
A n t s and Re in forcement Learn ing : A Case S tudy in R o u t i n g in 
Dynam ic Networks 

Devika Subramanian Peter Druschel Johnny Chen 
Department of Computer Science 

Rice University 
Houston, Texas 77005 

Abs t rac t 
We investigate two new distributed routing al­
gorithms for data networks based on simple bi­
ological "ants" that explore the network and 
rapidly learn good routes, using a novel varia­
t ion of reinforcement learning. These two algo-
r i thms are ful ly adaptive to topology changes 
and changes in l ink costs in the network, and 
have space and computational overheads that 
are competitive wi th tradit ional packet routing 
algorithms: although they can generate more 
routing traffic when the rate of failures in a 
network is low, they perform much better un­
der higher failure rates. Both algorithms are 
more resilient than tradit ional algorithms, in 
the sense that random corruption of routing 
state has l imited impact on the computation 
of paths. We present convergence theorems for 
both of our algorithms drawing on the theory 
of non-stationary and stationary discrete-time 
Markov chains over the reals. We present an ex­
tensive empirical evaluation of our algorithms 
on a simulator that is widely used in the com­
puter networks community for validating and 
testing protocols. We present comparative re­
sults on data delivery performance, aggregate 
routing traffic (algorithm overhead), as well as 
the degree of resilience for our new algorithms 
and two tradit ional routing algorithms in cur­
rent use. We also show that the performance of 
our algorithms scale well wi th increase in net­
work size-using a realistic topology. 

1 I n t r oduc t i on 
Efficiently routing data in a dynamic network is a diffi­
cult and important problem in computer networking. By 
dynamic we mean a network subject to frequent and un­
predictable changes in topology and link costs (e.g., due 
to congestion). One of the most widely used solutions for 
routing on such networks [Coltun, 1989] places substan­
t ial space and t ime requirements on all the routers to 
guarantee effective performance, thus l imi t ing its scal­
abil ity. In this paper, we investigate two algorithms 

for this problem inspired by the dynamics of how ant 
colonies learn the shortest routes to food sources, using 
very l i t t le state and computation [Beckers et ai, 1992]. 
The first algorithm, which we call the regular ant al­
gorithm, is based on earlier work by Holland et. al. 

chooenderwoerd et ai, 1996] for call routing in tele­
phone networks. The regular ant algori thm is a single 
shortest path algorithm and is only applicable to net­
works wi th symmetric path costs. We have developed 
a second algorithm, called the uniform ant algorithm, 
which is a natural mult i -path routing algorithm that is 
applicable to data networks wi th or without path cost 
symmetry. We provide a summary of theoretical prop­
erties of both ant algorithms as well as an empirical eval­
uation on a low-level network simulator. 

A major reliabil ity issue in data networks is the re-
siltence of the routing algorithms to corruption of router 
state. Current routing algorithms are more susceptible 
to such failures since they maintain more network state 
at each router. We experimentally demonstrate that the 
ant-based algorithms are far more resilient. Even though 
the routing traffic generated by our ant algorithms ex­
ceeds that of existing algorithms, ants can be readily 
piggybacked onto data packets on a hop-by-hop basis, 
since they are small and are of fixed size. This piggy­
backing helps to significantly defray the routing over­
head. Finally, the routing overhead of ant algorithms is 
independent of the rate of change (link/recoveries and 
failures and link cost changes) in the network, making 
these algorithms very attractive for highly dynamic net­
works. 

The paper is organized as follows. In Section 2, we 
describe the routing problem in brief and present two 
current solutions to i t . In Section 3, we describe the two 
ant algorithms and prove their convergence properties. 
In Section 4, we present an detailed empirical evaluation 
of the ant algorithms. 

