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Abs t rac t 
A learning framework that combines the two 
frameworks of explanatory and descriptive In ­
ductive Logic Programming (ILP) is presented. 
The induced hypotheses in this framework are 
pairs of the form (T, IC) where T is a defi­
nite clausal theory and IC is a set of integrity 
constraints. The two components allow us to 
combine complementary information from the 
same data by applying both explanatory and 
descriptive learning methods. This non-tr ivial 
integration is achieved using a nonmonotonic 
entailment relation for the basic notion of cov­
erage in the combined language of rules and 
constraints where the constraints can restrict 
the conclusions derivable by the rules. 
We present a semantics for the new framework 
and then discuss different cases where combin­
ing information from explanatory and descrip­
tive ILP could be useful. We present some basic 
algorithmic frameworks for learning in the new 
framework, and report on some preliminary ex­
periments wi th encouraging results. 

1 I n t r oduc t i on 
Inductive logic programming (ILP, [Muggleton and 
De Raedt, 1994]) is concerned wi th learning clausal the­
ories in first-order logic. Two main approaches exist to 
learning in first-order logic, known under the names of 
explanatory and descriptive learning. The first [Mug­
gleton, 1995] is also called learning from entailment or 
normal ILP, the second [De Raedt and Dzeroski, 1994] 
is also called learning from interpretations or nonmono­
tonic ILP. The first setting is concerned wi th the induc­
t ion of rules that explain (correctly classify) the given 
observations, whereas the latter is concerned wi th the 
induction of constraints that describe the (dependencies 
in the) given observations. 

While attempts have been made to relate the two 
settings (see e.g. [Muggleton and De Raedt, 1994]), 

very few (if any) attempts have been made to combine 
the two frameworks. On the other hand, the combina­
t ion of rules and integrity constraints is a very power­
ful modeling or representation framework found in sev­
eral areas of Computer Science. It forms for exam­
ple the basic conceptual model of databases where the 
data must always conform to the properties that the in­
tegrity constraints of the database specify. In Ar t i f i ­
cial Intelligence the combination of a theory wi th con­
straints has been extensively studied (e.g. [Poole, 1988; 
Kakas et a/., 1993]) and applied to problems of planning, 
diagnosis, legal reasoning and many others. 

In this paper we bring together work from the areas of 
Machine Learning (ILP) and Knowledge Representation 
to propose an integrated learning framework that synthe­
sizes in a non-tr ivial way the two separate approaches of 
explanatory and descriptive learning. In this framework 
the induced hypothesis is a pair of a definite clausal the­
ory (set of rules), T, and a set of integrity constraints, 
IC. This induced theory is used to reason in a non­
monotonic way, where the integrity constraints in IC 
specialize the rules in T by restricting their conclusions. 
The integration of the two forms of learned output in T 
and IC becomes non-tr ivial by this reasoning. In tu rn , 
when this is used as the basic notion of coverage for the 
learning problem the two processes of explanatory and 
descriptive learning interact in a strong way. 

The integrated learning framework allows us to com­
bine together (during the learning process) complemen­
tary information that can be learned from the same data 
using the two different approaches of explanatory and 
descriptive learning. In a typical situation, the rules 
generated by the explanatory learning process can be 
(informally) understood as sufficient information on the 
concepts to be learned whereas the output of descriptive 
learning as necessary information. This combination of 
information is particularly useful when the learning data 
or the learning method is incomplete. The integrated 
learning framework can thus enhance our learning capa­
bilities by allowing us to learn inherently non-monotonic 
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theories (which by definition can not be completely spec­
ified). More important ly though it can also be particu­
larly useful (enhancing) for many other learning prob­
lems not necessarily non-monotonic in nature as learn­
ing by its very nature is often an incompletely specified 
problem. At the more practical level, the integration of 
a set of integrity constraints in the learned theory : (i) 
provides additional complementary information, (ii) of­
fers a new type of specialization operator on the rules of 
the theory, (ii i) offers a complementary notion of clas­
sification via the satisfaction of the constraints and (iv) 
allows us to learn from incomplete data, e.g., from pos­
itive data only where the constraints provide implicit ly 
negative data. 

Although there exist several learning systems 
[De Raedt and Bruynooghe, 1993; De Raedt and 
Van Laer, 1995; Muggleton, 1995] that learn (or can 
learn) integrity constraints none of these does so in a 
strongly integrated fashion as we are proposing here. In 
fact, most of the constraints learned in practical domains 
(see e.g. [De Raedt and Dehaspe, 1996]) have the form of 
definite clauses (the same form as for explanatory ILP) , 
and are even used in the same fashion i.e. for explanation 
rather than description as is their natural role. 

