
Noise-Tolerant Windowing

Johannes Fiirnkranz
Austrian Research Institute for Artificial Intelligence

Schottengasse 3, A-1010 Wien, Austria
E-mail: j u f f i@a i . u n i v i e . ac . at

Abstract

Windowing has been proposed as a procedure for
efficient memory use in the ID3 decision tree learn­
ing algorithm. However, it was shown that it may
often lead to a decrease in performance, in partic­
ular in noisy domains. Following up on previous
work, where we have demonstrated that the abil­
ity of rule learning algorithms to learn rules inde­
pendently can be exploited for more efficient win­
dowing procedures, we demonstrate in this paper
how this property can be exploited to achieve noise-
tolerance in windowing.

1 Introduction
Windowing is a general technique that aims at improving
the efficiency of inductive classification learners. The gain
in efficiency is obtained by identifying an appropriate sub­
set of the given training examples, from which a theory of
sufficient quality can be induced. Such procedures are also
known as subsampling. Windowing has been proposed in
[Quinlan, 1983] as a supplement to the inductive decision tree
learner ID3 to enable it to tackle tasks which would otherwise
have exceeded the memory capacity of the computers of those
days.

Despite first successful experiments in the KRKN chess
endgame domain [Quinlan, 1983], windowing has not played
a major role in machine learning research. One reason for
this certainly is the rapid development of computer hard­
ware, which made the motivation for windowing seem less
compelling. However, recent work in the areas of Knowl­
edge Discovery in Databases [Kivinen and Mannila, 1994;
Toivonen, 1996] and Intelligent Information Retrieval [Lewis
and Catlett, 1994; Yang, 1996] has recognized the importance
of subsampling procedures for reducing both, learning time
and memory requirements.

A good deal of this lack of interest can be attributed to
an empirical study [Wirth and Catlett, 1988] which showed
that windowing is unlikely to gain any efficiency. The au­
thors studied windowing with ID3 in various domains and
concluded that it cannot be recommended as a procedure for
improving efficiency. The best results were achieved in noise-
free domains, such as the Mushroom domain, where it was

able to perform on the same level as ID3 without window­
ing, while its performance in noisy domains was considerably
worse. In [Fiirnkranz, 1997a], we have demonstrated that rule
learning algorithms are better suited for windowing in noise-
free domains, because they learn each rule independently. In
this paper, we will show how this property can be exploited
in order to achieve noise-tolerance.

2 The I-RIP algorithm

We have conducted our study in the framework of separate-
and-conquer rule learning algorithms that has recently gained
in popularity [Fiirnkranz, 1997b]. The basic learning algo­
rithm we use, I-RIP, is based on I-REP [Fiirnkranz and Wid-
mer, 1994] and its successor RIPPER [Cohen, 1995]. How­
ever, the algorithms presented in this paper do not depend on
this choice; any other effective noise-tolerant rule learning al­
gorithm could be used in I-RIP's place.

I-REP achieves noise-tolerance by first learning a single,
consistent rule on two thirds of the training data and then
pruning this rule on the remaining third. The resulting rule
is added to the theory, and all examples that it covers are re­
moved from the training set. The remaining training exam­
ples are used for learning another rule until no more mean­
ingful rules can be discovered. In [Cohen, 1995] it was
shown that some of the parameters of the 1-REP algorithm,
like the pruning and stopping criteria, were not chosen op­
timally. We have implemented the I-REP algorithm as de­
scribed in [Fiirnkranz and Widmer, 1994], but used RIPPER's
rule-value-metric pruning criterion and its 0.5-rule-accuracy
stopping criterion. We have not implemented RIPPER's rule
optimization heuristics. Thus our I-RIP algorithm is half-way
between I-REP and RIPPER. As such, it is quite similar to
I-REP*, which is also described in [Cohen, 1995], but it dif­
fers from it in that its implementation is closer to the origi­
nal I-REP. For example, I-RIP considers every condition in
a rule for pruning, while I-REP* only considers to delete a
final sequence of conditions. On the other hand, I-REP* is
able to handle numerical variables, missing values, and multi­
ple classes, which our implementation of I-RIP currently does
not support. However, these are no principle limitations to the
algorithm, and standard enhancements for dealing with these
problems could easily be added to all algorithms described in
this paper.