2 The Rou t i ng P rob lem 
The challenge of routing in packet-switched communi­
cation network is the need for a ful ly distributed algo­
r i thm that is able, without central coordination to dis­
seminate knowledge about the network, to find shortest 
paths robustly and efficiently in the face of changing net-
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work topologies as well as changing l ink costs. There are 
two major classes of adaptive, distributed packet rout­
ing algorithms in the literature: distance-vector algo­
r i thms and link-state algorithms. Distance-vector algo­
r i thms are dynamic programming algorithms which only 
propagate cost information. No node, at any time, has 
complete knowledge of the topology of the whole net­
work. Link state algorithms require all nodes to know 
the topology of the network before computing shortest 
paths. Link state methods have each node periodically 
broadcast its local topology and costs to the entire net­
work. The Internet Open Shortest First (OSPF) Proto­
col [Coltun, 1989] uses a link state algorithm. 

3 A n t Rou t i ng A lgo r i thms 
To facilitate the description of our algorithms we dis­
tinguish between two types of nodes on the network: 
hosts and routers. Hosts are communication end-points, 
that is, they can init iate and terminate data messages1. 
Routers are nodes which forward data messages and can 
send and receive routing messages. There are three key 
conceptual ideas underlying our two ant algorithms. 
Ants that explore the network: The hosts take a very 
active role in gathering information about the costs of 
various paths in the network. Periodically, each host hd 
in the network generates a message to another randomly 
chosen host hs. This message is of the form (hd,hs ,c) 
where c is a cost that starts out at zero and is the cost to 
get to hd- The message is sent out on the network where 
it is forwarded to hB by routers it encounters, which also 
increment the cost c to reflect the cost in reverse2 of links 
it has traveled on thus far. When the message reaches its 
destination hs, the cost c is the end-to-end cost of send­
ing a message from hd to hs. The message3 is destroyed 
at host hs. These messages are small (size 0(1) , 6 to 
10 bytes), and we refer to them as ants. Ants explore 
paths backward from destination nodes in the network to 
source nodes. How ants are routed through the network, 
and the rate at which they are generated (the generation 
rate is the same for all hosts in the network) are key pa­
rameters in the definition of the ant routing algorithms. 
Probabilistic routing tables: Unlike link state and 
distance-vector algorithms which compute determinis­
tic forwarding tables for each router, our forwarding 
tables are probabilistic. The router r maintains for 
each destination node x in the network, an entry of the 
form is 

1In general, a host represents a network destination for 
which the ant algorithms compute routes; a destination could 
be a single computer attached to the network, a subnetwork 
within an internetwork, or a routing domain within a hierar­
chical routing architecture. 

2 When a message traverses a link from node a to node b, 
c is incremented by the cost of the link from b to a. 

3In fact, we do not require that the message get to h, since 
hs could be an inaccessible host. Any other host in the net­
work can absorb the message, and the message is destroyed 
once c increases beyond a pre-set threshold. 

a point-to-point l ink and When r receives 
a message destined for host x it forwards it to its neigh­
bor yi wi th probability pi. The probabilistic tables are 
a mechanism for exploring alternate paths in the net­
work and keeping estimates of their lengths relative to 
the current best paths. 
Probabilistic updates of routing tables by ants: An ant 

generated by host hd to host hs probabilis­
tically updates the routing tables of all the routers it 
encounters along its path. The update rules are simi­
lar in spirit to those in tradit ional reinforcement learn­
ing algorithms [Kaelbling et a/., 1996]; the key techni­
cal difference is that the update rules are non-linear. 
If router r receives the ant on l ink from 
node yi, it updates c by adding the cost of traversing 
li in reverse, and then updates its entry for which is 

as follows: 

where is a non-decreasing 
function of c. 

These update rules are drawn from [Schooenderwoerd 
et al, 1996]. The constant k is called the learning rate 
of the algorithm. It is generally less than 0.1. The learn­
ing rate needs to be set high enough that each ant has 
some effect on pi, and low enough so we can guarantee 
convergence of the routing probabilities. Note that the 
router's probabilities to the host which generated the ant 
are updated. Ants perform a form of backward learning. 

Unlike tradit ional adaptive algorithms in this context, 
including [Li t tman and Boyan, 1994; Kaelbling et al, 
1996] the extent of the reinforcement is not the direct 
cost c of the ant, rather it is a decreasing non-linear 
function4 of c. 

