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Abs t rac t 
This paper extends recent work on decision tree 
grafting. Graft ing is an inductive process that 
adds nodes to inferred decision trees. This 
process is demonstrated to frequently improve 
predictive accuracy. Superficial analysis might 
suggest that decision tree grafting is the direct 
reverse of pruning. To the contrary, it is ar­
gued that the two processes are complemen­
tary. This is because, like standard tree grow­
ing techniques, pruning uses only local infor­
mation, whereas grafting uses non-local infor­
mation. The use of both pruning and grafting 
in conjunction is demonstrated to provide the 
best general predictive accuracy over a repre­
sentative selection of learning tasks. 

1 I n t r oduc t i on 
Decision tree pruning [Breiman et al., 1984; Quinlan, 
1987] is a widely accepted method for post-processing 
decision trees. Pruning removes nodes from an inferred 
decision tree. It has been demonstrated to improve the 
predictive accuracy of inferred decision trees in a wide 
variety of domains [Breiman et a/., 1984; Quinlan, 1987]. 
A classifier can be viewed as part i t ioning an instance 
space. Each part i t ion associates a set of possible objects 
w i th a class. Pruning reduces the number of partit ions 
imposed on an instance space by a decision tree. 

In contrast to pruning, a number of recent studies have 
suggested that predictive accuracy may also be improved 
by more complex part i t ioning of an instance space than 
that formed by standard decision tree induction. Pre­
dictive accuracy has been improved both by: 

• graft ing additional leaves [Webb, 1996]; and 

• developing mult iple classifiers that are used in 
conjunction to classify objects [Al i et a/., 1994; 
Breiman, 1996; Dietterich and Bakir i , 1994; Kwok 
and Carter, 1990; Oliver and Hand, 1995; Nock and 
Gascuel, 1995; Schapire, 1990; Wolpert, 1992]. 

The latter approaches lead to complex impl ici t part i ­
t ioning of the instance space through resolution of the 
conflicts between the individual classifiers' partit ions. 

Direct grafting forms an explicit representation of the 
final part i t ioning of the instance space by adding new 
branches to a decision tree after the completion of con­
ventional decision tree induction. 

The increase in predictive accuracy resulting from 
more complex part i t ioning of the instance space can 
be explained as follows. Conventional machine learn­
ing techniques consider only areas of the instance space 
directly occupied by training examples. Areas of the in­
stance space that are not occupied by training examples 
are assigned to partit ions as a side-effect of part i t ion­
ing occupied areas. This occurs wi thout consideration 
of the available evidence relating to appropriate part i ­
t ioning of these regions. Expl ic i t examination of such 
areas may provide evidence as to the most likely class 
for previously unseen objects that fall therein. If there 
is such evidence and the appropriate classification differs 
from that currently assigned to the region, a new part i ­
t ion can be formed. This is achieved by grafting a new 
leaf onto the tree. 

The use of mult iple classifiers obtains this result in a 
more indirect manner. Each classifier wi l l form differ­
ent partit ions. Regions occupied by no training exam­
ples may fall w i th in different partit ions for each classifier. 
The strength of evidence associated w i th that region for 
each classifier can be evaluated and a most highly sup­
ported prediction made. 

Consider an abstract example (Figure 1). This illus­
trates a simple instance space occupied by objects of 
three classes (* ,• and o). Objects are described by two 
attributes A and B. These attr ibutes define a two di­
mensional instance space. An instance of unknown class 
is also depicted (?). On visual inspection it is plausible 
that this unknown case belongs to class o as it is close to 
a number of instances of this class. However, most deci­
sion tree learners would create a part i t ion that assigned 
this point to class *. Figure 2 indicates the partit ions 
created by C4.5 [Quinlan, 1993], a pre-eminent exam­
ple of a decision tree learner. In contrast, it is plausi­
ble to assign the shaded region to class o. The C4.5x 
[Webb, 1996] graft ing procedure identifies such regions 
and grafts new leaves onto the decision tree to form ap­
propriate new partit ions of the instance space. 

The primary focus of Webb's [1996] grafting research 
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Figure 1: Example instance space 

Figure 2: Example instance space as partitioned by C4.5 

was to examine the effect of complexity on predictive 
accuracy. Consequently, C4.5x was designed to control 
other potential confounding factors, specifically resub-
st i tut ion performance. These measures could reduce the 
predictive accuracy of the inferred trees [Webb, 1996]. 

