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Abstract 

Windowing has been proposed as a procedure for 
efficient memory use in the ID3 decision tree learn­
ing algorithm. However, it was shown that it may 
often lead to a decrease in performance, in partic­
ular in noisy domains. Following up on previous 
work, where we have demonstrated that the abil­
ity of rule learning algorithms to learn rules inde­
pendently can be exploited for more efficient win­
dowing procedures, we demonstrate in this paper 
how this property can be exploited to achieve noise-
tolerance in windowing. 

1 Introduction 
Windowing is a general technique that aims at improving 
the efficiency of inductive classification learners. The gain 
in efficiency is obtained by identifying an appropriate sub­
set of the given training examples, from which a theory of 
sufficient quality can be induced. Such procedures are also 
known as subsampling. Windowing has been proposed in 
[Quinlan, 1983] as a supplement to the inductive decision tree 
learner ID3 to enable it to tackle tasks which would otherwise 
have exceeded the memory capacity of the computers of those 
days. 

Despite first successful experiments in the KRKN chess 
endgame domain [Quinlan, 1983], windowing has not played 
a major role in machine learning research. One reason for 
this certainly is the rapid development of computer hard­
ware, which made the motivation for windowing seem less 
compelling. However, recent work in the areas of Knowl­
edge Discovery in Databases [Kivinen and Mannila, 1994; 
Toivonen, 1996] and Intelligent Information Retrieval [Lewis 
and Catlett, 1994; Yang, 1996] has recognized the importance 
of subsampling procedures for reducing both, learning time 
and memory requirements. 

A good deal of this lack of interest can be attributed to 
an empirical study [Wirth and Catlett, 1988] which showed 
that windowing is unlikely to gain any efficiency. The au­
thors studied windowing with ID3 in various domains and 
concluded that it cannot be recommended as a procedure for 
improving efficiency. The best results were achieved in noise-
free domains, such as the Mushroom domain, where it was 

able to perform on the same level as ID3 without window­
ing, while its performance in noisy domains was considerably 
worse. In [Fiirnkranz, 1997a], we have demonstrated that rule 
learning algorithms are better suited for windowing in noise-
free domains, because they learn each rule independently. In 
this paper, we will show how this property can be exploited 
in order to achieve noise-tolerance. 

2 The I-RIP algorithm 

We have conducted our study in the framework of separate-
and-conquer rule learning algorithms that has recently gained 
in popularity [Fiirnkranz, 1997b]. The basic learning algo­
rithm we use, I-RIP, is based on I-REP [Fiirnkranz and Wid-
mer, 1994] and its successor RIPPER [Cohen, 1995]. How­
ever, the algorithms presented in this paper do not depend on 
this choice; any other effective noise-tolerant rule learning al­
gorithm could be used in I-RIP's place. 

I-REP achieves noise-tolerance by first learning a single, 
consistent rule on two thirds of the training data and then 
pruning this rule on the remaining third. The resulting rule 
is added to the theory, and all examples that it covers are re­
moved from the training set. The remaining training exam­
ples are used for learning another rule until no more mean­
ingful rules can be discovered. In [Cohen, 1995] it was 
shown that some of the parameters of the 1-REP algorithm, 
like the pruning and stopping criteria, were not chosen op­
timally. We have implemented the I-REP algorithm as de­
scribed in [Fiirnkranz and Widmer, 1994], but used RIPPER's 
rule-value-metric pruning criterion and its 0.5-rule-accuracy 
stopping criterion. We have not implemented RIPPER's rule 
optimization heuristics. Thus our I-RIP algorithm is half-way 
between I-REP and RIPPER. As such, it is quite similar to 
I-REP*, which is also described in [Cohen, 1995], but it dif­
fers from it in that its implementation is closer to the origi­
nal I-REP. For example, I-RIP considers every condition in 
a rule for pruning, while I-REP* only considers to delete a 
final sequence of conditions. On the other hand, I-REP* is 
able to handle numerical variables, missing values, and multi­
ple classes, which our implementation of I-RIP currently does 
not support. However, these are no principle limitations to the 
algorithm, and standard enhancements for dealing with these 
problems could easily be added to all algorithms described in 
this paper. 
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3 Windowing and Noise 
The windowing algorithm described in [Quinlan, 1983] starts 
by picking a random sample of a user-settable size InitSize 
from the total set of Examples and uses it for inducing a clas­
sifier with a given learning algorithm, in our case the I-RIP 
algorithm briefly described in the last section. This theory 
is then tested on the remaining examples and the examples 
that it misclassifies are moved from the test set to the win­
dow. Another parameter, MaxIncSize, aims at keeping the 
window size small. If this number is exceeded, no further ex­
amples are tested and the next iteration starts with the new 
window. To ensure that all examples are tested in the first few 
iterations, our implementation takes care that those examples 
which remain untested in one iteration will be tested first in 
the subsequent iteration. We have named our implementation 
of a windowed version of I-RIP W I N - R I P . 

