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Abs t rac t 

It is argued that in applications of concept 
learning from examples where not every pos­
sible category of the domain is present in the 
training set (i.e., most real world applications), 
classification performance can be improved by 
integrating suitable discriminative and charac­
teristic classification schemes. The suggested 
approach is to first discriminate between the 
categories present in the training set and then 
characterize each of these categories against 
all possible categories. To show the viabil i ty 
of this approach, a number of different dis­
criminators and characterizers are integrated 
and tested. In particular, a novel characteri­
zation method that makes use of the informa­
t ion about the statistical distr ibution of feature 
values that can be extracted from the train­
ing examples is used. The experimental results 
strongly supports the thesis of the paper. 

1 I n t r o d u c t i o n 
Most algorithms that learn from examples (e.g., decision 
tree algorithms such as ID3 [Quinlan, 1986] and C4.5 
[Quinlan, 1993], nearest neighbor algorithms such as the 
IB family [Aha et al., 1991] and the backpropagation al­
gori thm [Rumelhart et al., 1986]), learn discriminative 
category descriptions. That is, they learn to discrimi­
nate between the categories present in the training set. 
As a consequence, the classification schemes computed 
by these algorithms suffer from an inabil i ty of detecting 
instances of categories not present in the set of training 
examples. Instead, such instances are assigned to one of 
the categories actually represented in the training set, 
resulting in undesired misclassifications. Although this 
problem often is ignored in machine learning research, 
it arises in most real world applications as these typ­
ically can be characterized as open domains [Hutchin­
son, 1994]. We simply do not have complete information 
about the domain, e.g., the actual number of categories 
is not known. 

For example, consider the decision mechanism in a 
coin-sorting machine of the kind often used in bank of­
fices. Its task is to sort and count a l imited number of 
different coins (e.g., a particular country's), and to reject 
all other coins. Supposing that this decision mechanism 
is to be learned, it is for practical reasons impossible to 
train the learning system on every possible k ind of coin, 
genuine or faked. Rather, the system should be trained 
only on the kinds of coins it is supposed to accept. An­
other example are decision support systems, for instance 
in medical diagnosis, where the cost of a misclassification 
often is very high — it is better to remain silent than to 
give an incorrect diagnosis. 

As pointed out by Smyth and Mellstrom [1992], it 
is necessary to learn characteristic descriptions to solve 
the problem. Such a description characterizes the cat­
egory wi th regard to all possible categories (regardless 
of their occurrence in the training set), and are thus, 
at least potentially, able to reject instances of categories 
not present in the training set. We wi l l here call algo­
ri thms that learn characteristic descriptions characteriz­
ers and algorithms that learn discriminative descriptions 
discriminators. Holte et al. [1989] have shown that the 
CN2 algorithm can be modified to learn characteristic 
descriptions in the form of rule-based maximum specific 
descriptions. Besides simple memorization of the train­
ing instances (without doing any generalization), con­
structing maximum specific description is the simplest 
way to learn characteristic descriptions; for each cate­
gory (or disjunct) one just compute the minimum and 
maximum value of each feature from the training in­
stances belonging to the category and then construct a 
description that only accepts instances wi th in the mul t i ­
dimensional space delimited by these values. (For nomi­
nal features, allow only the values present in the training 
instances belonging to the category.) 

It is possible make distinctions between different kinds 
of characterizers in terms of how much they generalize. 
On one end we have those that learn the most general de­
scriptions that do not cover any description of other con­
cepts (e.g., AQ11 [Michalski and Larson, 1978]) which in 
some cases degenerates into discriminators, and on the 
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other end we have those that, just as the above men­
tioned modification of CN2, learns the most specific de­
scriptions possible. However, in most applications both 
these extreme approaches are inadequate as they tend 
to over- and under-generalize respectively. Moreover, 
these approaches are very static in the sense that there 
is no way of controll ing the degree of generalization. It is 
the author's belief that the abil ity to control the degree 
of generalization is essential in most real world applica­
tions. There is a trade-off between the number of re­
jected and misclassified instances that must be balanced 
in accordance wi th the constraints of the application. 
In some applications the cost of a misclassification is 
very high and rejections are desirable in uncertain cases, 
whereas in others the number of rejected instances be­
longing to categories present in the training set are to 
be kept low and a higher number of misclassifications 
are accepted. Of course, it is always desirable to reject 
as many as possible of the instances of categories not 
present in the training set. 