This paper seeks to extend Webb's [1996] grafting re­
search by developing grafting techniques aimed to maxi­
mize predictive accuracy. Four key changes to the C4.5x 
approach are presented: allowing grafting to alter resub-
st i tut ion performance; the ordered addition of multiple 
new branches in the place of a single original leaf; the 
use of a significance test to restrict the selection of new 
branches; and allowing grafting wi th in leaves occupied 
by no training examples. 

Evaluation on twenty representative learning domains 
demonstrates that the application of the new techniques 
frequently results in the induction of decision trees wi th 
improved predictive accuracy. 

2 Techniques for decision tree graf t ing 
The new post-processor, C4.5+, operates by examining 
each leaf / of an inferred tree in turn. It climbs the tree 
examining each ancestor node n for evidence supporting 
alternative partit ions wi th in /. This evidence is obtained 
by considering cuts that could have been employed at n, 
that would provide stronger evidence in support of a 
particular class dominating a region within I than that 
provided by the distr ibution of objects at /. In doing 

so, it only considers cuts that fall w i th in the range of 
values for an attr ibute that can reach /. It also excludes 
from consideration cuts that would reclassify an object 
at / that is correctly classified by l. A set of such cuts 
are assembled. These are used to graft new branches 
and leaves onto the decision tree between / and its par­
ent. At present there is no consideration of potential 
new branches on discrete valued attributes, although in 
principle this should be straight forward. 

The evidence in support of each cut is evaluated us­
ing a Laplacian accuracy estimate [Niblett and Bratko, 
1986]. Because each leaf relates to a binary classification 
(an object belongs to the class in question or does not), 
the binary form of Laplace is used. For threshold t on 
attr ibute a at leaf /, the evidence in support of labeling 
the part i t ion below t w i th class x is the maximum value 
for an ancestor node n of / for the formula where T 
is the number of objects at n for which min and 
P is the number of those objects that belong to class x. 
Calculation of the evidence in support of labeling a par­
t i t ion above a threshold differs only in that the objects 
for which t < a < max are instead considered. Where / 
contains no training objects, it is treated as containing 
all objects at its parent for the sake of these calculations. 

The best such < and > cut for each attr ibute is de-
termined. A list of all these cuts is created, C. 

The strength of evidence in support of the current la­
beling of / is calculated using the Laplace accuracy esti­
mate considering the objects at /, where T is the number 
of objects at / and P is the number of those objects that 
belong to the class w i th which / is labeled. 

Any cuts that do not have greater support than that 
for / are removed from C. A binomial test is also em­
ployed to further remove from C cuts for which there is 
insufficient evidence that the resulting leaf is drawn from 
a better distribution of examples than the original leaf 
(see Step 3 of the algorithm presented in Appendix A) . C 
is sorted from the cut w i th highest support to that wi th 
lowest support. Trail ing elements of C that support the 
creation of new leaves for the same class as / are deleted 
as they wi l l not alter the tree's classifications. Then the 
cuts in C are inserted in order creating a sequence of 
new branches and leaves between l's parent and /. 

This approach ensures that all new partit ions define 
true regions. That is, for any attr ibute a and value v it is 
not possible to part i t ion on a < v unless it is possible for 
both objects from the domain w i th values of a greater 
than v and objects wi th values less than or equal to v to 
reach the node being partitioned (even though it is pos­
sible that no objects from the training set wi l l fall wi th in 
the new parti t ion). In particular, this ensures that new 
cuts are not simple duplications of existing cuts at an­
cestors to the current node. Thus, every modification 
adds non-redundant complexity to the tree. 

This algorithm is presented in Appendix A. C4.5+ 
differs from C4.5x [Webb, 1996] by 

1. adding multiple leaves at each original leaf — C4.5x 
added the new leaf wi th maximal support only; 
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2. using a binomial test to prevent the addit ion of 
leaves for which there is insufficient evidence that 
the leaf is drawn from a better distr ibut ion of ex­
amples (Algor i thm Step 3); 

3. allowing new leaves to reclassify training examples 
(although only if those examples are misclassified 
by the original leaf); and 

4. using the training examples at the parent node when 
a leaf has no training examples — C4.5x did not 
allow grafting additional leaves onto an existing leaf 
that covers no training examples. 