2 An In tegra ted Learn ing Framework 
In this section we present the basic learning framework 
that integrates the two different problems of explanatory 
and descriptive learning. We wi l l assume that the reader 
is familiar wi th basic notions of first order logic and logic 
programming (see e.g. [Lloyd, 1987]). 

In the integrated framework the hypothesis space is 
extended to accommodate the learned output for either 
setting of explanatory or descriptive learning. 

D e f i n i t i o n 1 (Hypothesis Language): A hypothesis H is 
a tr iple < T, C, IC >, where C is a set of predicate sym­
bols (the concepts to be learned), T is a Definite Horn 
theory (of rules defining concepts in C) and IC is a set of 
first order formulae (integrity constraints on the theory 
T ) . 

The integrity constraints in IC can in general be any 
first order formula but in practice (see e.g. [De Raedt 
and Bruynooghe, 1993]) it is useful to restrict these to be 
clauses which are also range-restricted. We have also re­
stricted here the theory T to contain only definite Horn 
clauses wi th no negation as failure (NAF). The frame-
work can easily be extended to allow NAF. Moreover, 
the language of definite rules wi th integrity constraints 
subsumes N A F [Eshghi and Kowalski, 1989]. 

The integration of the two forms of learned output 
(explanatory rules in T and general regularities of the 
data in IC) becomes non-tr ivial by combining together 

the reasoning made with each part and then using this 
as the basic notion of coverage for the learning prob­
lem. This combined notion of entailment is inherited 
here from work in the area of Knowledge Representa­
tion [Poole, 1988], [Kakas et a/., 1993]. Reasoning with 
the theory is done in the usual way using the minimal 
Herbrand model semantics. For the integrity constraints 
there are several alternative semantics. In this paper we 
will use the epistemic or meta-level view [Reiter, 1988] 
where the constraints are understood as statements at a 
different level from those in the theory and they specify 
what must be true of the theory. They are formalized 
as first order formulae that must be true in any given 
model of the theory for this model to be accepted. 
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learned theory H. There are also several ways in which 
this problem could be generalized or modified. For ex­
ample, the background knowledge may already contain 
some integrity constraints. Another alternative relates 
to how strong we want the exclusion of negative exam­
ples to be. We may for example want to replace the th i rd 
condition by the stronger condition "there is no general­
ized model M of H such that 
The proper study of these extensions and alternatives is 
beyond the scope of this paper. 

The above definition combines elements from the ex­
planatory and descriptive learning problems via the cov­
erage relation of definition 2. The rules in the theory T 
give sufficient conditions for the concept(s) that we are 
learning whereas the integrity constraints in IC provide 
complementary necessary conditions on the concept. 

Let us i l lustrate the potential and possible use of the 
integrated framework w i th a few simple examples. As a 
first example we take a well known domain from knowl­
edge representation which is not possible to express using 
only the language bias of definite Horn logic. 

E x a m p l e : Consider the background theory B 
bird(x) <- penguin(x) 
penguin(x) <--- superpenguin(x) 
bird{a), bird(b), penguin(c), penguin(d), 
superpenguin(e), superpenguin(f) 
wi th the set of concepts to be learned C = {flies(-)}. 
Consider also the training data consisting 
simply of a set of positive and negative examples as fol-

A solution to this problem is given by the hypothesis 

The integrity constraint expresses a general regularity 
that characterizes the available data is also used to com­
pensate for the overgenerality of the learned rule in T. 
The conclusion flies(c) is not possible as the constraint 
is violated: in we would have penguin(c) and 
not superpenguin(c). On the other hand, the conclu­
sion flies(e) is allowed by the learned theory since this 
does not violate the constraint. Note that if the integrity 
constraint is considered simply as another clause in the 
theory T then the resulting hypothesis would be incon­
sistent covering negative examples. 

This learning problem can also be captured using the 
non-monotonic construct of N A F by extending the lan­
guage bias of the theory T from definite Horn clauses 
to normal logic program clauses. A possible solution is 
given by the rules: f l ies(x)<-- bird(x),not abnormal(x) 
and abnormal(x) <---penguin(x),not superpenguin(x). 