Another disadvantage of current characterizes is that 
they are not as good as current discriminators to dis­
criminate between the categories actually present in the 
training set. The reason is simply that often they do not 
take into account the information that can be extracted 
from the training data about those categories (or do so 
only to a certain extent, cf. AQ11). 

2 In tegra t ing d iscr iminat ion and 
character izat ion 

The weaknesses of algorithms learning discriminative de­
scriptions correspond closely to the strengths of those 
that learn characteristic descriptions and vice versa. 
That is, discriminative descriptions are in general good 
at discriminating between categories present in the train­
ing set but are unable to identify instances of categories 
not present in the training set whereas characteristic de­
scriptions are able to do this but are not as good to 
discriminate between the categories present in the train­
ing set. As a consequence, it would be useful to t ry to 
combine their strength and at the same time reduce their 
weaknesses. A general method for doing this is to first 
apply an algorithm that discriminates between the cat­
egories present in the training set, and then another one 
that characterizes these categories separately against all 
possible categories.1 Thus, the learning is divided into 
two separate phases: 

1. discrimination between all known categories 

2. characterization of these categories against all pos­
sible categories. 

1 There are obvious reason for doing it in this order. For 
instance, we do not know which entities (i.e., disjuncts) to 
characterize before we have made the discrimination. Also 
the classification would be less computationally efficient if 
we first test all the characteristic description and then dis­
criminate between those that accepted the instance. 

One instantiation of this general method would be to 
apply a discriminator (e.g., ID3) in the first phase and 
then compute the maximum specific description for each 
category/disjunct (i.e., for each leaf, in the ID3 case). 
Classification, on the other hand, would consist of first 
applying the discriminative description to get a prelim­
inary classification, and then apply the maximum spe­
cific description to decide whether to reject or accept 
the instance. In what follows we wi l l refer to the mult i ­
dimensional subspace of the instance space defined by 
a characteristic description, in this case the maximum 
specific description, as the acceptance region. Thus, each 
category/disjunct has its own acceptance region. If the 
instance to be classified is outside the acceptance region, 
it wi l l be rejected whereas if it is inside the acceptance 
region, it wi l l be classified according to the preliminary 
classification made by the discriminator. 

Now, which discriminators and characterizers are suit­
able for integration? As indicated above, it is possible 
to use existing components, e.g., ID3 as discriminator 
and compute maximum specific descriptions for charac­
terization. Since most research on learning from exam­
ples has focused on creating discriminative descriptions, 
many good discriminators besides ID3 have been in­
vented. The problem is wi th the characterization phase. 
As pointed out earlier, the maximum specific descrip­
tion method is rather static in the sense that there is no 
way of controlling the degree of generalization, i.e., the 
size of the acceptance regions. Moreover, the method is 
very sensitive to noise. In the next section an example 
of a more noise-tolerant approach to characterization in 
which it is possible to control the degree of generalization 
wil l be described. 

3 A novel approach to character izat ion 
The central idea of this method is to make use of sta­
tistical information concerning the distr ibution of the 
feature values hidden in the training data. Two ver­
sions of this approach, below referred to as the SD ap­
proach, have been developed: one univariate that com­
putes separate and explicit l imits for each feature (just 
as methods based on maximum specific descriptions do) 
which is suitable for application to, e.g., decision tree 
algorithms,2 and one multivariate method, able to cap­
ture covariation among two or more features, suitable for 
integration with discriminators that do not use rule- or 
tree-based representation, e.g., nearest neighbor. 

3.1 Un iva r ia te vers ion 
For every feature (and every category/disjunct) we com­
pute a lower and an upper l imit so that the estimated 
probability that a particular feature value (of an instance 

2The explicit limits make it possible to retain the tree 
structure induced by the discrimination algorithm (e.g., ID3) 
augmenting it with a subtree at each leaf that characterize 
the category/disjunct represented by that leaf. 
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belonging to this category/disjunct) belongs to the inter­
val between these l imits is In this way we can con­
trol the degree of generalization and, consequently, the 
above mentioned trade-off by choosing an appropriate 

value. The lesser the is, the more misclassi-
fied and less rejected instances. Thus, if it is important 
not to misclassify instances and a high number of re­
jected instances are acceptable, a high value should 
be selected. 