Adding mult iple leaves can be expected to be bene-
ficial as every piece of additional evidence can be ut i ­
lized. However, in i t ia l experimentation suggested that 
adding leaves for which the level of additional support 
was marginal, while often beneficial, could also often re­
duce predictive accuracy. The use of a binomial test to 
evaluate the comparative strength of support for a new 
leaf is intended to reduce the risk of adding leaves that 
appear better by chance alone. 

Al lowing new leaves to reclassify training examples has 
intuit ive appeal. If there is evidence that a region of the 
instance space should be associated wi th a given class, 
the existence of an object of that class in that region 
should not prevent a system from forming that associa­
t ion. For example, the object at A = 4, B = 4 in Figure 1 
should not stop C4.5+ from relabeling that region as be­
longing to •. C4.5x prohibited such grafting actions to 
avoid experimental confounds arising from differing re-
substitution accuracy between treatments [Webb, 1996]. 

The training examples from the parent node are used 
for leaves that cover no training examples, as the parent 
node provides the best available evidence of the class dis­
t r ibut ion in the neighborhood of the leaf. Such leaves are 
prime candidates for modification as the local evidence 
in support of any given class assignment is unlikely to 
be strong. 

3 Example 
C4.5 creates the following decision tree for the exam­
ple training set i l lustrated in Figure 1. The partit ions 
created by this tree are i l lustrated in Figure 2. 
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reclassify any training examples correctly classified at 
the leaf. The leaf for A > 7 has only the root as an 
ancestor. No better cuts can be found. 

To process the leaf for A < 2 the system climbs to its 
parent node, at which no better cuts can be found, and 
then to the root. At the root, all values are considered 
on both attributes that are greater or less than those 
of the (in all cases correctly classified) training examples 
from the leaf. There are no training examples w i th lower 
values on A or w i th greater values on B than those of 
the examples at the leaf. Values on A greater than those 
at the leaf are not considered as such a cut imposed 
at the leaf would define a new region of zero volume. 
A l l values are considered on B less than 6, the lowest 
value for an example at the leaf. A cut at 5 results in 
a part i t ion containing and 9 The Laplace 
accuracy estimate for the region B 5 for the major i ty 
class is The class distributions and 
accuracy estimates of the remaining possible cuts are: 

The best of these cuts is at value 3 w i th accuracy esti­
mate 0.909. The original leaf is occupied by four points 
all of which are correctly classified resulting in an accu­
racy estimate of The probabil i ty of ob­
taining the class distr ibut ion (9 positive and 0 negative) 
given the estimated accuracy for the original leaf (0.833) 
is less than 0.05, so the selected cut is grafted between 
the original leaf and its parent. The dominating class 

for the new region in the ancestor node from which 
the evidence was obtained is assigned to the new leaf. 

Next the system considers the leaf below the branch 
B < 5. The accuracy estimate at this leaf is 
At the parent node (the node reached by the branches 
A < 7 then A > 2), a cut at A = 5 creates a leaf contain­
ing 10 • and no examples of other classes. The resulting 
accuracy estimate is 0.917. The probabil i ty of obtaining 
this distr ibution given the estimated accuracy for the leaf 
is less than 0.05, so the new cut is accepted. Another 
cut, at B = 3, is found at the root. The part i t ion formed 
by this cut contains 9 o and no other examples. The re-
sulting accuracy estimate is The probabil i ty 
of obtaining this class distr ibut ion given the estimated 
accuracy at the original leaf is also less than 0.05. In 
consequence, this cut is also accepted. Other potential 
< cuts on these attributes receive lower accuracy esti­
mates and so are discarded. Branches for the two cuts 
are grafted in order of their accuracy estimate. 

No appropriate new cuts can be found for the leaf 
below B > 5. 

The partit ions imposed by the resulting tree are illus­
trated in Figure 3. The new partit ions labeled a and c 
are assigned to o and part i t ion 6 to *. Whi le part i t ion a 
may have less intuit ive support than b or c, the support 



Figure 3: Example instance space after grafting 

for any classification wi th in this region is weak and the 
class o is at least as plausible as either alternative. 

4 Exper imenta l evaluation 
The postprocessing algorithm was implemented as an 
extension to C4.5 Release 8 [Quinlan, 1993]. 

