
RHB+: A Type-Or iented I L P System Learn ing f rom Posit ive Da ta

Yutaka Sasaki and Masahiko Haruno
NTT Communication Science Laboratories

1-1 Hikari-no-oka, Yokosuka, 239 Japan
{sasaki, haruno}@cslab.kecl.ntt.co.jp

Abs t rac t
This paper presents the type-oriented relational
learner R H B + . Attaching type information
to hypotheses is effective in avoiding over-
generalization as well as enhancing readabil­
i ty and comprehensibility. In many areas, such
as NLP, type information is actually available,
while negative examples are not. Unfortu­
nately, learning performance is usually poor
if types are attached when only positive ex­
amples are available. RHB+ makes use of
type information to efficiently compute infor-
mativi ty from positive examples only and to
judge a stopping condition. The new tech­
nique of dynamic type restriction by positive
examples lets covered positive examples de­
cide the types appropriate for the current
clause. The current version of RHB+, writ­
ten in the typed logic programming language
L IFE , directly manipulates types as structured
background knowledge when operations related
to types are required. These features make
RHB+ efficient and effective in attaching types
selected from thousands of possible types. This
leads to advantages over several previous learn­
ers, such as F O I L and P R O G O L . Experimental
results demonstrate RHB+ 's fine performance
for both artificial and real data.

1 In t roduc t ion
Inductive Logic Programming (ILP) [Muggleton, 1991] is
a promising approach to knowledge-level learning from
real-world examples such as the wide variety of facts
contained in on-line newspapers or large-scale databases.
Major extensions related to types (or sorts) are, however,
required for ILP systems to handle real-world relations.
First, types should be always attached to hypotheses
in order to make comprehensible rules with appropri­
ate generality. Second, background knowledge, even if
it includes thousands of hierarchically structured types,
must not deteriorate system performance. These ex­
tensions have to be achieved within the restriction that
only positive examples are available because negatives

are not usually found in real-world data. Actually, type
hierarchy has played a key role in several natural lan-

uage processing systems, such as [Ikehara et al., 1993],
[Hastings and Lyt inen, 1994], Knowledge representation
languages [Ai't-Kaci and Nasr, 1986], [Ai't-Kaci et al.,
1994], [Borgidaand Patel-Schneider, 1994], [Sowa, 1991]
also incorporate types and they achieve efficient inheri­
tance according to the type hierarchy used.

The following example illustrates that type informa­
tion is essential to learning in the situation in which a
human could learn rules of appropriate generality from
a small number of examples by using type hierarchy.

894 LEARNING

Japanese <language, Japan <country }

Note that A <B denotes A is a sub-type of B.

Adding is_a relations to background knowledge seems
to lead us to our goal but conventional ILP systems vir­
tual ly fail to produce hypotheses with appropriate types
even though background knowledge incorporates types
and is_a relations. This is mainly because it is not realis­
tic to handle a large number of fragments of a large-scale
type hierarchy as ordinary background knowledge. The
types have a tree or lattice structure and giving right
types means to follow the links of the structure based on
the generalization and specialization operations.

In this paper, we present the design and implementa­
tion of the type-oriented ILP system RHB+ to solve the
problems. In Section 2, the algorithms and implemen­
tation methods of RHB+, especially the novel mecha­
nisms for learning relations with types, are described.
Experimental results are shown in Section 3. Section 4
describes related work and Section 5 concludes this pa­
per.

2 RHB+
In this section, we describe the novel relational learner
RHB+ which generates typed Prolog programs from just
positive examples on the basis of background knowledge
which might include a large-scale type hierarchy.

2.1 Hypothes is Language
The hypothesis language of RHB+ is the Horn
clause [Lloyd, 1987] based on the restricted form of
ψ-terms used in LOGIN [Ai't-Kaci and Nasr, 1986] or
L I F E [Ai't-Kaci et al., 1994]l . For convenience, we
call this restricted form r-terms. Informally, r-terms are
Prolog terms whose variables are replaced with variable
Var of type T, which is denoted as Var:T. Moreover, a
function is allowed to have labels or keywords for read­
ability. The definition of r-terms is as follows.

2.3 RHB+ A l g o r i t h m s
Given positive examples are non-negative literals based
on r-terms. The hypothesis language is Horn clauses
based on r-terms. The background knowledge are non-
negative literals.2 RHB+ employs a combination of
bottom-up and top-down approaches, following the re­
sult described in [Zelle et a/., 1994]. That is, first make
the head in a bottom-up manner then construct the body
in a top-down manner.