Negation as failure can easily be captured wi th in the 

framework of definite rules and integrity constraints [Es-
hghi and Kowalski, 1989]. Hence the integrated frame-
work subsumes the use of N A F in learning systems. Con­
versely, it is indeed possible to simulate the effect of most 
forms of integrity constraints using NAF . This, however, 
would typically require the use of auxil iary new predi­
cates, as in the above example, thus making the learning 
process unnecessarily more complicated wi th the need of 
predicate invention [Bain and Muggleton, 1990]. A more 
important difference is the fact that the use of N A F alone 
sti l l relies only on the explanatory (normal) ILP learning 
criteria. In the integrated framework in addition we can 
use the second independent learning criterion of describ­
ing the data available. This can be significant particu­
larly in problems where the training data is incomplete. 
In the above example, if we are not given the negative ex­
amples the integrated framework can sti l l find the same 
solution as before since the integrity constraint can be 
learned independently from the rest of the problem. 

In the previous example due to the inherent non-
monotonicity of the problem it is not possible to learn 
the correct theory using each of the two ILP settings 
separately. We wi l l now consider some examples where 
although there are solutions in these separate settings 
these may be difficult to find. Lack of complete infor­
mation in learning can effectively result in a situation 
similar to that of a non-monotonic problem. 

Let us first consider an example where we are try­
ing to learn the concept daughter given complete back­
ground information on parent, father, mother, male 
and female but possibly incomplete information on 
daughter. Suppose that we have learned the rule 
daughter(x,y) <- parent(y, x). 
We first note that the usual specialization of this rule 
by adding the extra condition of female(x) can also be 
equivalently achieved by learning the integrity constraint 
female(x) <-- daughter{x,y). 
In fact, any condition in a rule can be simulated by a new 
constraint of the general form condition <-- concept, sub-
body-of-rule. Note though that this alternative way of 
specializing the rule is also possible even when there 
is insufficient negative information in the training data 
to drive the first alternative of explicit specialization 
of the rule. Suppose now that the background knowl­
edge does not contain the predicate female. An ex­
plicit specialization of the rule can now only be done 
using the N A F condition not(male(x)). This can again 
be equivalently achieved via the integrity constraint 
-(daughter(x,y),male(x)) but as before this constraint 
can exist independently of any negative examples. 

The information provided by the integrity constraints 
may not be captured by the rules of the theory and is 
thus complementary to that of the rules. Suppose for 
example that we do not have any direct information on 
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the predicates male and female and we have learned 
the rule daughter(x,y) <- parent(y, x). It is sti l l possi­
ble to specialize this rule wi th the use of integrity con­
straints. This can happen using other information avail­
able in the background knowledge and/or the training 
data that we learn (using the descriptive criteria) is nec­
essarily related to the concept of daughter. Consider 
for example that the background knowledge also con­
tains information about the predicates child(-,-) and 
sister(—,—). Then we could learn the integrity con­
straint: sister(x,z) <- daughter{x,y),child{z,y),z ≠ x. 
This wi l l provide (some) specialization to the general rule 
excluding all persons which are not sisters to their sib­
l ing from being classified as daughters. Similarly other 
integrity constraints such as mother(x,z);aunt(x,z) <-
daughter(x,y),grandparent(y,z) etc could provide ad­
dit ional specialization of the rule. 

This type of specialization comes from learned depen­
dencies in the data relating the concept we are try ing 
to learn wi th other known relations in the background 
knowledge. This information encoded by the integrity 
constraint should not necessarily be seen as part of the 
rule definition of the concept. It is instructive to com­
pare the behavior of the integrated framework wi th that 
of normal I LP in these situations. Firstly, for the lat­
ter framework to capture this type of information it wi l l 
need explicit negative information to drive this special­
ization, e.g., a negative example of a sibling that is not 
a daughter. If this is given then normal ILP wi l l t ry 
to specialize the general rule by adding extra conditions 
in its body. In the example above it wi l l specialize the 
rule to daughter(x,y) <-- parent(y,x),cMld(z,y),z ≠ 
x,sister(x,z) resulting in an arguably artificial defini­
t ion. 