It was evaluated by application to twenty represen­
tative learning tasks from the UCI Machine Learning 
Repository. These datasets are described in Table 1. 
They show considerable diversity in size, number of 
classes, and type and number of attributes, wi thin the re­
striction that all contain continuous attributes, as these 
are the only attributes on which grafting is implemented. 

Three variants of the system were tested. A l l included 
the ful l system as described in Appendix A. N o n e was 
C4.5 release 8 wi th no post-processing. One added 
at most one new leaf to each existing leaf. This was 
achieved by discarding all but the highest valued tuple 
after Step 3. 

C4.5 employs a two stage process to infer decision trees 
from data. An ini t ial unpruned tree is created. This is 
then simplified to produce a pruned tree. Each variant of 
the post-processing algorithm was used to post-process 
both pruned and unpruned trees produced by C4.5. 

Ten stratified ten-fold cross validation experiments 
were performed for each data set. In each of these ex­
periments, the data set was divided into ten subsets of 
as close as possible to equal size wi th as close as possi­
ble to identical class distributions. For each subset, each 
treatment was applied to learn a decision tree from all 
the remaining subsets, and then applied to predict the 
class of each object in the selected subset. 

Table 2 presents the predictive accuracy obtained for 
each treatment in these experiments. The mean percent­
age error over all one hundred sets of predictions is pre­
sented for each treatment. Two summary lines present 
for each of the other treatments 

• a win-loss summary of the number of data sets for 
which the mean error is lower or higher than that 
of all; and 

• the one-tailed binomial probability of obtaining 
such a win-loss result by chance. 

Table 1: Description of data sets 

N a m e 
anneal 
balance-scale 
breast-wise 
cleveland-hd 
crx 
dis 
echocardiogram 
german-credit 
glass 
hepatit is 
horse-colic 
hungarian-hd 
hypo 
iris 
labor-neg 
new-thyroid 
Pima-diabetes 
sick 
sonar 
waveform 

Cases 
898 
625 
699 
303 
690 

3772 
74 

1000 
214 
155 
368 
294 

3772 
150 
57 

215 
768 

3772 
208 
300 

Classes 
6 
3 
2 
2 
2 
2 
2 
2 
7 
2 
2 
2 
4 
3 
2 
3 
2 
2 
2 
3 

C o n t i n . 
6 
4 
9 
6 
6 
7 
5 
7 
9 
6 
8 
6 
7 
4 
8 
5 
8 
7 

60 
21 

D i s c r . 
32 

7 
9 

22 
1 

13 
— 
13 
13 
7 

22 
— 

8 
_ 
— 
22 
— 
— 1 

Table 2: Summary of mean percentage error rates 

anneal 
balance-scale 
breast-wise 
Cleveland 
crx 
dis 
echocardiogram 
german-credit 
glass 
hepatit is 
horse-colic 
hungarian-hd 
hypo 
iris 
labor-neg 
new-thyroid 
Pima-diabetes 
sick 
sonar 
waveform 
Win-loss summary 
Win-loss p 