It turns out that only very simple statistical methods 
are needed to compute such l imits. Assuming that X is 
a normally distr ibuted stochastic variable, we have that: 

where m is the mean, a is the standard deviation, and 
is a crit ical value depending on 

In order to follow this line of argument we have to as­
sume that the feature values of each category (or each 
disjunct if it is a disjunctive concept) are normally dis­
tr ibuted. As indicated by the experiments below, this 
assumption seems not too strong for most applications. 
Moreover, as we cannot assume that the actual values 
of m and are known, they have to be estimated. A 
simple way of doing this is to compute the mean and the 
standard deviation of the training instances belonging to 
the category/disjunct.3 

3.2 M u l t i v a r i a t e vers ion 
To implement this method we wi l l make use of mul t i ­
variate methods to compute a weighted distance from 
the instance to be classified to the "center" of the cat­
egory/disjunct. If this distance is larger than a critical 
value (dependent of ) the instance is rejected. Assum­
ing that feature values are normally distributed wi th in 
categories/disjuncts we have that the solid ellipsoid of x 
values satisfying 

has probabil i ty where is the mean vector, is the 
covariance matr ix , x2 is the chi-square distr ibut ion, and 
p is the number features. (For more details, see for in­
stance [Johnson and Wichern, 1992].) Thus, we have to 
estimate two parameters for each category/disjunct: (i) 

which contains the mean for each feature, and (ii) 
which represents the covariance for each pair of features. 
In analogy w i th the univariate case, we estimate these 
parameters by computing the observed mean vector and 
covariance matr ix of the training instances belonging to 
the category/disjunct. 

The main l imi tat ion of both versions of the SD ap­
proach is that they are only applicable to numerical fea­
tures. However, as the Max approach is applicable also 

3 I t can be argued that this is a rather crude way of com­
puting the limits. A more elaborate approach would be to 
compute confidence intervals for the limits and use these in­
stead. This was actually the initial idea but it turned out that 
this only complicates the algorithm and does not increase the 
classification performance significantly. 

to ordered and nominal features, it is possible to make 
SD more general by combining it w i th Max to form a 
hybrid approach able to handle all kinds of ordered fea­
tures. We would then use SD for numerical features and 
Max for the rest of the features. 

4 Emp i r i ca l results 
The ideas behind the SD approach emerged when work­
ing on a real world application concerning the problem 
of learning the decision mechanism in coin sorting ma­
chines described in the introduction. The application of 
the SD method to this problem was very successful and 
the results are presented briefly below. A more detailed 
presentation of this application can be found in [Davids-
son, 1996b]. 

In order to properly evaluate the SD approach it have 
to be applied to other data sets as well. At the UCI 
Repository of Machine Learning databases there are no 
examples of data sets of the desired k ind, i.e., data sets 
consisting of separate training set (wi th x categories) and 
test set (wi th more than x categories). However, we can 
simulate such data sets in the following way: Take any 
data set, but leave out one (or more) category during 
training. Then test the algorithm on instances from all 
of the categories. At best, the algorithm wi l l classify 
all the instances belonging to categories present in the 
training set correctly and reject all those belonging to 
categories not present in the training set. This approach 
may at first sight seem somewhat strange as we actu­
ally know that there are, for instance, three categories 
of Irises in the famous Iris data set [Anderson, 1935]. 
But how can we be sure that there only exist three cate­
gories? It might exist some not yet discovered species of 
Iris. In fact, as pointed out earlier, in most real world ap­
plications it is not reasonable to assume that all relevant 
categories are known in advance and can be represented 
in the training set. 

Due to shortage of space, only the results of one ex­
periment besides the coin sorting application wil l be pre­
sented here. Although better classification performance 
was achieved using other data sets, I have chosen the 
Iris data set because it is so well-known. (As discrimina­
t ion between the three categories is considered relatively 
easy, it was somewhat surprising that this task turned 
out to be quite difficult.) Results from several differ­
ent data sets using different discrimination algorithms 
can be found in [Davidsson, 1996a]. We wi l l begin wi th 
studying the behavior of the SD approach and then com­
pare it w i th other approaches to learning characteristic 
descriptions. 

4.1 T h e behav io r o f t he SD approach 
In our experiments we have used re-implementations of 
two different discriminators, ID3 and IBI (a basic near­
est neighbor algorithm [Aha et al., 1991]), and combined 
them wi th both the univariate and the mult ivariate ver­
sion of SD. We wi l l here only describe the results of 
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Figure 1: Classification performance of ID3-SDuni as a 
function of Performance on categories present in the 
training set are shown in the left diagram and the cate­
gory not present in the training set in the right diagram. 
(For each value, averages in percentages over 10 runs.) 

