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Abs t rac t 
This paper presents the type-oriented relational 
learner R H B + . Attaching type information 
to hypotheses is effective in avoiding over-
generalization as well as enhancing readabil­
i ty and comprehensibility. In many areas, such 
as NLP, type information is actually available, 
while negative examples are not. Unfortu­
nately, learning performance is usually poor 
if types are attached when only positive ex­
amples are available. RHB+ makes use of 
type information to efficiently compute infor-
mativi ty from positive examples only and to 
judge a stopping condition. The new tech­
nique of dynamic type restriction by positive 
examples lets covered positive examples de­
cide the types appropriate for the current 
clause. The current version of RHB+, writ­
ten in the typed logic programming language 
L IFE , directly manipulates types as structured 
background knowledge when operations related 
to types are required. These features make 
RHB+ efficient and effective in attaching types 
selected from thousands of possible types. This 
leads to advantages over several previous learn­
ers, such as F O I L and P R O G O L . Experimental 
results demonstrate RHB+ 's fine performance 
for both artificial and real data. 

1 In t roduc t ion 
Inductive Logic Programming (ILP) [Muggleton, 1991] is 
a promising approach to knowledge-level learning from 
real-world examples such as the wide variety of facts 
contained in on-line newspapers or large-scale databases. 
Major extensions related to types (or sorts) are, however, 
required for ILP systems to handle real-world relations. 
First, types should be always attached to hypotheses 
in order to make comprehensible rules with appropri­
ate generality. Second, background knowledge, even if 
it includes thousands of hierarchically structured types, 
must not deteriorate system performance. These ex­
tensions have to be achieved within the restriction that 
only positive examples are available because negatives 

are not usually found in real-world data. Actually, type 
hierarchy has played a key role in several natural lan-

uage processing systems, such as [Ikehara et al., 1993], 
[Hastings and Lyt inen, 1994], Knowledge representation 
languages [Ai't-Kaci and Nasr, 1986], [Ai't-Kaci et al., 
1994], [Borgidaand Patel-Schneider, 1994], [Sowa, 1991] 
also incorporate types and they achieve efficient inheri­
tance according to the type hierarchy used. 

The following example illustrates that type informa­
tion is essential to learning in the situation in which a 
human could learn rules of appropriate generality from 
a small number of examples by using type hierarchy. 
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Japanese <language, Japan <country } 

Note that A <B denotes A is a sub-type of B. 

Adding is_a relations to background knowledge seems 
to lead us to our goal but conventional ILP systems vir­
tual ly fail to produce hypotheses with appropriate types 
even though background knowledge incorporates types 
and is_a relations. This is mainly because it is not realis­
tic to handle a large number of fragments of a large-scale 
type hierarchy as ordinary background knowledge. The 
types have a tree or lattice structure and giving right 
types means to follow the links of the structure based on 
the generalization and specialization operations. 

In this paper, we present the design and implementa­
tion of the type-oriented ILP system RHB+ to solve the 
problems. In Section 2, the algorithms and implemen­
tation methods of RHB+, especially the novel mecha­
nisms for learning relations with types, are described. 
Experimental results are shown in Section 3. Section 4 
describes related work and Section 5 concludes this pa­
per. 

2 RHB+ 
In this section, we describe the novel relational learner 
RHB+ which generates typed Prolog programs from just 
positive examples on the basis of background knowledge 
which might include a large-scale type hierarchy. 

2.1 Hypothes is Language 
The hypothesis language of RHB+ is the Horn 
clause [Lloyd, 1987] based on the restricted form of 
ψ-terms used in LOGIN [Ai't-Kaci and Nasr, 1986] or 
L I F E [Ai't-Kaci et al., 1994]l . For convenience, we 
call this restricted form r-terms. Informally, r-terms are 
Prolog terms whose variables are replaced with variable 
Var of type T, which is denoted as Var:T. Moreover, a 
function is allowed to have labels or keywords for read­
ability. The definition of r-terms is as follows. 

2.3 RHB+ A l g o r i t h m s 
Given positive examples are non-negative literals based 
on r-terms. The hypothesis language is Horn clauses 
based on r-terms. The background knowledge are non-
negative literals.2 RHB+ employs a combination of 
bottom-up and top-down approaches, following the re­
sult described in [Zelle et a/., 1994]. That is, first make 
the head in a bottom-up manner then construct the body 
in a top-down manner. 

The outer loop of RHB+ finds covers of the given 
positive examples P in a greedy manner. It constructs 

2Horn clauses that produce finite numbers of atoms can 
be included. 
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clauses one by one by calling inner Joop(P,Po,BK) 
which returns a hypothesis clause, where Po is origi­
nal positive examples and BK is background knowledge. 
Covered examples are removed from P in each cycle; P0 

remains unchanged. 

A l g o r i t h m 1 inner Joop(P,P0,BK) 

1. Given positive examples P,P0, background knowl­
edge BK. 

2. Decide types of variables in a head by computing 
typed Iggs of N pairs of elements in P, and select 
the most general head as Head. 