P r u n e d T rees 
A l l 
7.2 

22.1 
4.9 

22.4 
14.3 

1.1 
27.9 
28.1 
32.2 
18.0 
15.5 
20.8 

0.5 
6.5 

20.5 
7.9 

24.3 
1.4 

25.6 
23.8 

N o n e 
7.5 

22.4 
5.2 

24.0 
14.4 
0.9 

29.0 
28.6 
34.1 
20.3 
15.8 
21.0 

0.4 
5.5 

20.6 
7.6 

24.8 
1.3 

26.5 
25.3 
5/15 

0.021 

O n e 
7.4 

22.1 
4.8 

22.9 
14.4 
0.9 

28.3 
28.4 
32.4 
19.4 
15.8 
20.7 

0.4 
5.5 

20.5 
8.1 

24.4 
1.3 

25.4 
24.7 
7/11 

0.240 

U n p r u n e d 
A l l 
5.3 

19.9 
4.8 

23.1 
15.7 

1.1 
28.6 
28.5 
32.2 
18.2 
17.9 
22.3 

0.5 
6.5 

20.9 
8.0 

24.6 
1.4 

25.7 
24.0 

N o n e 
5.5 

20.8 
5.7 

25.4 
17.5 

1.2 
29.4 
32.1 
34.0 
21.3 
18.4 
22.2 
0.5 
5.5 

21.7 
7.7 

25.3 
1.2 

26.6 
25.5 
4/15 

0.010 

T rees 
O n e 

5.4 
19.8 
5.0 

23.6 
17.3 

1.1 
28.7 
30.8 
32.4 
19.7 
18.6 
22.1 

0.4 
5.5 

20.0 
8.3 

24.8 
1.2 

25.6 
24.8 
7/12 

0.180 

It can be seen that all has lower error than none signifi­
cantly (at the 0.05 level) more often both for pruned and 
unpruned trees. However, the advantage to all over one 
is not significant at the 0.05 level. 

The magnitude of the changes also differs greatly. The 
largest increase in error resulting from the addition of all 
grafts is 1.0% for the iris data. The largest reduction in 
error is 2.9% for unpruned trees on the hepatitis data. 
The postprocessing of pruned trees results in reductions 
of 1.0% or more for seven of the twenty datasets. 
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Table 3: Summary of mean resubstitution error rates 

anneal 
balance-scale 
breast-wise 
Cleveland 
crx 
dis 
echocardiogram 
german-credit 
glass 
hepat i t is 
horse-colic 
hungarian-hd 
hypo 
ir is 
labor-neg 
new-thyro id 
Pi ma-diabetes 
sick 
sonar 
waveform 
Win-loss summary 
Win-loss p 

P r u n e d Trees 
A l l 
5.1 
8.9 
1.8 
7.4 
9.2 
0.6 

11.7 
13.9 
6.1 
6.9 

12.8 
15.2 
0.2 
1.5 
8.0 
1.0 

15.0 
0.3 
0.9 
1.5 

N o n e 
5.4 

10.1 
2.1 
8.4 
9.8 
0.6 

12.8 
14.6 

7.4 
7.7 

12.8 
15.6 
0.2 
2.0 
9.0 
1.6 

15.6 
0.4 
1.8 
2.6 

0/17 
0.000 

O n e 
S.3 
8.9 
2.0 
8.1 
9.8 
0.6 

11.9 
14.4 
7.1 
7.6 

12.9 
15.3 
0.2 
1.6 
8.2 
1.3 

15.3 
0.4 
1.5 
2.4 

0/17 
0.000 

U n p r u n e d T r e e s 
A l l 
2.9 
6.5 
0.8 
3.1 
3.9 
0.2 

11.2 
4.8 
5.3 
3.3 
7.8 

10.3 
0.1 
1.4 
4.3 
0.9 

14.5 
0.2 
0.9 
1.3 

N o n e 
3.1 
8.3 
1.3 
4.8 
5.1 
0.4 

12.0 
6.2 
6.8 
4.2 
8.4 

12.2 
0.1 
1.9 
5.4 
1.5 

15.2 
0.3 
1.8 
2.5 

0/19 
0.000 

O n e 
3.1 
6.5 
1.2 
4.4 
5.1 
0.3 

11.4 
6.0 
6.5 
4.1 
8.3 

11.3 
0.2 
1.5 
4.5 
1.2 

14.9 
0.3 
1.5 
2.3 

0/19 
0.000 

It is interesting to compare the performance of post­
processing both pruned and unpruned trees. Pruning 
then grafting produces lower error than grafting alone 
for twelve data sets whereas the reverse is true for only 
three. A one-tailed binomial sign test reveals that this 
difference is significant at the 0.05 level (p = 0.017). It 
appears that both pruning and grafting have a valuable 
role to play in decision tree induction. It is possible that 
this results from the abilities of pruning to identify part i ­
tions where the local information is insufficient to create 
sensible sub-partitions and of grafting to use non-local 
information to then create suitable sub-partitions. The 
reduction in resubstitution error brought about by graft­
ing (Table 3) lends some support to this explanation. 

Table 4 presents the number of nodes obtained by 
each treatment employing the same format as in Ta­
ble 2. Adding all nodes produces more complex trees 
than either of the other treatments for every data set. 