A router forwards the ant after updating 
its table as discussed above. It uses the routing probabil­
ities for ant forwarding as follows. Let the routing entry 
for destination be The reg­
ular ant algorithm uses and the 
uniform ant algorithm uses 

Regular ants use the learned forwarding tables to route 
ants. If a good, non-congested route is found, new ants 
wi l l be more likely to be forwarded on that route. Ex­
ploration of less desirable routes is curtailed by this pol­
icy, so eventually the ants converge to a single shortest 
route. Regular ants require path costs in the network to 
be symmetric: i.e., the cost of getting from node a to 
node 6 has to be the same as the cost of getting from 
node 6 to node a. 

Uniform ants are unbiased by the forwarding probabil­
ities and explore all paths wi th equal probability. Uni­
form ants are natural mult i -path routers, they increase 
available bandwidth and are not prone to route oscil­
lation problems that single shortest path routing algo-

4 We normalize actual path costs, so that the are not 
affected by linear scaling of link costs in the network. 
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r i thms have. Uniform ants have a much simpler struc­
ture than regular ants. A uniform ant is of the form 
(hd , c) where hd is the host that generated it and c, in i ­
tialized to zero at the source, is the cost to get to hd on 
the links it has traveled on so far. Uniform ants have a 
t ime to live, after which they are terminated. Uniform 
ants do not require a destination, a fact of great prac­
tical importance because not every host on the network 
knows about all the other hosts. 

3 . 1 A s i m p l e e x a m p l e a n d i t s a n a l y s i s 
We present the example in Figure 1 to il lustrate the ant 
algorithms in more detail. We wi l l , in the context of this 
example, also demonstrate convergence properties of the 
update rules for both regular and uniform ants. 

U n i f o r m A n t s 
For uniform ants, the probabilities p(t) and q(t) evolve 
simultaneously according to the stochastic discrete dif­
ference equations shown below. Note however that the 
equations for p(t) and q(t) are no longer coupled. 

P roo f : Omit ted for lack of space, but is in our technical 
report. When there are two loop-free, link disjoint paths 
between any two nodes in a general network, the prob­
abilities p and q on these nodes evolve as shown above 
wi th the probabil i ty 0.5 replaced by a, where 0 < a < 1. 
a is determined by network topology and can be in­
terpreted as the ratio of the fraction of ants arriving 
from one node to the other along the two paths. The 
l imi t ing values of the probabilities can be shown to be 

where C\ and C2 are the 
end-to-end costs along the two paths. Note that when 
a = 0.5, uniform ants divide traffic along the two paths 
in inverse ratio of the path costs; a highly desirable traf­
fic split that can optimize available bandwidth. Further 
generalizations are in our techreport. 

Both Proposition 1 and Proposition 2 are statements 
of asymptotic convergence; the rates6 of convergence 
(which depend on the ant generation rate as well as the 
topology of the network) are determined empirically in 
Section 4. 

3.2 I m p r o v i n g Adapt iveness 
Once the regular ants reach steady state, the forwarding 
probabilities converge to 0's and l 's as shown in Proposi­
t ion 1. If there are topology changes or l ink cost changes 
after convergence, the regular ant policy of forwarding 
ants according to the learned probabilities wi l l prevent 
them from adapting to the new situation. Uniform ants 
are immune to this problem because all paths in the net­
work are explored at all times wi th equal probabil i ty. So 

6 It is very difficult to obtain general results on convergence 
rates for these systems of equations. 
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Table 1: A comparison of resource requirements for the 
entire network, n is the sum of the number h of hosts in 
the network and the number r of routers in the network. 
/ is the number of point-to-point links in the network. 
d is the diameter of the network and e is the average 
number of links per router. 

changes in the network wi l l be detected and the proba­
bilities wi l l adapt at a pace dependent on the learning 
rate k. 