852 LEARNING

3 Windowing and Noise
The windowing algorithm described in [Quinlan, 1983] starts
by picking a random sample of a user-settable size InitSize
from the total set of Examples and uses it for inducing a clas­
sifier with a given learning algorithm, in our case the I-RIP
algorithm briefly described in the last section. This theory
is then tested on the remaining examples and the examples
that it misclassifies are moved from the test set to the win­
dow. Another parameter, MaxIncSize, aims at keeping the
window size small. If this number is exceeded, no further ex­
amples are tested and the next iteration starts with the new
window. To ensure that all examples are tested in the first few
iterations, our implementation takes care that those examples
which remain untested in one iteration will be tested first in
the subsequent iteration. We have named our implementation
of a windowed version of I-RIP W I N - R I P .

An efficient adaptation of this windowing technique to
noisy domains is a non-trivial endeavor. In particular, it can­
not be expected that the use of a noise-tolerant learning al­
gorithm like I-RIP inside the windowing loop will lead to
performance gains in noisy domains. The contrary is true:
the main problem with windowing in noisy domains lies in
the fact that it will eventually incorporate all noisy examples
into the learning window, because they will be misclassified
by a good theory. On the other hand, the window will typi­
cally only contain a subset of the original learning examples.
Thus, after a few iterations, the proportion of noisy examples
in the learning window can be much higher than the noise
level in the entire data set, which will make learning consid­
erably harder.

Assume for example that WlN-RIP has learned a correct
theory from 1000 examples in a 11,(XX) examples domain,
where 10% of the examples are misclassified due to noise. In
the next iteration, about 1000 noisy examples will be misclas­
sified by the correct theory and will be added to the window,
thus doubling its size. Assuming that the original window
also contained about 10% noise, more than half of the exam­
ples in the new window are now erroneous, so that the classi­
fication of the examples in the new window is in fact mostly
random. It can be assumed that many more examples have to
be added to the window in order to recover the structure that
is inherent in the data. This hypothesis is consistent with the
results of [Wirth and Catlett, 1988] and iCatlett, 1991], where
it was shown that windowing is highly sensitive to noise.

4 A Noise-Tolerant Version of Windowing
The windowing algorithm described in [Furnkranz, 1997a],
which is only applicable to noise-free domains, is based on
the observation that rule learning algorithms will re-discover
good rules again and again in subsequent iterations of the
windowing procedure. Such consistent rules do not add ex­
amples to the current window, but they nevertheless have
to be re-discovered in subsequent iterations. If these rules
could be detected early on, they could be saved and the ex­
amples they cover could be removed from the window, thus
gaining computational efficiency. The algorithm discussed in
[Fturnkranz, 1997a] achieves this by separating the examples
that are covered by rules that have been consistent for a larger

Figure 1: A noise-tolerant version of windowing.

number of examples, so that subsequent iterations only have
to learn rules for the yet uncovered parts of the search space.

The 1-WIN algorithm shown in figure 1 is based on the
same idea. At the beginning the algorithm proceeds just like
W I N - R I P : it selects a random subset of the examples, learns a
theory from these examples, and tests it on the remaining ex­
amples. However, contrary to W I N - R I P , it does not merely
add examples that have been incorrectly classified to the win­
dow for the next iteration, but it also removes all examples
from this window that are covered by good rules. To deter­
mine good rules, W I N - R I P tests the individual rules that have
been learned from the current window on the entire data set
and computes some quality measure from this information
(procedure SIGNIFICANT in figure 1).

In principle, this quality measure is a parameter of the win­
dowing algorithm. For example, one could use a measure
as simple as "consistency with the negative examples" in or­
der to get a windowing algorithm that is suitable for learning
from noise-free data sets. However, in noisy domains, noise-
tolerant learning algorithms will typically produce rules that
are not consistent with the training data. Thus, a more elab­
orate criterion must be used. We have experimented with a
variety of criteria known from the literature, but found that
they are insufficient for our purposes. For example, it turned
out that, at higher training set sizes, CN2's likelihood ratio
significance test [Clark and Niblett, 1989] will deem almost
any rule learned by I-RIP as significant, even if the distribu­
tion of covered positive and negative examples deviates only
slightly from their distribution in the entire training set.