An efficient adaptation of this windowing technique to 
noisy domains is a non-trivial endeavor. In particular, it can­
not be expected that the use of a noise-tolerant learning al­
gorithm like I-RIP inside the windowing loop will lead to 
performance gains in noisy domains. The contrary is true: 
the main problem with windowing in noisy domains lies in 
the fact that it will eventually incorporate all noisy examples 
into the learning window, because they will be misclassified 
by a good theory. On the other hand, the window will typi­
cally only contain a subset of the original learning examples. 
Thus, after a few iterations, the proportion of noisy examples 
in the learning window can be much higher than the noise 
level in the entire data set, which will make learning consid­
erably harder. 

Assume for example that WlN-RIP has learned a correct 
theory from 1000 examples in a 11,(XX) examples domain, 
where 10% of the examples are misclassified due to noise. In 
the next iteration, about 1000 noisy examples will be misclas­
sified by the correct theory and will be added to the window, 
thus doubling its size. Assuming that the original window 
also contained about 10% noise, more than half of the exam­
ples in the new window are now erroneous, so that the classi­
fication of the examples in the new window is in fact mostly 
random. It can be assumed that many more examples have to 
be added to the window in order to recover the structure that 
is inherent in the data. This hypothesis is consistent with the 
results of [Wirth and Catlett, 1988] and iCatlett, 1991 ], where 
it was shown that windowing is highly sensitive to noise. 

4 A Noise-Tolerant Version of Windowing 
The windowing algorithm described in [Furnkranz, 1997a], 
which is only applicable to noise-free domains, is based on 
the observation that rule learning algorithms will re-discover 
good rules again and again in subsequent iterations of the 
windowing procedure. Such consistent rules do not add ex­
amples to the current window, but they nevertheless have 
to be re-discovered in subsequent iterations. If these rules 
could be detected early on, they could be saved and the ex­
amples they cover could be removed from the window, thus 
gaining computational efficiency. The algorithm discussed in 
[Fturnkranz, 1997a] achieves this by separating the examples 
that are covered by rules that have been consistent for a larger 

Figure 1: A noise-tolerant version of windowing. 

number of examples, so that subsequent iterations only have 
to learn rules for the yet uncovered parts of the search space. 

The 1-WIN algorithm shown in figure 1 is based on the 
same idea. At the beginning the algorithm proceeds just like 
W I N - R I P : it selects a random subset of the examples, learns a 
theory from these examples, and tests it on the remaining ex­
amples. However, contrary to W I N - R I P , it does not merely 
add examples that have been incorrectly classified to the win­
dow for the next iteration, but it also removes all examples 
from this window that are covered by good rules. To deter­
mine good rules, W I N - R I P tests the individual rules that have 
been learned from the current window on the entire data set 
and computes some quality measure from this information 
(procedure SIGNIFICANT in figure 1). 

In principle, this quality measure is a parameter of the win­
dowing algorithm. For example, one could use a measure 
as simple as "consistency with the negative examples" in or­
der to get a windowing algorithm that is suitable for learning 
from noise-free data sets. However, in noisy domains, noise-
tolerant learning algorithms will typically produce rules that 
are not consistent with the training data. Thus, a more elab­
orate criterion must be used. We have experimented with a 
variety of criteria known from the literature, but found that 
they are insufficient for our purposes. For example, it turned 
out that, at higher training set sizes, CN2's likelihood ratio 
significance test [Clark and Niblett, 1989] will deem almost 
any rule learned by I-RIP as significant, even if the distribu­
tion of covered positive and negative examples deviates only 
slightly from their distribution in the entire training set. 