We use the solution in [Schooenderwoerd et ai, 1996] 
to allow regular ants to perform a certain degree of ran­
dom exploration. A certain percentage of the time ( f % ) , 
a router forwards ants uniformly randomly (i.e., using 
the uniform ant routing policy), and the rest of the time 
( 1 — / % ) the router forwards ants according to the for­
warding probabil ity tables (i.e., using the regular ant 
routing policy). This noise only affects ant forwarding 
and not the data packets. W i t h / > 0, the probabilities 
of a single path never reach 0 or 1. This guarantees that 
if a primary route becomes no longer available, the up­
date rules reinforce the second best paths fairly quickly. 
Only the ants traveling on the second best path get to 
reinforce the forwarding probabilities to the source and 
there are no ants to reinforce the former best path. We 
summarize this phenomenon by the slogan: bad news 
travels fast. However, if a better path suddenly becomes 
available, the only ants available to reinforce it are the 
ones routed through it by the noise; and so the system 
takes longer to switch to the better path. We character­
ize this as: good news travels slower than bad news. To 
make good news travel faster, we can crank up the noise 
levels or increase the learning rate. 

Table 1 summarizes the key resource requirements of 
the ant family of algorithms, the distance-vector and the 
l ink state algorithms. This table makes it clear that the 
link state algorithm pays a significant overhead in terms 
of state on each router and in terms of t ime to compute 
shortest paths. This investment in state in the routers 
allows it to reduce the number of routing messages sent 
during the computation of in i t ia l routes. The distance-
vector and the ant algorithms have significantly lower 
router state, but this comes at the expense of increased 
routing message traffic. While the distance-vector and 
ants use roughly the same order of bytes of routing traf­
fic, the ant algorithms use a factor of h (where h is the 
number of hosts) more messages than the distance-vector 
method. It is important to note that ant messages, un­
like the distance-vector messages, are of constant size, 
and can be piggybacked on to data packets. On high 
bandwidth networks this virtual ly gives us ant routing 
traffic for free. 

4 Exper imenta l Results 
In this section, we present the results of extensive simula­
tions that were performed to evaluate the proposed algo­
rithms, and to compare their behavior wi th that of the 
distance-vector (DV) and link-state (LS) routing algo­
rithms. The algorithms are evaluated on networks wi th 
simple topology, and more realistic topologies derived 
from a subset of the Internet inter-domain topology. 

4 . 1 S i m p l e T o p o l o g y 

Figure 3: Simple Network Topology 

The first, simple network used in our simulations is de­
picted in Figure 3. In this network, all links are of equal, 
unit cost. Thus, for instance, the shortest path f rom R1 
to R5 has cost two7 . Simulations were run for 60 sec­
onds of simulated t ime. This t ime was chosen such that 
each routing protocol can reach steady state conditions 
between successive changes in the state of the network. 
Each host generates ants at a rate of 8/second. At t ime 
t = 0s, the network is started wi th in i t ia l conditions. 
The link connecting R2 and R5 fails at t ime t = 20s, 
and it recovers at t ime t = 40s. The learning rate is .08 
and the noise level is 10%. 

Our first experiment quantifies end-to-end delivery la­
tency, which is an important aspect of a routing algo-
r i thm's performance as perceived by a network applica­
tion. Figure 3 shows the end-to-end delivery delay, in 
number of network hops, measured during the simula­
tion described above. Host H1 periodically sends mes­
sages at a rate of 670bytes/second to Host H5. The 
figures show the results for regular ants, uniform ants, 
and the distance-vector algorithm respectively. We omit 
the link-state plot because it is identical to the distance-
vector plot. A reported delay of zero hops means that 
the packet was lost, i.e., it was never delivered to its 
destination. 

To a first approximation, all algorithms achieve the 
minimal delivery delay of 2 hops during the interval be­
tween t = 20s and t = 40s, and a delay of 3 hops oth­
erwise. Uniform ants split traffic among mult iple paths. 
This results in some j i t ter (i.e., variance in delay) when 

7The link between a host and its associated router is not 
included in any path cost calculations. This is purely a mat­
ter of implementation convenience. It has no effect on the 
routing algorithm. 
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Figure 2: End-to-end delay plots for regular ants, uniform ants, and the distance vector algorithm for the simple 
network topology in Figure 2. Host HI is the sender and host H5 is the receiver. The delay plot for the link state 
protocol is identical to the one for the distance vector algorithm. 