Eventually, we have settled for the following criterion: For
each rule r learned from the current window we compute
two accuracy estimates, AccWin(r) which is determined us­
ing only examples from the current window and AccTot(r)

FURNKRANZ 853

also be considered as such candidates. I-WIN randomly se­
lects MaxIncSize of these candidate examples and adds them
to the window. By sampling from all examples covered by-
insignificant rules (not only negative examples as in regular
windowing), we hope to avoid part of the problem outlined in
the previous section. However, we stick to adding uncovered
positive examples only, because after more and more rules
have been discovered, the proportion of positive examples in
the remaining training set will considerably decrease, so that
the chances of picking one of them by random sampling will
also decrease. Adding only positive uncovered examples may
lead to over-general rules, but these will be discovered by the
second part of our criterion and appropriate counter-examples
will eventually be added to the window.

The actual implementation of our algorithm makes use of
several optimizations that minimize the amount of testing that
has to be performed in the algorithm. An important addition
considers the case when the underlying learning algorithm is
unable to learn any rules from the current window. Then, the
algorithm in figure 1 will add MaxIncSize uncovered posi­
tive examples to the current window. Our implementation of
the algorithm deals with these cases by doubling the window
size and re-initializing it with a new random sample of the
new size. We think that this may lead to faster convergence
in some cases, but have not yet systematically tested this hy­
pothesis. Furthermore, all algorithms discussed in this pa­
per attempt to remove semantically redundant rules in a post­
processing phase. Such rules only cover training examples
that are also covered by other rules. We refer to [Furnkranz,
1997al for more details.

5 Exper imenta l Eva luat ion
In each of the experiments described in this section, we re­
port the average results of 10 different subsets of the speci­
fied training set size, selected from the entire set of preclas-
sified examples. All algorithms were run on identical data
sets, but some random variation may have resulted from the
fact that I-RIP uses internal random splits of the training data.
For each experiment we measured the accuracy of the learned
theory on the entire example set and the total run-time of the
algorithm.1 All experiments shown below were conducted
with a setting of InitSize = 100 and MaxIncSize = 50. These
settings have been found to perform well on noise-free do­
mains [Fiirnkranz, 1997a]. We have not yet made an attempt
to evaluate their appropriateness for noisy domains.

First we have tested the algorithms on the 8124 example
Mushroom database. Although this database is known to be
noise-free, it forms an interesting test-bed for our algorithms,
because it allows a rough comparison to previous results. For
example, windowing with the decision tree learner ID3 could
not achieve significant run-time gains over pure ID3 [Wirth
and Catlett, 1988], while the slightly modified version of win­
dowing used in C4.5 is able to achieve a run-time improve­
ment of only about 15% (p. 59 of [Quinlan, 1993]).

The left column of figure 2 shows the accuracy and run­
time results for I-RIP, WlN-RIP, and three versions of I-

1 Measured in CPU seconds of a microSPARC 110MHz running
compiled Allegro Common Lisp code under SUN Unix 4.1.3.

854 LEARNING

WIN, each one using a different setting of its parameter. In
terms of run-time, both regular windowing, and our improved
version are quite effective in this domain, at least for higher
(> 1000) training set sizes. The three versions of I-WlN are
clearly the fastest. In terms of accuracy, no significant differ­
ences can be observed between 1-RIP, WIN-RIP, and I-WlN
(0.0), although the latter is able to compensate some of the
weakness of I-RIP at low example set sizes that is due to its
internal split of the data [FUrnkranz and Widmer, 1994]. 1-
WlN with - 0.5 and = 1.0 has a significantly worse
performance, because these versions are often content with
slightly over-general rules, which is detrimental in this noise-
free domain. However, we have shown that our windowing
algorithm is in fact able to achieve significant gains in run­
time without losing accuracy, thus confirming our previous
results [FUrnkranz, 1997a].

For testing the algorithms' noise-handling capabilities we
have performed a series of experiments in a propositional
version of the well-known KRK classification task, which is
commonly used as a benchmark for relational learning al­
gorithms. The goal is to learn rules for recognizing illegal
white-to-move chess positions with only the white king, the
white rook, and the black king on the board. The propo-
sitional version of this domain consists of 18 binary at­

tributes that encode the validity or invalidity of relations like
a d j a c e n t , <, and = between the coordinates of three pieces
on a chess board. We have generated 10,000 noise-free ex­
amples in this domain, which were always used for testing
the accuracies of the learned theories. The training sets were
generated by subsampling from the 10,000 example set. Ar­
tificial noise was generated by replacing the classification of
n% of the training examples with a randomly selected classi­
fication (chosen with a fair coin). Mushroom domain, and are
not shown here.