3. If StopCond(Po, BK, Head) is satisfied, return 
Head. 

4- Let Body be empty. 

5. Create a set of all possible literals L using variables 
in Head and Body. 

6. Let BEAM be top K literals lk of L with respect 
to positive weighted informativity, 
PWI(P,BK,(Head:-Body,lk)). 

7. Do later steps, assuming that lk is added to Body 
for each literal lk in BEAM. 

8. Dynamically restrict types in Body by calling 
restrict (P,BK,(Head :- Body)). 

9. If StopCond(Po,BK,(Head :- Body)) is satisfied, 
return (Head :- Body). 

10. Goto 5. 

We wil l now see how types are utilized in each compo­
nent of the RHB+ algorithm in the following sections. 

2 .4 D y n a m i c t y p e r e s t r i c t i o n b y p o s i t i v e 
e x a m p l e s 

The special feature of RHB+ is the dynamic type re­
striction by positive examples during clause construc­
t ion. restrict(P,BK,(Head :-Body)) in Algori thm 1 
does this part, where P represents positives, BK is back­
ground knowledge, and (Head:—Body) is a hypothetical 
clause. The restriction uses positive examples currently 
covered in order to determine appropriate types. In­
formally, for each variable Xi appearing in the clause, 
RHB+ computes the lub of all types bound to Xi when 
covered positive examples are unified wi th the current 
head in turn. Formally, the dynamic type restriction by 
positive examples is defined as follows. 

A l g o r i t h m 2 (Dynamic type restriction by positive ex­
amples) 

1. Given a hypothesis clause Hypo = (Head .Body) 
and positives P. 

2. Collect all the types in Hypo and put them into a 
list TypeSet. 

3. Let P be examples in P covered by Hypo. 

4- For all elements pi of P , unify Head and pif then 
prove Body- Make a list TypeSeti of bound types in 
the proved Head and Body so that the position of 
each type in TypeSeti correctly corresponds to the 
position of the original type in TypeSet. 

5. For all Xk in TypeSet, compute lub rk of all bound 
types of Xk in TypeSet, • 

6. For all k, bind Tk to Xk • 
Type restriction binds a type to each newly introduced 

variable in the body. Without a type restriction, newly 
introduced variables would always have no types, and 
RHB+ might produce over-general clauses. Note that 
the result of the type restriction operation by unifica­
tion dynamically affects the types of all variables related 
to the unified variable. This operation is directly im­
plemented by using the type unification mechanism of 
L I F E . 

It would rather not aggressively add type to narrow 
the current cover but it is interesting that the dynamic 
type restriction significantly contributes to narrowing 
the current cover and helping the learner to find good 
hypotheses. 
E x a m p l e 2 
When we have positive examples and background knowl­
edge as given in Example 1 and additional data about 
cat Socks. 

• Additional positive example : 
{ speak( Socks, cat-lang) } 

• Additional background knowledge : 
{grew_in( Socks, Japan), Socks < cat]. 

Suppose that speak(agent, anything) is the current 
head. Adding official_lang/2 , one of the candidates for 
additional l i teral, restricts the types in the head as fol­
lows. The current clause before the type restriction is: 

speak(agent, Y:anything) :— official_lang{X,Y). 

The second argument of official_lang matches an offi­
cial language. This cause that covered positives are only 
examples relating to humans because the positive related 
to Socks is no longer covered. Therefore, the type agent 
is restricted to humans and we obtain: 

speak(human, Y-.language) :— officialJang(X,Y). 

After that, the data unrelated to humans wi l l not af­
fect the clause construction. This illustrates how the 
typing contributes to restricting types in forming typed 
clauses. 
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is because |Q(T) | may include a lot of examples removed 
from P in earlier steps . Type information plays a key 
role in computing the stopping condition because it per­
mits the efficient calculation of |Q(T) | as described in 
the previous section. 

3 Experiments and Results 
In order to confirm that RHB+ can efficiently handle 
a type hierarchy, two kinds of experiments were con­
ducted with one part of 3000 is_a relations. We selected 
more appropriate representation of is_a relations for each 
learner: P R O G O L incorporated is_a literals, which rep­
resent direct links in a type hierarchy, in background 
knowledge and F O I L used type literals. 

The first experiment determined the effect of type hi­
erarchy size. We tested F O I L , P R O G O L 3 and RHB+ on 
artificial data while changing hierarchy size. 

The second experiment measured the performance of 
those three learners with real data extracted from news­
paper articles. We used a SparcStation 20 with 96 Mbyes 
of memory for the experiments. 