ID3 integrated wi th the univariate version (ID3-SDuni) 
and IB1 integrated wi th the multivariate version ( IB1-
SDmult i ) , which are the most natural combinations. 

C o i n s o r t i n g a p p l i c a t i o n 
In the experiments two databases were used, one describ­
ing Canadian coins contains 7 categories (1 , 5, 10, 25, 50 
cent, 1 and 2 dollar), and one describing Hong Kong 
coins that also contains 7 categories (5, 10, 20, 50 cent, 
1, 2, and 5 dollar). A l l of the 5 attributes (diameter, 
thickness, permeability, and two kinds of conductivity) 
are numerical. The Canada and Hong Kong databases 
were chosen because when using the manufacturer's cur­
rent method for creating the rules of the decision mech­
anism (which is manual to a large extent), these coins 
have been causing problems. In each experiment 140 
(7x20) instances were randomly chosen for training and 
700 (2x7x50) for testing. 

Figure 1 shows the classification results of ID3-SDuni 
for some different value when training only on Hong 
Kong coins (which is the most difficult case). To begin 
w i th , we can see that all foreign coins (i.e., the Canadian 
coins) are rejected. However, there were some problems 
wi th misclassifications of Hong Kong coins. In this par­
ticular application there are some demands that must be 
met: at most 5% rejects of known types of coins and very 
few misclassifications (not more than 0.5%). For ID3-
SDuni, these requirements are met when is between 
0.001 and 0.0001. This clearly illustrates the advantage 
of being able to control the degree of generalization. 

The results when applying IB l -SDmul t i are even more 
pleasing (see Figure 2). In fact, it does not misclassify 
any instances! Note, however, that very small a-values 
must be used to achieve excellent classification behavior. 

T h e I r i s da tabase 
The Iris database contains 3 types of Iris plants (Setosa, 
Versicolor or Virginica) of 50 instances each. In each 
experiment the data set was randomly divided in half, 
wi th one set used for training and the other for testing. 
Thus, 50 (2x25) instances were used for training and 75 

Figure 2: Classification performance of IB l -SDmul t i . 

Figure 3: Classification performance of ID3-SDuni. 

(3x25) for testing. Figure 3 shows the classification re­
sults when the algorithms were trained on instances of 
Iris Setosa and Iris Virginica (the most difficult case). 
We see that by varying the it is possible to con­
trol the trade-off between the number of rejected and 
misclassified instances. It is possible to achieve almost 
zero misclassifications if we choose = 0 . 2 , but then we 
get a rejection rate of over 50% also for the two known 
categories. 

Figure 4 shows some more encouraging results for I B l -
SDmult i . Compared to ID3-SDuni we see that by select­
ing an appropriate value it is always possible to achieve 
both more correct classifications and less misclassifica­
tions using the multivariate approach. Since SD-mult i 
creates acceptance regions that closer match the distr i­
bution of feature values, i.e., regions that are smaller 
but sti l l cover as many instances, fewer instances of cat­
egories not present in the training set are misclassified. 

Figure 4: Classification performance of IB l -SD-mul t i . 
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Table 1: Results from training set containing Hong Kong 
coins (averages in percentages over 10 runs). 

4 .2 C o m p a r i s o n t o o t h e r a l g o r i t h m s 

We have compared six different algorithms: 

• the basic ID3 algorithm (only discriminator) 

• the basic IB1 algori thm (only discriminator) 

• ID3 combined w i th the maximum specific descrip­
t ion algorithm (ID3-Max) 

• ID3 combined w i th the univariate version of SD 

• IB1 combined wi th the multivariate version of SD 

• AQ15c 
AQ15c4 [Wnek et al., 1995] is a system that learns de­
cision rules from examples (and counterexamples). It 
has the abil i ty to learn discriminative or characteristic 
descriptions depending on how parameters are set. It 
is by many considered as one of the best algorithms for 
learning characteristic descriptions. To get AQ15c to 
learn characteristic descriptions a parameter called trim 
is set to spec, which means that the rules learned "are 
as specific as possible, involving the maximum number 
of extended selectors, each wi th a minimum of values" 
[Wnek et al., 1995, page 11], 

When using the plain AQ15c algorithm it is not pos­
sible to control the degree of generalization. However, 
for each classified instance AQ15c also outputs a value 
between 0 and 1 reflecting how confident it is in the 
classification. Thus, the decision to accept or reject an 
instance could be based on the degree of confidence, e.g., 
accept if confidence > 0.8 and reject if confidence < 0.8. 