Table 2: Routing traffic per l ink per second for Uniform 
Ant (UA) , Regular Ant (RA) , Distance Vector (DV) , 
and Link State (LS) algorithms. 

traffic is split over paths wi th different costs, as can be 
seen in the graph up to t = 4s and between t = 40 and 
t — 42s. Traffic is also split between t = 30s and t = 40s, 
but here the traffic is split over equal cost path, wi th no 
impact on j i t ter . Spl i t t ing traffic in this way also leads 
to an increase in available bandwidth, but this is not 
evident from the delay plot. 

In response to the failure of the shortest path link at 
t = 20s, packets are lost for a period of three to five 
seconds, depending on the algorithm used. W i th the 
ant algorithms, this t ime is determined by the transi­
t ion t ime of the forwarding probabilities, caused by the 
reinforcement of alternate paths. 

Table 2 shows the amount of routing traffic generated 
by each of the algorithms in our simulation. Whenever 
a routing message traverses one link of the network, one 
message transmission is recorded, and the size of the 
message is added to the number of bytes of routing traf­
fic. 

In this experiment, the amount of routing traffic gen­
erated by the ant algorithms exceeds that of LS and DV 
by roughly a factor of 10, both in terms of messages and 
data. Note, however, that all ant routing messages are 
small and of fixed size. Therefore, these messages can be 
piggy-backed onto data packets, substantially defraying 
their cost to the network. The messages generated by the 
LS and DV algorithms are larger and not of fixed size; 
therefore, they do not lend themselves easily to piggy­
backing. In the subsequent section, we wi l l present data 
that quantifies the dependence of routing traffic on net­
work size and rate of change in the l ink costs. 

Res i l ience t o S ta te C o r r u p t i o n 
The next set of experiments attempt to quantify the be­
havior of our routing algorithms in the event of failures. 
Specifically, we are interested in failure modes where a 
router's internal state is corrupted. This case is of great 
practical importance. Router state corruptions can oc­
cur in practice due to intermittent software and hard­
ware faults, and configuration errors. Unlike communi­
cation errors affecting routing messages, such errors are 
difficult to detect and/or correct. At t = 30s in the simu­
lat ion, router R2 suffers an intermittent fault that causes 
its routing state to be overwritten wi th random values. 
Since we are interested in evaluating the robustness of 
the various algorithms, rather than that of their imple­
mentation, the routing state is corrupted wi th random 
but plausible values. 

W i t h LS, the recovery period is bounded by the peri­
odic link-state broadcast interval. In practice, the broad­
cast interval tends to be quite long, for instance 30 min­
utes in the OSPF protocol. During the recovery period, 
the router is unable to calculate correct routes, which 
may result in routing loops and the associated loss of 
connectivity. W i t h DV, once the router has learned 
its actual local topology, it wi l l eventually converge to 
the actual shortest paths after a number of message ex­
changes that is proportional to the diameter of the net­
work, and the range of the path cost metric8 . In practice, 
the process can be expected to take t ime on the order of 
seconds. During the recovery period, routing loops may 
exist and cause loss of connectivity. 

Figure 4 shows the end-to-end packet delivery delay 
from H1 to H5. It is evident that both uniform and reg­
ular ants perform extremely well in the event of a router 
corruption. W i t h uniform ants, only a small number of 
packets suffer an increased delay of four hops for ap­
proximately 2 seconds following the router failure. No 
packets are lost w i th either algori thm. In comparison, 
wi th LS and DV protocols, one expects loss of connec­
t iv i ty (packet loss) after the router failure for a period 

8 A count-to-infinity may occur in a loop of routers involv­
ing the failed router. 
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Figure 4: The left two plots show the end-to-end delay, from H1 to H5 in the network of Figure 2 for regular and 
uniform ants with router corruption. Router R2's probability tables are randomly overwritten at t ime of 30s. The 
plot on the right side shows the routing traffic for the 21, 28, and 31 node star-like topology. 

of t ime ranging from seconds to minutes. 

