that

17(61) = V"{E Yiori=1.d. As f; SIH :‘gl)ll can

be interpreted as barycentric (‘OOYdln'lt("R we have
”f(‘El “l

. _ FLE ' r
with n = £+8. THEII (see figure 2) and #' = £+6'"“_;%E'
Geometrical considerations give: 3 k[ € [1,d] st.:

g =l V(&) — V(€D

and

W), |
=g,

) Vg = Vin) — Vi)

[P = Pon] s e =, ay
Moreover,
Vo(Ex) — VAED < VO (ER) — V(&)
+ V(&) - V&) + V&)~ V&)
Let Ef, = sup,eqV?(x) - V(x)|.

Thanks to the continuity of V, there exists As, for
6 < By, [V(ER)}- VI(EN € Bh. Thus, (VO(£,) - VH{E) <
3E{,. From (11) and (10}, we have:

i
lgml _ 1Y oy
.;(llf(&.uml = )V(s,)

(e
Thus, from (9

< 6.dmy ke, EH.E

), (8) and the Lipschitz property of r ;

2
A < 8d*m k, Eof + k, In -1-62Mw f
+ ko 82M, + |y ): e (vt - v
1




Let B} = supgeys [VH(X 2 £) ~ V().

As YT 7 < 1w i Ind <1 (55 — k6)in,
we have:

AS(1-k6E: +e(6).6 (12)

with ¥ = ﬁ?ln% and e{f) = 6.d2.ms.k,.BEf +

kelnt6.Mys + 2L, + ko L8 + kM, + k,6In LES.

A.3 Condition for E! <e,

Let us suppose that for cells X ¢ 8G°, the following
conditions hold for some o > 0

E. > e= QX u) - Q% u) < El —a(13)
El < =@ (X, u)-Q ¢ u|<es (14

From the hypothesis of exploring-every-possible-
transition, there exists an integer m such that at stage
n + m all the cells X € G* have been updated at least
once since stage n. Since cells X € 8G* are updated with
rule (6), [V, (X)~V4(&)| = [R(w)—R(E) < La.b < €2
for any 6§ < &y = {. Thus, from {13) and (14) we
have:

Eb > g=2FE .<Ei-a

E, <

Thus there exists N such that : ¥a > N, E% <.
A sufficient condition: let us suppose that

133 Eo
(1-£8).7 +eld)d < 7 (15)

£z = Efl+m < €2

holds, then conditions (13) and (14} are true.

Indeed, assume (15) is true. Let EZ > £, then from
(12), A < Bf — k.6.eg +e(8)8 < Ef — k.6.%. Thus (13)
holds for a = £.5.%.

Now suppose that E® < eg. From (12), A < (1 ~

k.8)ez + e(8)6 < 4 + % and condition {14) is true.

A.4 Convergence of the algorithm

Let us prove theorem 4. For any compact @ C O, for
all £ > 0, let us consider £; > 0 and g2 > 0 such that
€1 + &2 = £. As e(8) tends to 0, there exists Ay for
§ < Ag, (15) which is equivalent to: e(f) — k% < 0
holds.

Thus for § < min{A;, Ay, Az, As}, the sufficient con-
dition (15) is satisfied and conditions (13) and (14) are
true. So there exists N, for all n > N, E} < £, Besides,
from the convergence of the scheme (theorem (3)), there
exists Ag st. V6 < Ag,8up,eq |Vi{z) - Viz)| S 1.

Thus for § < min{Ao,Al,Ag,A3,A4}, IN, ¥vn>= N,

sup [VA(X 5 z) — V(z)} € sup [V{X 3 €) - V(&)
rEN €T

4+ sup |V§(I} —-V(z) €1 +e2=¢
zelft
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