The outer loop of RHB+ finds covers of the given
positive examples P in a greedy manner. It constructs

2Horn clauses that produce finite numbers of atoms can
be included.

SASAKI & HARUNO 895

clauses one by one by calling inner Joop(P,Po,BK)
which returns a hypothesis clause, where Po is origi­
nal positive examples and BK is background knowledge.
Covered examples are removed from P in each cycle; P0

remains unchanged.

A l g o r i t h m 1 inner Joop(P,P0,BK)

1. Given positive examples P,P0, background knowl­
edge BK.

2. Decide types of variables in a head by computing
typed Iggs of N pairs of elements in P, and select
the most general head as Head.

3. If StopCond(Po, BK, Head) is satisfied, return
Head.

4- Let Body be empty.

5. Create a set of all possible literals L using variables
in Head and Body.

6. Let BEAM be top K literals lk of L with respect
to positive weighted informativity,
PWI(P,BK,(Head:-Body,lk)).

7. Do later steps, assuming that lk is added to Body
for each literal lk in BEAM.

8. Dynamically restrict types in Body by calling
restrict (P,BK,(Head :- Body)).

9. If StopCond(Po,BK,(Head :- Body)) is satisfied,
return (Head :- Body).

10. Goto 5.

We wil l now see how types are utilized in each compo­
nent of the RHB+ algorithm in the following sections.

2 .4 D y n a m i c t y p e r e s t r i c t i o n b y p o s i t i v e
e x a m p l e s

The special feature of RHB+ is the dynamic type re­
striction by positive examples during clause construc­
t ion. restrict(P,BK,(Head :-Body)) in Algori thm 1
does this part, where P represents positives, BK is back­
ground knowledge, and (Head:—Body) is a hypothetical
clause. The restriction uses positive examples currently
covered in order to determine appropriate types. In­
formally, for each variable Xi appearing in the clause,
RHB+ computes the lub of all types bound to Xi when
covered positive examples are unified wi th the current
head in turn. Formally, the dynamic type restriction by
positive examples is defined as follows.

A l g o r i t h m 2 (Dynamic type restriction by positive ex­
amples)

1. Given a hypothesis clause Hypo = (Head .Body)
and positives P.

2. Collect all the types in Hypo and put them into a
list TypeSet.

3. Let P be examples in P covered by Hypo.

4- For all elements pi of P , unify Head and pif then
prove Body- Make a list TypeSeti of bound types in
the proved Head and Body so that the position of
each type in TypeSeti correctly corresponds to the
position of the original type in TypeSet.

5. For all Xk in TypeSet, compute lub rk of all bound
types of Xk in TypeSet, •

6. For all k, bind Tk to Xk •
Type restriction binds a type to each newly introduced

variable in the body. Without a type restriction, newly
introduced variables would always have no types, and
RHB+ might produce over-general clauses. Note that
the result of the type restriction operation by unifica­
tion dynamically affects the types of all variables related
to the unified variable. This operation is directly im­
plemented by using the type unification mechanism of
L I F E .

It would rather not aggressively add type to narrow
the current cover but it is interesting that the dynamic
type restriction significantly contributes to narrowing
the current cover and helping the learner to find good
hypotheses.
E x a m p l e 2
When we have positive examples and background knowl­
edge as given in Example 1 and additional data about
cat Socks.

• Additional positive example :
{ speak(Socks, cat-lang) }

• Additional background knowledge :
{grew_in(Socks, Japan), Socks < cat].

Suppose that speak(agent, anything) is the current
head. Adding official_lang/2 , one of the candidates for
additional l i teral, restricts the types in the head as fol­
lows. The current clause before the type restriction is:

speak(agent, Y:anything) :— official_lang{X,Y).

The second argument of official_lang matches an offi­
cial language. This cause that covered positives are only
examples relating to humans because the positive related
to Socks is no longer covered. Therefore, the type agent
is restricted to humans and we obtain:

speak(human, Y-.language) :— officialJang(X,Y).

After that, the data unrelated to humans wi l l not af­
fect the clause construction. This illustrates how the
typing contributes to restricting types in forming typed
clauses.

896 LEARNING

is because |Q(T) | may include a lot of examples removed
from P in earlier steps . Type information plays a key
role in computing the stopping condition because it per­
mits the efficient calculation of |Q(T) | as described in
the previous section.