4.2 Scalable T o p o l o g y 

The second topology we use for our experimental evalu­
ation more closely reflects the structure of realistic data 
networks. The topology is based loosely on the Internet 
inter-domain routing topology. The network is roughly 
a part ial 6-ary tree where one of the six leaf nodes of 
each parent is connected to one leaf node of the adjacent 
parent. We use graphs wi th 3, 4, and 5 levels with a 
total of 21 , 26, and 31 nodes. For each size of the net­
work, we measure the routing traffic generated by each 
of the algorithms necessary to achieve a given speed of 
convergence of 5 seconds. 

Figure 4 shows the number of routing messages gener­
ated by each algorithm for networks with 21, 26, and 31 
nodes, during a 60 second simulation with parameters 
equal to those used in the earlier simulations. Thus, for 
realistic wide-area network topologies that are character­
ized by low degrees of connectivity, all these algorithms 
scale well. 

In our final simulation, we measure the generated rout­
ing traffic as a function of the rate of topological change 
for each of the algorithms. Topological change is mod­
eled here as the number of links that fail and recover over 
the simulation period of 60 seconds. Figure 5 shows the 
amount of routing traffic generated by each algorithm 
in the 5 level network, for various rates of link failures 
and recoveries. As predicted, the routing traffic gener­
ated by the ant algorithms remains nearly unaffected by 
the amount of topological change in the network. W i th 
link-state and DV, the routing traffic increases more than 
linearly wi th the amount of change. This demonstrates 
one of the key advantages of ant algorithms over LS and 
DV. 

5 Related Work 
5.1 Q - R o u t i n g a n d A n t s 
In Q-Routing [L i t tman and Boyan, 1994], each node 
keeps Q-values of the form Qx(d,y), representing node 

x's cost estimate to d via neighbor y. Whenever x for­
wards data to d, x consults its Q table and forwards 
to the neighbor wi th the least cost estimates to d. On 
receiving a packet from x, neighboring node y immedi­
ately sends its least cost estimate to d back to x. x then 
adjusts its cost estimate Qx (d, y) based on y's message. 

Q-Routing uses a dynamic, i.e., traffic-dependent, 
routing metric (delay). Therefore, it can adapt to 
changes in topology as well as traffic conditions. Ants, as 
well as LS and DV, can be made to do the same simply 
by choosing an appropriate l ink cost metric9 . 

Q-Routing differs from regular ants in two key aspects. 
First, unlike ants, Q-routing is not guaranteed to find the 
shortest path. Second, the amount of routing traffic w i th 
Q routing is directly proportional to the amount of data 
traffic in the network, while routing traffic is constant 
with ants. Uniform ants have the additional capability 
of routing packets along multiple paths. 

Q routing can discover changes in route cost (delay in 
this case) only on the currently used route. Since the 
currently used route is the best known route, only an 
increase in the cost of the currently used route can cause 
Q routing to select a different route. A decrease in the 
cost of a route other than the currently used route cannot 
be discovered, causing Q routing to potentially use a 
suboptimal route. The full echo variant of Q routing 
overcomes this deficiency for the special case where a 
better route other than the currently used route is known 
to a neighbor of the message source. Full echo comes at 
the cost of increased routing traffic, but can st i l l not 
guarantee convergence to the shortest path. The regular 
ant algorithm can be shown to always converge to the 
single shortest path. 