Eventually, we have settled for the following criterion: For 
each rule r learned from the current window we compute 
two accuracy estimates, AccWin(r) which is determined us­
ing only examples from the current window and AccTot(r) 
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also be considered as such candidates. I-WIN randomly se­
lects MaxIncSize of these candidate examples and adds them 
to the window. By sampling from all examples covered by-
insignificant rules (not only negative examples as in regular 
windowing), we hope to avoid part of the problem outlined in 
the previous section. However, we stick to adding uncovered 
positive examples only, because after more and more rules 
have been discovered, the proportion of positive examples in 
the remaining training set will considerably decrease, so that 
the chances of picking one of them by random sampling will 
also decrease. Adding only positive uncovered examples may 
lead to over-general rules, but these will be discovered by the 
second part of our criterion and appropriate counter-examples 
will eventually be added to the window. 

The actual implementation of our algorithm makes use of 
several optimizations that minimize the amount of testing that 
has to be performed in the algorithm. An important addition 
considers the case when the underlying learning algorithm is 
unable to learn any rules from the current window. Then, the 
algorithm in figure 1 will add MaxIncSize uncovered posi­
tive examples to the current window. Our implementation of 
the algorithm deals with these cases by doubling the window 
size and re-initializing it with a new random sample of the 
new size. We think that this may lead to faster convergence 
in some cases, but have not yet systematically tested this hy­
pothesis. Furthermore, all algorithms discussed in this pa­
per attempt to remove semantically redundant rules in a post­
processing phase. Such rules only cover training examples 
that are also covered by other rules. We refer to [Furnkranz, 
1997al for more details. 

5 Exper imenta l Eva luat ion 
In each of the experiments described in this section, we re­
port the average results of 10 different subsets of the speci­
fied training set size, selected from the entire set of preclas-
sified examples. All algorithms were run on identical data 
sets, but some random variation may have resulted from the 
fact that I-RIP uses internal random splits of the training data. 
For each experiment we measured the accuracy of the learned 
theory on the entire example set and the total run-time of the 
algorithm.1 All experiments shown below were conducted 
with a setting of InitSize = 100 and MaxIncSize = 50. These 
settings have been found to perform well on noise-free do­
mains [Fiirnkranz, 1997a]. We have not yet made an attempt 
to evaluate their appropriateness for noisy domains. 

First we have tested the algorithms on the 8124 example 
Mushroom database. Although this database is known to be 
noise-free, it forms an interesting test-bed for our algorithms, 
because it allows a rough comparison to previous results. For 
example, windowing with the decision tree learner ID3 could 
not achieve significant run-time gains over pure ID3 [Wirth 
and Catlett, 1988], while the slightly modified version of win­
dowing used in C4.5 is able to achieve a run-time improve­
ment of only about 15% (p. 59 of [Quinlan, 1993]). 

The left column of figure 2 shows the accuracy and run­
time results for I-RIP, WlN-RIP, and three versions of I-

1 Measured in CPU seconds of a microSPARC 110MHz running 
compiled Allegro Common Lisp code under SUN Unix 4.1.3. 
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WIN, each one using a different setting of its parameter. In 
terms of run-time, both regular windowing, and our improved 
version are quite effective in this domain, at least for higher 
(> 1000) training set sizes. The three versions of I-WlN are 
clearly the fastest. In terms of accuracy, no significant differ­
ences can be observed between 1-RIP, WIN-RIP, and I-WlN 
(0.0), although the latter is able to compensate some of the 
weakness of I-RIP at low example set sizes that is due to its 
internal split of the data [FUrnkranz and Widmer, 1994]. 1-
WlN with - 0.5 and = 1.0 has a significantly worse 
performance, because these versions are often content with 
slightly over-general rules, which is detrimental in this noise-
free domain. However, we have shown that our windowing 
algorithm is in fact able to achieve significant gains in run­
time without losing accuracy, thus confirming our previous 
results [FUrnkranz, 1997a]. 

For testing the algorithms' noise-handling capabilities we 
have performed a series of experiments in a propositional 
version of the well-known KRK classification task, which is 
commonly used as a benchmark for relational learning al­
gorithms. The goal is to learn rules for recognizing illegal 
white-to-move chess positions with only the white king, the 
white rook, and the black king on the board. The propo-
sitional version of this domain consists of 18 binary at­

tributes that encode the validity or invalidity of relations like 
a d j a c e n t , <, and = between the coordinates of three pieces 
on a chess board. We have generated 10,000 noise-free ex­
amples in this domain, which were always used for testing 
the accuracies of the learned theories. The training sets were 
generated by subsampling from the 10,000 example set. Ar­
tificial noise was generated by replacing the classification of 
n% of the training examples with a randomly selected classi­
fication (chosen with a fair coin). Mushroom domain, and are 
not shown here. 