Apart from the non-naturality of the rules another 
important difference of encoding this type of informa­
t ion in rules instead of integrity constraints is the fact 
that the extra conditions added to the rules (e.g., here 
child(z, y),z ≠ x) now become necessary for the conclu­
sion to hold whereas this is not the case wi th the integrity 
constraints. But these conditions may not be relevant in 
all cases. They may not be known by the theory (e.g., in 
the case where we have multiple predicate learning and 
child is another predicate that we are learning) or they 
simply do not hold (e.g., cases where the daughter does 
not have a sibling). This then means that in addit ion, 
the normal ILP system must now generate another rule 
(or rules) to re-cover all the positive examples that are 
lost by these extra conditions. This is the phenomenon 
of rule spl i t t ing in normal ILP systems that can result 
in many overspecific rules containing conditions not di­
rectly relevant to the proper definition of the concept. 

Learning integrity constraints differs significantly from 
learning more clauses in the theory. The integrity con­

straints are not simply some extra clauses of the theory 
learned on some additional concepts that (possibly) ap­
pear in the heads of the integrity constraints. Although 
the integrity constraints could be used to provide a par­
t ial definition for these predicates their main purpose is 
to specialize the concept rules in the theory T. To be 
more specific, if the above integrity constraint is consid­
ered simply as another clause in the theory for a new 
concept sister, this wi l l not have any effect on the rule 
of the theory which wi l l remain overgeneral. Similarly, 
if we add the "corresponding clause" 
daughter(x,y) <-- sister(x, z),child{z,y) 
to the theory, this wi l l not have any specialization effect 
on the other rule for daughter. The choice of the in­
tegrity constraints is not independent from the rules of 
the theory and part of the difficulty is to find the " re l ­
evant" constraints that would compensate correctly for 
the rules of the theory. 

Summarizing, the integrity constraints can sometimes 
provide implicit ly the required specialization of the 
defining rules without the need of explicit negative t rain­
ing data. They effectively form additional implicit t ra in­
ing data for the explanatory part of the problem allowing 
us to learn from positive data only. In addit ion, the in­
tegrity constraints offer new possibilities of specialization 
of the rules when these express regularities of the con­
cept with other predicates not directly involved in the 
definition of the concept. 

3 Learning a lgor i thms and Exper iments 
Several approaches to developing learning algorithms in 
the integrated framework are possible. One is to sepa­
rate the generation of the two components (rules or con­
straints). A top-level description of an algorithm that 
generates the rules first, which then drive the rest of the 
learning process, is: 

A l g o r i t h m 1 
Find a set of rules R that cover all + ve examples; 
Decide-bias-of-ics(R, E; Bias); 
Generate-ics (Bias, E; I C ) ; 
Choose-ics( IC, R,E;C); 
Return (R,C); 

After the first step that generates the rules of the the­
ory, the algorithm goes into a constraint generation and 
selection phase. We first select the general IC schema(ta) 
(or bias) that wi l l be given as input to the descriptive 
inductive procedure. We have identified two types of 
analysis that help decide on the bias (a) analysis of the 
form of the rules (b) analysis on the examples misclas-
sified. Other information that helps in finding an ap­
propriate schema for the constraints is their complex­
i ty (roughly the number of literals they involve) and 
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more importantly their independence from the exist­
ing rules (i.e. they should not be subsumed by the 
rules). In the experiments we report below we have re­
stricted this kind of analysis to constraints of the form 
literati <- concept,literal2 or literall <- concept, sub-
body-of-rule, literal2 where literall is a l iteral which 
can be the "false" l i teral and literal2 is a conjunction of 
up to 2 literals. 
Then we call a descriptive system that generates con­
straints wi th the decided bias. In our experiments we 
have used the CLAUDIEN system which offers a strong 
declarative language for expressing the bias. 
The last step in the constraint computation phase is to 
choose among the constraints produced by the descrip­
tive system, those that wi l l be actually added to the 
theory. Here we use a combination of the usefulness of 
the constraints in specializing the theory (the number 
of negative example misclassifications they correct) to­
gether wi th descriptive criteria, e.g., the degree of appli­
cability in the data. 

In algorithm 1 above, the generation of rules is done 
outside the process of generating the ICs of the theory. 
In an "interleaved" approach the generation of rules and 
ICs are combined together and one dynamically influ­
ences the other. Constraints again offer an extra possi­
bi l i ty of specialization. 

The procedure Extended-Specialization (R; R', NIC) 
can use either the normal specialization step of adding a 
new literal in the body of R or call on a descriptive ILP 
algorithm to generate more constraints NIC. As above 
this wi l l involve deciding on the bias of constraints to 
look for and choosing amongst the generated ones. The 
form of the integrity constraints can now be more specific 
relating strongly to the rules they are t ry ing to special­
ize. The general bias of the constraints again follows the 
schema literall <- concept, literal2 where literall can 
be the "false" l i teral. 