The middle column of figure 2 shows the results in the
KRK domain at a very moderate noise level (5%). Regu­
lar windowing cannot achieve any performance gains. On the
contrary, it is almost twice as expensive as I-RIP. I-WlN with
a noise-free setting of is even more expensive: it needs
more than 300 sees, for a 10,000 example training set, which
is six times as much as I-RIP. The noise-tolerant versions of
our algorithms outperform the other algorithms in terms of
run-time. In terms of accuracy, a setting of seems to
heavily over-generalize. performs reasonably well,
although it is still a little behind in accuracy. The size of good
values for seems to have some correlation with the noise
level in the data. We have performed experiments with vari­
ous levels of noise and confirmed that higher values of a wi l l

F U R N K R A N Z 855

produce better results with increasing levels of noise.2

In this domain, we also performed a series of experiments
with the aim of analyzing the behavior of I-RIP and I - W I N
over varying levels of artificial noise.2 The results in terms of
accuracy were very inconclusive with both algorithms having
their ups and downs. In terms of run-time, we found that I-
W I N outperforms I-RIP at lower noise levels, but the converse
is true for higher noise levels. The more random the data are,
the less likely it is that the rules learned by I-RIP from a win­
dow of small size will bear any significance. Thus I - W I N has
to successively increase its window size without being able to
remove any examples that are covered by rules learned in pre­
vious iterations. Consequently, it has much larger run-times
than I-RIP, which learns only once from the entire data set.
However, for reasonable noise levels, which can be expected
to occur in most real-world applications (say < 30%), I - W I N
significantly outperforms I-RIP. For example, 1-REP's run­
time of 64.85 secs, for learning from the 10,000 example set
with 10% noise is about 4 times higher than that of I - W I N
with a setting of = 1.0. This advantage decreases with
increasing noise-level: at a noise-level of 50%, I-WIN is still
about 15% faster, but at 75% I-RIP is already about five times
faster than I-WiN. The highest noise-level for which I-RIP
is faster than I-WlN increases with training set size (5% for
1000 examples, 50% for 5000, 75% for 10000). We take this
as evidence that the chances of I - W I N outperforming I-RIP
increase with increasing training set sizes or with increasing
redundancy in the data.

Currently, the implementation of our algorithms is limited
to binary symbolic domains. The algorithms are not able
to handle continuous attributes, missing values, or multiple
classes, although nothing in the algorithms prevents the use of
standard techniques for dealing with these problems, like the
use of thresholds, turning multi-class tasks into a sequence of
binary tasks, etc. Unfortunately, we were not able to detect a
natural domain of a reasonable size in the UCI data repository
which meets the constraints of our implementation. So we
decided to try our algorithms on a discretized, 2-class version
of Quinlan's 9172 example thyroid diseases database.3 In this
simplified domain, C4.5 without any pruning (the unpruned
tree obtained with -m 1) achieves an accuracy of 88% (es­
timated by a 10-fold cross-validation) while the pruned tree
obtained with default settings has an accuracy of 89.1 %. The
respective tree sizes are 6570 vs. 181. We take this as evi-

2 Because of space limitations the graphs showing these results
had to be omitted. They can be found in the technical report OEFAI-
TR-97-07, which is available f rom www. a i . u n i v i e . a c . a t .

3We discretized the domain's 7 continuous variables in a fairly
arbitrary fashion. For example, we have mapped the age of the pa­
tient into 10 years intervals, as e.g. [1 . . . 10], [1 1 . . . 20), etc. The
six other continuous attributes contain numerous missing values.
For each of these attributes an additional binary attribute indicates
whether the feature is present or not. We collapsed these pairs of at­
tributes into single attributes, using a designated value as an indica-
tion that this attribute has not been measured, and 5 to 10 additional
values that code the discretized measurements. We have also turned
the problem into a binary problem, where the task is to discrimi­
nate the 2401 instances with a diagnosed condition from the 6771
instances with no such condition.

dence that the data set contains at least a moderate amount of
noise. Consequently, C4.5's windowing procedure is quite in­
efficient and takes more than twice as long (> 40 CPU secs.)
for growing a single tree from the entire data set (parameter
-t 1) than C4.5 with default parameters (< 20 CPU secs.).