3 Experiments and Results
In order to confirm that RHB+ can efficiently handle
a type hierarchy, two kinds of experiments were con­
ducted with one part of 3000 is_a relations. We selected
more appropriate representation of is_a relations for each
learner: P R O G O L incorporated is_a literals, which rep­
resent direct links in a type hierarchy, in background
knowledge and F O I L used type literals.

The first experiment determined the effect of type hi­
erarchy size. We tested F O I L , P R O G O L 3 and RHB+ on
artificial data while changing hierarchy size.

The second experiment measured the performance of
those three learners with real data extracted from news­
paper articles. We used a SparcStation 20 with 96 Mbyes
of memory for the experiments.

3 .1 T y p e H i e r a r c h y

Figure 1: The upper levels of the type hierarchy

Figure 1 shows the structure of our type hierar­
chy [Ikehara et al., 1993]. The hierarchy is a sort of con­
cept thesaurus represented as a tree structure in which
each node is called a category (i.e., a type). An edge
in this structure represents an is_a relation among the
categories. For example, "Agents" and "Person" (see
Figure 1) are both categories. The edge between these
two categories indicates that any instance of "Person"
is also an instance of "Agents". The current version of
type hierarchy is 12 levels deep and contains about 3000
category nodes. Such level of detail was found necessary
to perform semantical analysis that enabled real world
text understanding [Ikehara et al., 1993].

3PROGOL4.2 with set(posonly) option.

SASAKI & HARUNO 897

3.2 Learning t ime and type hierarchy size
Table 1: Learning results of "death to l l "

Figure 2: Learning time vs type hierarchy size

In order to estimate the effect of type hierarchy size
on learning speed, we randomly generated positive ex­
amples that satisfied the following answer clause:

speak(A : person, B : language) :-

grew_in(A,C : country), official Jang (C, B).

Figure 2 shows that F O I L exponentially slows as the type
hierarchy size increases. On the other hand, the learning
speed of RHB+ and P R O G O L were not affected so much
by the number of is_a relations. MCRs of the results
from the artificial data should not be taken seriously.

3.3 E x p e r i m e n t by Rea l D a t a
We extracted articles relating to accidents from a one-
year newspaper corpus wri t ten in Japanese. 4 Forty two
articles are related to accidents that resulted in some
numbers of death and injury. We parsed the sentences
with the commercial-quality parser of our machine trans­
lation system [Ikehara et al . , 1993], and performed se­
mantic analysis to extract the case frames in the sen­
tences. Twenty five articles were well parsed and seman-
tically analyzed. Case frames were converted into literals
and we created two kinds of positive examples from those
literals. One was death.toll which represents the number
of deaths in each article and the other was injury which
represents the number of injuries in an article. In pre­
possessing, literals unrelated to positive examples were
removed. The result was that three literals for each ar­
ticle were selected as background knowledge. The data
set consisted of 25 positive examples. The background
knowledge contained 78 literals wi th 26 kinds of predi­
cates and 124 types and constants.

Tables 1 and 2 show the learning results of F O I L , P R O ­
G O L and RHB+. \Hypo\ shows the number of clauses in

4 We used the Mainichi Newspapers articles of 1992 under
appropriate permission.

hypotheses Hypo. T is the union of the hypotheses and
background knowledge. |P | / |Q (T) | shows the MCR, the
ratio between covered positives and the empirical con­
tent of T, that is, the size of the set of all instances of
the head provable from T Handling type information
seriously degraded the learning speed of F O I L . P R O G O L
was relatively fast; however it 's results were over-general
in both experiments. R H B + recorded both good per­
formance and appropriate generality of the outputs.

Because of space l imits, only the learning results from
data "death to l l " are shown here as follows.

4 Related W o r k
Some previous learners, such as F O I L [Quinlan, 1990],
G O L E M [Muggleton, 1990] and P R O G O L [Muggleton,
1995] use type or sort declarations for curtail ing the
search space. Their learning results, however, do not
have type information linked to those declarations. Sim­
ply including types and is_a relations in background
knowledge is not a solution to obtaining typed clauses.
The reason is that the possibility of a long is_a or type

898 LEARNING

chain creates excessive overhead; the learner must search
for all is_a literals or type literals. For example, when
the type hierarchy is twelve levels de^p, a chain of up
to twelve is.a literals should be checked. When is_a
represents direct links in a type hierarchy, one possible
chain might be:

is _a (X , Y),is_a{Y, Z),.., is_a{W, V),is_agent{V),....

When is_a includes indirect links in a type hierarchy,
atoms to be checked are:

is_a(X, male), is_a(X, human),,.., is_a{X, agent),....
When type literals represent types in a type hierarchy,

atoms to be checked are:

male(X),human(X), ...,agent(X),....