In the following experiments two (or more) results of 
AQ15c are presented: (i) the plain AQl5c and (ii) the 
version(s) using the confidence which seems to balance 
the trade-off best (i.e., we t ry to present AQ15c as favor­
able as possible). Also, one or two a-values for each of 
the SD algorithms that performs "better" than (i) and 
(ii) respectively has been chosen. 

C o i n s o r t i n g a p p l i c a t i o n 
The results f rom the coin sorting application are pre­
sented in table 1. First, we see that of the discriminators, 
IB1 is slightly better than ID3. As a result, the combined 

4AQ15c is a C language re-implementation of AQ15. 

Table 2: Results from training set containing instances 
of Iris Setosa and Iris Virginica (averages over 40 runs). 

algorithms using IB1 performs better than those using 
ID3. Both discriminators misclassify, of course, all for­
eign coins. The plain AQ15c algorithm suffers from the 
same problem as ID3-Max, it rejects far too many in­
stances of the categories present in the training set (the 
Hong Kong coins). However, when decreasing the con­
fidence factor the number of misclassification becomes 
much too high. In short, the SD algorithms are clearly 
superior to both ID3-Max and AQ15c for this problem. 

The only confidence values (except from 1.00 that cor­
responds to plain AQ15c) produced by AQ15c were 0.8, 
0.6, 0.4, 0.2 and 0.0. Therefore, these are the only rel­
evant candidates. This is another disadvantage wi th 
AQ15c — you cannot control the generalization com­
pletely, you are l imited by the confidence values it pro­
duce and cannot choose a value in between. Using SD 
on the other hand, you are able to choose any degree of 
generalization you want. 

Note also that the number of misclassifications for cat­
egories present in the training set is reduced when the 
discriminator is combined wi th a characterizer. 

T h e I r i s database 
Table 2 shows the classification results when the algo­
ri thms were trained on instances of Iris Setosa and Iris 
Virginica. Also in this experiment does IB1 discrimi­
nate slightly better than ID3. We see that IB1-SDmult i 
0.0001 outperforms ID3-Max in every respect and that 
AQ15c is not adequate for this task — it misclassifies 
far too many of the class not present in the training set. 
It is impossible to achieve less than 70% misclassifica­
tions. The only confidence values produced by AQ15c 
were 1.00, 0.75, 0.50, 0.25 and 0.00. 

5 How to choose d isc r im ina tor and 
characterizer 

In theory it is possible to combine an arbitrary discrim­
inator wi th an arbitrary characterization algorithm. In 
practice, however, it is often necessary to take some con­
straints into consideration, such as, the representation 
language of the category descriptions. For instance, if 
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you need to retain the tree structure constructed by a 
decision tree algori thm, you are forced to chose SDuni 
or Max for characterization rather than SDmult i . 

Another issue to take into consideration is whether 
the categories in the domain are likely to be of a dis­
junctive nature or not. If a category consists of clearly 
separate clusters of instances and we use a discriminator 
that does not learn explicitly disjunctive descriptions, 
e.g., backpropagation and nearest neighbor algorithms, 
only one acceptance region is computed for the category. 
This acceptance region wi l l then be unnecessarily large 
implying too many misclassified instances. 

6 Conclusions and fu tu re work 
We have argued that for most real world applications 
of learning from examples classification performance can 
be improved if discriminative and characteristic classi­
fication schemes are integrated. The former is used to 
discriminate between the categories present in the train­
ing set, and the latter to characterize these categories 
against all possible categories. A novel approach for 
characterization, the SD approach, was suggested. An 
important property of this approach is its abil ity to con­
tro l the degree of generalization continuously which is 
crucial for most real world applications. Finally, some 
experimental results were presented that supported the 
claims that classification performance can be improved 
by integrating discriminative and characteristic classifi­
cation schemes and that the SD approach often is a good 
choice when selecting a characterizer. 

Some important issues for future work are: (i) devel­
oping strategies for selection of discriminators and char-
acterizers, (ii) developing characterizers in which it is 
possible to control the degree generalization also for non-
numeric features, and (iii) t ry ing to shed some light on 
the underlying tension between discrimination and char­
acterization. 
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