3 .1 T y p e H i e r a r c h y 

Figure 1: The upper levels of the type hierarchy 

Figure 1 shows the structure of our type hierar­
chy [Ikehara et al., 1993]. The hierarchy is a sort of con­
cept thesaurus represented as a tree structure in which 
each node is called a category (i.e., a type). An edge 
in this structure represents an is_a relation among the 
categories. For example, "Agents" and "Person" (see 
Figure 1) are both categories. The edge between these 
two categories indicates that any instance of "Person" 
is also an instance of "Agents". The current version of 
type hierarchy is 12 levels deep and contains about 3000 
category nodes. Such level of detail was found necessary 
to perform semantical analysis that enabled real world 
text understanding [Ikehara et al., 1993]. 

3PROGOL4.2 with set(posonly) option. 
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3.2 Learning t ime and type hierarchy size 
Table 1: Learning results of "death to l l " 

Figure 2: Learning time vs type hierarchy size 

In order to estimate the effect of type hierarchy size 
on learning speed, we randomly generated positive ex­
amples that satisfied the following answer clause: 

speak(A : person, B : language) :-

grew_in(A,C : country), official Jang (C, B). 

Figure 2 shows that F O I L exponentially slows as the type 
hierarchy size increases. On the other hand, the learning 
speed of RHB+ and P R O G O L were not affected so much 
by the number of is_a relations. MCRs of the results 
from the artificial data should not be taken seriously. 

3.3 E x p e r i m e n t by Rea l D a t a 
We extracted articles relating to accidents from a one-
year newspaper corpus wri t ten in Japanese. 4 Forty two 
articles are related to accidents that resulted in some 
numbers of death and injury. We parsed the sentences 
with the commercial-quality parser of our machine trans­
lation system [Ikehara et al . , 1993], and performed se­
mantic analysis to extract the case frames in the sen­
tences. Twenty five articles were well parsed and seman-
tically analyzed. Case frames were converted into literals 
and we created two kinds of positive examples from those 
literals. One was death.toll which represents the number 
of deaths in each article and the other was injury which 
represents the number of injuries in an article. In pre­
possessing, literals unrelated to positive examples were 
removed. The result was that three literals for each ar­
ticle were selected as background knowledge. The data 
set consisted of 25 positive examples. The background 
knowledge contained 78 literals wi th 26 kinds of predi­
cates and 124 types and constants. 

Tables 1 and 2 show the learning results of F O I L , P R O ­
G O L and RHB+. \Hypo\ shows the number of clauses in 

4 We used the Mainichi Newspapers articles of 1992 under 
appropriate permission. 

hypotheses Hypo. T is the union of the hypotheses and 
background knowledge. |P | / |Q (T ) | shows the MCR, the 
ratio between covered positives and the empirical con­
tent of T, that is, the size of the set of all instances of 
the head provable from T Handling type information 
seriously degraded the learning speed of F O I L . P R O G O L 
was relatively fast; however it 's results were over-general 
in both experiments. R H B + recorded both good per­
formance and appropriate generality of the outputs. 

Because of space l imits, only the learning results from 
data "death to l l " are shown here as follows. 

4 Related W o r k 
Some previous learners, such as F O I L [Quinlan, 1990], 
G O L E M [Muggleton, 1990] and P R O G O L [Muggleton, 
1995] use type or sort declarations for curtail ing the 
search space. Their learning results, however, do not 
have type information linked to those declarations. Sim­
ply including types and is_a relations in background 
knowledge is not a solution to obtaining typed clauses. 
The reason is that the possibility of a long is_a or type 
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chain creates excessive overhead; the learner must search 
for all is_a literals or type literals. For example, when 
the type hierarchy is twelve levels de^p, a chain of up 
to twelve is.a literals should be checked. When is_a 
represents direct links in a type hierarchy, one possible 
chain might be: 

is _a (X , Y),is_a{Y, Z),.., is_a{W, V),is_agent{V),.... 

When is_a includes indirect links in a type hierarchy, 
atoms to be checked are: 

is_a(X, male), is_a(X, human),,.., is_a{X, agent),.... 
When type literals represent types in a type hierarchy, 

atoms to be checked are: 

male(X),human(X), ...,agent(X),.... 

In those cases, top-down learners spend too much time 
try ing to construct those chains while bottom-up learn­
ers try to remove the some of is_a or type atoms and 
find good hypotheses. 

Special treatment to types was presented in [Yamazaki 
et al., 1995]. It requires both positive and negative ex­
amples to efficiently decide one_sa atoms. 

According to an input-output declaration, FOIDL 
[Mooney and Califf, 1995] generates implicit negatives 
by output queries for input arguments of positive ex­
amples in a normal ILP setting. RHB+ utilizes type 
information to compute the number of covered examples 
including implicit negatives. 

5 Conclusions and remarks 
RHB+, which learns typed Prolog programs, was pre­
sented. Its performance is not affected by the number 
of types or type hierarchies size for the sake of direct 
manipulation of types and util ization of type informa­
tion in computing informativity heuristics and stopping 
conditions. It also achieved appropriate generalization 
levels of hypotheses. At this point, a full L I F E compiler 
is not available but the current interpretive version of 
RHB+ showed good performance. The execution speed 
wi l l markedly improved when a L I F E compiler becomes 
available. 
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