In those cases, top-down learners spend too much time
try ing to construct those chains while bottom-up learn­
ers try to remove the some of is_a or type atoms and
find good hypotheses.

Special treatment to types was presented in [Yamazaki
et al., 1995]. It requires both positive and negative ex­
amples to efficiently decide one_sa atoms.

According to an input-output declaration, FOIDL
[Mooney and Califf, 1995] generates implicit negatives
by output queries for input arguments of positive ex­
amples in a normal ILP setting. RHB+ utilizes type
information to compute the number of covered examples
including implicit negatives.

5 Conclusions and remarks
RHB+, which learns typed Prolog programs, was pre­
sented. Its performance is not affected by the number
of types or type hierarchies size for the sake of direct
manipulation of types and util ization of type informa­
tion in computing informativity heuristics and stopping
conditions. It also achieved appropriate generalization
levels of hypotheses. At this point, a full L I F E compiler
is not available but the current interpretive version of
RHB+ showed good performance. The execution speed
wi l l markedly improved when a L I F E compiler becomes
available.

Acknowledgments
We thank the anonymous referees for their constructive
comments. It helped us improve performance of F O I L
and P R O G O L in the experiments.

References
[Ai't-Kaci and Nasr, 1986] H. Ai't-Kaci and R. Nasr, LO­

GIN: A logic programming language with built- in
inheritance, J. Logic Programming, 3, pp. 185-215,
1986.

[Ai't-Kaci et al., 1994] H. Ai't-Kaci, B. Dumant, R.
Meyer, A. Podelski, and P. Van Roy, The Wild Life
Handbook, 1994.

[Borgida and Patel-Schneider, 1994] A. Borgida and P.
F. Patel-Schneider, A semantics ans complete algo-
r i thm for subsumption in the CLASSIC description
logic, Journal of Artificial Intelligence Research, 1,
pp.277-308, 1994.

[Cestnik, 1990] B. Cestnik, Estimating probabilities: A
crucial task in machine learning, ECAI-90, pp. 147-
149, 1990.

[Conklin and Wit ten, 1994] D. Conklin and I. H. Wi t -
ten, Complexity-Base Induction, Machine Learning,
vol.16, pp.203-225, 1994.

[Hastings and Lytinen, 1994] P. M. Hastings and S. L.
Lytinen, The Ups and Downs of Lexical Acquisition,
AAAI-94, pp.754-759, 1994.

[Ikehara et al., 1993] S. Ikehara, M. Miyazaki, and A.
Yokoo, Classification of language knowledge for
meaning analysis in machine translations, Transac-
tions of Information Processing Society of Japan,
vol. 34, pp.1692-1704, 1993 (in Japanese).

[Lloyd, 1987] J. Lloyd, Foundations of Logic Program-
ming, Springer, 1987.

[Mooney and Califf, 1995] R. J. Mooney and M. E.
Califf, Induction of First-Order Decision Lists: Re­
sults on Learning the Past Tense of English Verbs,
JAIR, vol. 3, pp.1-24, 1995.

[Muggleton, 1990] S. Muggleton, Efficient induction of
logic programs, First Conference on Algorithmic
Learning Theory, Tokyo, 1990.

[Muggleton, 1991] S. Muggleton, Inductive logic pro-
gramming, New Generation Computing, 8(4),
pp.295-318, 1991.

[Muggleton, 1995] S. Muggleton, Inverse Entailment
and Progol, New Generation Computing Journal,
Vol. 13, pp.245-286, 1995.

[Plotkin, 1969] G. Plotkin, A note on inductive general­
ization, in B. Jeltzer et al. eds., Machine Intelligence
5, pp.153-163, Edinburgh University Press, 1969.

[Quinlan, 1990] J. R. Quinlan, Learning logical defi­
nitions from relations, Machine Learning, 5, 3,
pp.239-266, 1990.

[Yamazaki et al, 1995] T. Yamazaki, M. Pazzani, and
C. Merz, Learning Hierarchies from Ambiguous
Natual Language Data, ML-95, pp.575-583, 1995.

[Sowa, 1991] J. F. Sowa ed., Principle of semantic net­
works, Morgan Kaufmann, 1991.

[Zelle et al, 1994] J. M. Zelle and R. J. Mooney, J.
B. Konvisser, Combining top-down and bottom-up
methods in inductive logic programming, ML-94,
pp.343-351, 1994.

SASAKI & HARUNO 899