The right-most column of figure 2 shows the results in this
domain. I-WlN with = 1.0 significantly outperforms I -
RIP at both measures, run-time and accuracy. Only when
the entire data set is used for both training and testing, I-
RIP maintains an accuracy advantage. This, however, only
raises the suspicion that I-RIP overfits the data in this do­
main, while the significance test used in I-WlN is able to
correct this to some extent by evaluating the predictive per­
formance of the simpler rules learned at low window sizes on
the entire training set.

6 Fu r the r Research
I - W I N contains several parameters. In all experiments in this
paper we have set the initial window size to 100, and the
maximum window increment to 50. We have found these pa­
rameters to perform well on noise-free domains [Furnkranz,
1997a], but in some experiments we have encountered evi­
dence that larger values of these parameters could be more
suitable for noisy domains. Another crucial parameter is
the a parameter used in the significance test we have em­
ployed. We have seen that in noise-free domains, = 0.0
will produce good results, while in noisy domains higher val­
ues " ~ must be used. We have also seen that the setting
of this parameter is very sensitive: too low a setting may lead
to exploding costs, while too high a setting may lead to over-
generalization. Efficient methods for automating this choice
would be highly desirable.

Another important question is how an extension of I-WlN
that handles numeric data with thresholding will affect the
performance of the algorithm. We expect that the fact that
fewer thresholds have to be considered at lower example set
sizes will have a positive effect on the run-time performance
of windowing, but may have a negative effect on the accu­
racy of the learned rules. This hypothesis has been stated be­
fore [Catlett, 1992], but has never been empirically verified.
In fact, we would not be surprised, if a lower set of poten­
tial thresholds, like the ones contained in the current window,
gave the algorithm less chance for overfitting and could thus
even increase predictive accuracy.

It lies in the nature of windowing that it can only work suc­
cessfully, if there is some redundancy in the domain, i.e. that
at least some of the rules of good theory can be learned from a
subset of the given training examples. In [Ftirnkranz, 1997a]
we present an example for a noise-free dataset, where this as­
sumption does not hold, and consequently windowing is not
effective. Techniques for estimating the redundancy of a do­
main would be another valuable point for further research.

7 Related Work
There have been several approaches that use subsampling al­
gorithms that differ from windowing. For decision tree algo­
rithms it has been proposed to use dynamic subsampling at
each node in order to determine the optimal test. This idea

856 LEARNING

has been originally proposed, but not evaluated in [Breiman
et a l , 1984]. This approach was further explored in Catlett 's
work on peepholing [Catlett, 1992], which is a sophisticated
procedure for using subsampling to eliminate unpromising at­
tributes and thresholds from consideration.

Most closely related to windowing is uncertainty sampling
[Lewis and Catlett, 1994]. Here the new window is not se­
lected on the basis of misclassified examples, but on the basis
of the learner's confidence in the learned theory. The exam­
ples that are classified with the least confidence will be added
to the training set in the next iteration.

A different approach that successively increases the current
learning window is presented in [John and Langley, 1996].
Here examples are added until an extrapolation of the learn­
ing curve does no longer promise significant gains. However,
the authors note that this technique can in general only gain
efficiency for incremental learning algorithms.

Work on partitioning, i.e. splitting the example space into
segments of equal size and combining the rules learned on
each partition, has also produced promising results in noisy
domains, but has substantially decreased learning accuracy
in non-noisy domains [Domingos, 1996]. Besides, the tech­
nique seems to be tailored to a specific learning algorithm and
not generally applicable.

8 Summary
We have presented a noise-tolerant version of windowing that
is based on a separate-and-conquer strategy. Good rules that
have been found at smaller sizes of the training window will
be kept in the final theory, and all examples they cover will
be removed from the training set, thus reducing the size of
the window in the next iteration. Examples are added to the
window by sampling from examples that are covered by in-
significant rules or positive examples that are not covered
by any rule of the previous iteration. Although we have
used a fixed noise-tolerant rule learning algorithm through­
out the paper, the presented windowing technique could use
any noise-tolerant rule learner as its basic algorithm.

Acknowledgements
This research is sponsored by the Austrian Funds zur Forderung
der Wissenschaftlichen Forschung (FWF). Financial support for the
Austrian Research Institute for Artificial Intelligence is provided by
the Austrian Federal Ministry of Science and Transport. I would like
to thank Ray Mooney for making his Common Lisp ML library pub­
licly available, which has been used for the implementation of our
programs; Gerhard Widmer for his comments on an earlier version
of this paper; the maintainers of and contributors to the UCI machine
learning repository; and the three anonymous reviewers for valuable
suggestions and pointers to relevant literature.