The middle column of figure 2 shows the results in the 
KRK domain at a very moderate noise level (5%). Regu­
lar windowing cannot achieve any performance gains. On the 
contrary, it is almost twice as expensive as I-RIP. I-WlN with 
a noise-free setting of is even more expensive: it needs 
more than 300 sees, for a 10,000 example training set, which 
is six times as much as I-RIP. The noise-tolerant versions of 
our algorithms outperform the other algorithms in terms of 
run-time. In terms of accuracy, a setting of seems to 
heavily over-generalize. performs reasonably well, 
although it is still a little behind in accuracy. The size of good 
values for seems to have some correlation with the noise 
level in the data. We have performed experiments with vari­
ous levels of noise and confirmed that higher values of a wi l l 
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produce better results with increasing levels of noise.2 

In this domain, we also performed a series of experiments 
with the aim of analyzing the behavior of I-RIP and I - W I N 
over varying levels of artificial noise.2 The results in terms of 
accuracy were very inconclusive with both algorithms having 
their ups and downs. In terms of run-time, we found that I-
W I N outperforms I-RIP at lower noise levels, but the converse 
is true for higher noise levels. The more random the data are, 
the less likely it is that the rules learned by I-RIP from a win­
dow of small size will bear any significance. Thus I - W I N has 
to successively increase its window size without being able to 
remove any examples that are covered by rules learned in pre­
vious iterations. Consequently, it has much larger run-times 
than I-RIP, which learns only once from the entire data set. 
However, for reasonable noise levels, which can be expected 
to occur in most real-world applications (say < 30%), I - W I N 
significantly outperforms I-RIP. For example, 1-REP's run­
time of 64.85 secs, for learning from the 10,000 example set 
with 10% noise is about 4 times higher than that of I - W I N 
with a setting of = 1.0. This advantage decreases with 
increasing noise-level: at a noise-level of 50%, I-WIN is still 
about 15% faster, but at 75% I-RIP is already about five times 
faster than I-WiN. The highest noise-level for which I-RIP 
is faster than I-WlN increases with training set size (5% for 
1000 examples, 50% for 5000, 75% for 10000). We take this 
as evidence that the chances of I - W I N outperforming I-RIP 
increase with increasing training set sizes or with increasing 
redundancy in the data. 

Currently, the implementation of our algorithms is limited 
to binary symbolic domains. The algorithms are not able 
to handle continuous attributes, missing values, or multiple 
classes, although nothing in the algorithms prevents the use of 
standard techniques for dealing with these problems, like the 
use of thresholds, turning multi-class tasks into a sequence of 
binary tasks, etc. Unfortunately, we were not able to detect a 
natural domain of a reasonable size in the UCI data repository 
which meets the constraints of our implementation. So we 
decided to try our algorithms on a discretized, 2-class version 
of Quinlan's 9172 example thyroid diseases database.3 In this 
simplified domain, C4.5 without any pruning (the unpruned 
tree obtained with -m 1) achieves an accuracy of 88% (es­
timated by a 10-fold cross-validation) while the pruned tree 
obtained with default settings has an accuracy of 89.1 %. The 
respective tree sizes are 6570 vs. 181. We take this as evi-

2 Because of space limitations the graphs showing these results 
had to be omitted. They can be found in the technical report OEFAI-
TR-97-07, which is available f rom www. a i . u n i v i e . a c . a t . 

3We discretized the domain's 7 continuous variables in a fairly 
arbitrary fashion. For example, we have mapped the age of the pa­
tient into 10 years intervals, as e.g. [ 1 . . . 10], [ 1 1 . . . 20), etc. The 
six other continuous attributes contain numerous missing values. 
For each of these attributes an additional binary attribute indicates 
whether the feature is present or not. We collapsed these pairs of at­
tributes into single attributes, using a designated value as an indica-
tion that this attribute has not been measured, and 5 to 10 additional 
values that code the discretized measurements. We have also turned 
the problem into a binary problem, where the task is to discrimi­
nate the 2401 instances with a diagnosed condition from the 6771 
instances with no such condition. 

dence that the data set contains at least a moderate amount of 
noise. Consequently, C4.5's windowing procedure is quite in­
efficient and takes more than twice as long (> 40 CPU secs.) 
for growing a single tree from the entire data set (parameter 
-t 1) than C4.5 with default parameters (< 20 CPU secs.). 