To illustrate this point, consider Figure 5, which shows 
the packet delivery delay for Q-Routing and regular ants 
in the 6x6 irregular network used in [L i t tman and Boyan, 
1994]. For both algorithms, the routing cost metric is 

9For instance, to implement a delay-based metric, neigh­
boring routers can periodically exchange ping-pong messages, 
and assign the measured delay as the cost of the associated 
link. 
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Figure 5: The plot on the left side shows routing traffic as a function of l ink failures for the 31 node topology. The 
two plots on the right show an end-to-end delay comparison between Regular ants and Q-Routing. The network load 
increased to 1.5 at t ime 20s and decreased to 0 at t ime 40s. 

end-to-end delivery delay. At t = 20s, the background 
network load increases, causing a change in the opt imal 
path between source and destination. At t = 40s, the 
network is restored to its original load. It is evident that 
at t = 205, Q-Routing adapts to increasing load and 
discovers the new opt imal path, but fail to "rediscover" 
the original path when the background traffic subsides 
at t = 40s. As a result, the delivery delay never re­
turns to its value before t = 20s. The ant algorithms, 
on the other hand, is able to converge to the opt imal 
path in both cases. Data packets that are forwarded 
more than 30 times are considered undeliverable and are 
shown as having a delivery t ime of zero. As evident 
from the graph, a substantial number of packets are not 
delivered wi th Q routing during the transition phases 
following t = 0s and t = 20s. 

W i th ant algorithms, the routing traffic is independent 
of the data traffic. The rate of ant generation deter­
mines a fixed tradeoff between amount of routing traffic 
and rate of convergence. In Q-Routing, the number of 
routing messages is directly proportional to the num­
ber of transmitted data messages. This means that at 
low network load, Q-routing is slow to adapt to network 
changes. At high network load, Q-Routing overhead in­
creases, thus l imi t ing the aggregate capacity of the net­
work. 

5.2 L ink -s ta te and Dis tance-vector 
A l g o r i t h m s 

Ant routing algorithms differ f rom LS and DV algo­
r i thms in various aspects. Raw ant routing traffic ex­
ceeds that of LS and DV by a small factor, but this 
must be seen in l ight of the following facts. First, the 
absolute amount of routing traffic for a 31 node network 
is st i l l modest (201 Bytes/sec and 20 msgs/sec of traffic 
are generated per l ink) . The small, fixed sized (6 bytes 
for uni form, 10 bytes for regular) ant messages can be 
piggy-backed onto data packets on a hop-by-hop basis, 
which largely defrays their cost to the network. Unlike 
LS and DV, ant routing traffic does not increase wi th the 
rate of change in the network, making these algorithms 

suitable for highly dynamic networks. Ant algorithms 
maintain minimal state in the routers, which meets the 
needs of networks wi th scarce router resources. Thus 
they are particularly suitable, for instance, in mobile, 
wireless networks used for personal communication net­
works where topology and load changes frequently, and 
where resources in the routers are scarce. Finally, the 
ant algorithms have additional capabilities (mult i -path 
and improved resilience to router state corruption) not 
present in LS and DV. 

References 
[Beckers et a/., 1992] R. Beckers, J. L. Deneuborg, and 

S. Goss. Trails and U turns in the selection of a path by 
the Ant lasius niger. Journal of Theoretical Biology, 
159:397-415, 1992. 

[Coltun, 1989] R. Coltun. OSPF: an Internet routing 
protocol. Connexions, 3(8):19- 25, 1989. 

[Kaelbling et al/., 1996] L. Kaelbling, M. L i t tman, and 
A. Moore. Reinforcement learning: A survey. Journal 
of AJ Research, 4:237-285, 1996. 

[L i t tman and Boyan, 1994] M. L i t tman and J. Boyan. 
Packet routing in dynamically changing networks: A 
reinforcement learning approach. In Proceedings of 
NIPS-94, 1994. 

[Schooenderwoerd et al., 1996] R. Schooenderwoerd, 
O. Holland, J. Bruten, and L. Rosenkrantz. Ants for 
load balancing in telecommunication networks. Tech­
nical Report HPL-96-35, HP Labs, Bristol, 1996. 

[Subramanian et a/., 1997] D. Subramanian, P. Dr-
uschel, and J. Chen. Ants and reinforcement learning: 
A case study in routing in dynamic networks. Techni­
cal Report TR-97-10, Rice University, 1997. 

838 LEARNING 



LEARNING 

Learning 3: Decision Trees 