References
(Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen, and

C. Stone. Classification and Regression Trees. Wadsworth &
Brooks, Pacific Grove, CA, 1984.

(Catlett, 1991] Jason Catlett. Megainduction: A test flight. In L.A.
Birnbaum and G.C. Collins, editors, Proceedings of the Sth Inter­
national Workshop on Machine Learning (ML-91), pages 596-
599, Evanston, IL , 1991. Morgan Kaufmann.

(Catlett, 1992] Jason Catlett. Peepholing: Choosing attributes ef­
ficiently for megainduction. In Proceedings of the 9th Interna-
tional Conference on Machine Learning (ML-91), pages 49-54.
Morgan Kaufmann, 1992.

(Clark and Niblett, 1989] Peter Clark and T im Niblett. The CN2
induction algorithm. Machine Learning, 3(4):261-283,1989.

(Cohen, 1995 J Will iam W. Cohen. Fast effective rule induction. In
A. Prieditis and S. Russell, editors, Proceedings of the 12th Inter­
national Conference on Machine Learning (ML-95), pages 115-
123, Lake Tahoe, CA, 1995. Morgan Kaufmann.

(Domingos, 1996] Pedro Domingos. Efficient specific-to-general
rule induction. In E. Simoudis and J. Han, editors, Proceedings of
the 2nd International Conference on Knowledge Discovery and
Data Mining (KDD-96), pages 319-322. A A A I Press, 1996.

(FUrnkranz and Widmer, 1994] Johannes FUrnkranz and Gerhard
Widmer. Incremental Reduced Error Pruning. In W. Cohen
and H. Hirsh, editors. Proceedings of the 11th International
Conference on Machine Learning (ML-94), pages 70-77, New
Brunswick, NJ, 1994. Morgan Kaufmann.

(FUrnkranz, 1997a] Johannes FUrnkranz. More efficient window­
ing. In Proceedings of the 14th National Conference on Artif icial
Intelligence (AAA1-97), Providence, RI , 1997. A A A I Press.

(FUrnkranz, 1997b] Johannes FUrnkranz. Separate-and-conquer
rule learning. Artif icial Intelligence Review, 1997. To appear.

(John and Langley, 1996] George H. John and Pat Langley. Static
versus dynamic sampling for data mining. In E. Simoudis and
J. Han, editors, Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining (KDD-96), pages
367-370. A A A I Press, 1996.

(Kivinen and Mannila, 1994] Jyrki Kivinen and Heikki Mannila.
The power of sampling in knowledge discovery. In Proceed­
ings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS-94), pages 77-85, 1994.

(Lewis and Cadett, 1994] David D. Lewis and Jason Catlett. Het­
erogeneous uncertainty sampling for supervised learning. In Pro­
ceedings of the 11th International Conference on Machine Learn­
ing (ML-94), pages 148-156, New Brunswick, NJ, 1994. Morgan
Kaufmann.

(Quinlan, i983] John Ross Quinlan. Learning efficient classifica­
tion procedures and their application to chess end games. In
Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell,
editors, Machine Learning. An Artif icial Intelligence Approach,
pages 463-482. Tioga, Palo Alto, CA, 1983.

[Quinlan, 1993] John Ross Quinlan. C4.5: Programs f o r Machine
Learning. Morgan Kaufmann, San Mateo, CA, 1993.

(Toivonen, 1996] Hannu Toivonen. Sampling large databases for
association rules. In Proceedings of the 22nd Conference on Very
Large Data Bases (VLDB-96), pages 134-145, Mumbai, India,
1996.

[Wirth and Cadett, 1988] Jarryl Wirth and Jason Catlett. Experi­
ments on the costs and benefits of windowing in ID3. In J. Laird,
editor, Proceedings of the Sth International Conference on Ma­
chine Learning (ML-88), pages 87-99, Ann Arbor, M I , 1988.
Morgan Kaufmann.

(Yang, 1996] Yiming Yang. Sampling strategies and learning ef­
ficiency in text categorization. In M. Hearst and H. Hirsh, ed­
itors, Proceedings of the AAAI Spring Symposium on Machine
Learning in Information Access, pages 88-95. A A A I Press, 1996.
Technical Report SS-96-05.

FURNKRANZ 857

LEARNING

Learning 4: Classification