The right-most column of figure 2 shows the results in this 
domain. I-WlN with = 1.0 significantly outperforms I -
RIP at both measures, run-time and accuracy. Only when 
the entire data set is used for both training and testing, I-
RIP maintains an accuracy advantage. This, however, only 
raises the suspicion that I-RIP overfits the data in this do­
main, while the significance test used in I-WlN is able to 
correct this to some extent by evaluating the predictive per­
formance of the simpler rules learned at low window sizes on 
the entire training set. 

6 Fu r the r Research 
I - W I N contains several parameters. In all experiments in this 
paper we have set the initial window size to 100, and the 
maximum window increment to 50. We have found these pa­
rameters to perform well on noise-free domains [Furnkranz, 
1997a], but in some experiments we have encountered evi­
dence that larger values of these parameters could be more 
suitable for noisy domains. Another crucial parameter is 
the a parameter used in the significance test we have em­
ployed. We have seen that in noise-free domains, = 0.0 
will produce good results, while in noisy domains higher val­
ues " ~ must be used. We have also seen that the setting 
of this parameter is very sensitive: too low a setting may lead 
to exploding costs, while too high a setting may lead to over-
generalization. Efficient methods for automating this choice 
would be highly desirable. 

Another important question is how an extension of I-WlN 
that handles numeric data with thresholding will affect the 
performance of the algorithm. We expect that the fact that 
fewer thresholds have to be considered at lower example set 
sizes will have a positive effect on the run-time performance 
of windowing, but may have a negative effect on the accu­
racy of the learned rules. This hypothesis has been stated be­
fore [Catlett, 1992], but has never been empirically verified. 
In fact, we would not be surprised, if a lower set of poten­
tial thresholds, like the ones contained in the current window, 
gave the algorithm less chance for overfitting and could thus 
even increase predictive accuracy. 

It lies in the nature of windowing that it can only work suc­
cessfully, if there is some redundancy in the domain, i.e. that 
at least some of the rules of good theory can be learned from a 
subset of the given training examples. In [Ftirnkranz, 1997a] 
we present an example for a noise-free dataset, where this as­
sumption does not hold, and consequently windowing is not 
effective. Techniques for estimating the redundancy of a do­
main would be another valuable point for further research. 

7 Related Work 
There have been several approaches that use subsampling al­
gorithms that differ from windowing. For decision tree algo­
rithms it has been proposed to use dynamic subsampling at 
each node in order to determine the optimal test. This idea 
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has been originally proposed, but not evaluated in [Breiman 
et a l , 1984]. This approach was further explored in Catlett 's 
work on peepholing [Catlett, 1992], which is a sophisticated 
procedure for using subsampling to eliminate unpromising at­
tributes and thresholds from consideration. 

Most closely related to windowing is uncertainty sampling 
[Lewis and Catlett, 1994]. Here the new window is not se­
lected on the basis of misclassified examples, but on the basis 
of the learner's confidence in the learned theory. The exam­
ples that are classified with the least confidence will be added 
to the training set in the next iteration. 

A different approach that successively increases the current 
learning window is presented in [John and Langley, 1996]. 
Here examples are added until an extrapolation of the learn­
ing curve does no longer promise significant gains. However, 
the authors note that this technique can in general only gain 
efficiency for incremental learning algorithms. 

Work on partitioning, i.e. splitting the example space into 
segments of equal size and combining the rules learned on 
each partition, has also produced promising results in noisy 
domains, but has substantially decreased learning accuracy 
in non-noisy domains [Domingos, 1996]. Besides, the tech­
nique seems to be tailored to a specific learning algorithm and 
not generally applicable. 

8 Summary 
We have presented a noise-tolerant version of windowing that 
is based on a separate-and-conquer strategy. Good rules that 
have been found at smaller sizes of the training window will 
be kept in the final theory, and all examples they cover will 
be removed from the training set, thus reducing the size of 
the window in the next iteration. Examples are added to the 
window by sampling from examples that are covered by in-
significant rules or positive examples that are not covered 
by any rule of the previous iteration. Although we have 
used a fixed noise-tolerant rule learning algorithm through­
out the paper, the presented windowing technique could use 
any noise-tolerant rule learner as its basic algorithm. 
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