5 Conclusions 
The experimental results suggest that C4.5+ is success­
ful in identifying regions of the instance space occupied 
by no training examples for which in i t ia l tree induc­
t ion has made poor class choices. Graft ing new nodes 
to correct these poor class assignments can significantly 
improve the predictive accuracy of the inferred decision 
trees. The extension of the techniques to graft mult iple 
new branches at each leaf of the original tree led to more 
reductions than increases in error when compared to the 
C4.5x technique of adding at most one new branch per 
leaf. However, the frequency w i th which the addit ion of 
more branches increases error and the failure to obtain 

Table 4: Summary of mean number of nodes per tree 

anneal 
balance-scale 
breast-wise 
Cleveland 
crx 
dis 
echocardiogram 
german-credit 
glass 
hepat i t is 
horse-colic 
hungarian-hd 
hypo 
iris 
labor-neg 
new-thyro id 
Pi ma-diabetes 
sick 
sonar 
waveform 
Win-loss sum. 
Win-loss p 

P r u n e d T r e e s 
A l l | N o n e | O n e 

350.7 
98.1 

135.5 
159.8 
143.6 

79.2 
9.0 

371.6 
89.1 
41.0 
33.1 
26.9 

162.1 
16.5 
11.3 
43.5 
83.7 

257.1 
354.9 
256.2 

78.6 
84.2 
24.1 
47.1 
31.1 
23.0 

8.0 
130.7 
46.2 
17.8 
11.7 
11.6 
28.0 

8.2 
6.9 

14.7 
43.5 
50.8 
28.7 
48.0 
20 /0 

0.000 

120.8 
98.0 
38.5 
70.5 
50.4 
29.5 

8.6 
191.6 
56.9 
24.1 
15.1 
15.6 
43.0 
11.5 
9.2 

20.3 
56.6 
77.8 
38.6 
68.7 
20 /0 

0.000 

U n p r u n e d T r e e s | 
A l l N o n e | O n e 

562.8 
140.0 
266.3 
297.1 
861.4 
335.7 

11.8 
1339.5 

101.9 
81.1 

589.9 
167.6 
209.4 

17.9 
34.5 
45.3 

105.9 
381.0 
357.5 
277.1 

141.4 
117.7 
41.6 
80.7 

161.0 
69.2 

9.7 
402.3 

50.2 
30.6 

121.5 
47.9 
33.0 

8.6 
14.9 
15.4 
51.4 
70.6 
28.8 
49.1 
20/0 

0.000 

209.7 
139.4 
64.3 

118.4 
244.2 

97.0 
10.6 

588.0 
62.3 
41.3 

189.2 
73.1 
52.8 
12.2] 
22.1 
21.2 
67.0 

105.7 
38.8 
70.4 

20/0 
0.000 

a statistically significant advantage in this respect sug­
gests that there is room for further improvement in the 
filtering that is used to select which of the potential new 
branches should be grafted to the tree. 

Research on grafting to date has examined only the 
addit ion of tests on continuous attributes. The tech­
niques should extend in a straight forward manner to dis­
crete attributes. The development of appropriate graft­
ing techniques for discrete attributes is a promising di­
rection for future research. 

The application of both grafting and pruning results 
in lower average error significantly more often than does 
grafting alone. It is possible that this is due to the abil­
i ty of pruning to identify partit ions of the instance space 
where the local information is insufficient to create sen­
sible sub-partitions. Graft ing can then use non-local in­
formation to generate appropriate sub-partitions. 

However, many benefits have counterweighing costs 
and grafting is no exception. The increase in accuracy 
obtained through grafting is often modest. This is ob­
tained at the expense of large increases in decision tree 
complexity. In applications where classifier complexity 
is a significant factor, this trade-off deserves careful con­
sideration before grafting is employed. 

It has been argued herein that grafting has a simi­
lar effect to the induction and application of multiple 
classifiers, w i th the difference that grafting incorporates 
its complex instance space part i t ioning into a single ex­
plicit decision tree instead of requiring the resolution of 
mult iple distinct partit ionings to determine the ult imate 
underlying part i t ioning to be applied. Exploration of 
this hypothesized relationship provides further promis­
ing avenues for future research. 
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(b) set the < branch for n to lead to a leaf for class k. 
(c) set the > branch for n to lead to I. 

else (x must be >) 
(a) replace I with a node n with the test a < v. 
(b) set the > branch for n to lead to a leaf for class k. 
(c) set the < branch for n to lead to I. 
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