Another possibility is to generate (and select) in a 
first phase the integrity constraints and then use these 
in a second phase of rule generation. The integrity con­
straints are used pr imari ly as additional (negative) t ra in­
ing data and thus this strategy is particularly appropri­

ate for problems where there is no or l imited explicit ly 
given negative training data. A top level shell for such 
an algorithm is the following: 

A l g o r i t h m 3 
Generate a set of ICs C; 
(use descriptive criteria e.g. degree of applicabil ity) 
repeat 
Generate rule R; 
While and not satis f(R, C) 
Specialize-rule(R); 

until all positive examples are covered; 
C' := set of ICs violated by the generated rules; 
Return (R',C')■ 

Note that here specialization of the rules does not 
come form the negative examples only, but also from the 
ICs that are violated. These constraints force the spe­
cialization of a rule unt i l either some minimum thresh­
old on the number of positive examples that it covers is 
reached or the integrity constraints are indeed satisfied 
by all the consequences of the generated rule. If the con­
straints can not be ful ly satisfied wi th in the threshold, 
they are returned in the output. The Generate-rule and 
Specialize-rule are the usual procedures from top-down 
normal I LP algorithms. 

3 . 1 I n i t i a l E x p e r i m e n t s 

We report here on some ini t ial experiments wi th inte­
grated learning, the main purpose of which was to pro­
vide an ini t ial confirmation of the theoretical ideas and 
a basis for the future development of a system for inte­
grated learning. 

Several experiments were carried out on the real-life 
problem of characterizing river water quality. The task 
is to interpret a biological sample taken from a river in 
terms of five quality classes (see [Dzeroski et al, 1994]). 
A fact of the form family(X) (resp. family(X, A)) in­
dicates that the bioindicator family is present in sam­
ple X (resp. at abundance level A). The five classes are 
denoted class0(X) to class4(X). Several machine learn­
ing systems have been applied on this problem, including 
CN2 [Clark and Boswell, 1991], C L A U D I E N [De Raedt 
and Bruynooghe, 1993] and G O L E M [Muggleton and 
Feng, 1990]. Making use of abundance level data CN2 
achieves accuracy of 0.62 on unseen cases, while without 
abundance levels it achieves 0.64 accuracy. C L A U D I E N 
and G O L E M were only used to generate rules from the 
entire dataset. In the following, a theory correctly classi­
fies a sample if it predicts the correct class, and no other 
class is predicted by i t . This is different from the clas­
sification procedure in CN2, which adds the numbers of 
examples of each class covered by each rule applicable to 
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an example. The majori ty class is predicted by CN2 if 
no rule applies. 

Start ing from a set of rules that GOLEM induced 
from data wi th abundances, we have tried (following 
algorithm 1) to specialize and complement these rules 
wi th integrity constraints. In fact, in this process a dif­
ferent analysis for the different classes is appropriate. 
We concentrated only on the first three classes, since 
G O L E M rules for the last two classes are not avail­
able. The bias for constraints for classl was gener­
ated by analyzing the actual GOLEM rules of classO 
and classl. Four constraints, e.g., ancylidae(X) <-
clas8l(X),perlodidae(X), were selected which can cor­
rect the misclassification of classO examples as classl 
examples while at the same time not affecting signifi­
cantly the correct classification of classl examples. In 
contrast, for class2 constraints, the bias was found by 
analyzing the actual misclassifications of other examples 
as class2. The results were similar to that for classl. 
Overall, a small number of constraints were generated 
and the performance of the integrated theory was com­
parable to that of the rules alone wi th just a marginal 
improvement. This was expected due to the very specific 
nature of the G O L E M rules. The point to note though 
is that the constraints learned form complementary in­
formation to the rules as they do not affect the coverage 
of the correct class examples. In fact, some of these con­
straints were useful in the other two experiments. 

Experim. 1 
Original 
CN2 Rules 
CN2 Rules 
without NAF 
CN2 Rules 
without NAF 
+ ICs 

Accur. 

0.53 

0.43 

0.59 

Experim. 2 
Original 
GOLEM Rules 
GOLEM rules 
without abund. 
GOLEM rules 
without abund. 
+ ICs 

Accur. 

0.80 

0.22 

0.72 J 
Table 1 

The next two experiments (see table 1), that also con­
cern the first three classes, involve learning a theory from 
training data w i th information only on the presence or 
absence of each family (no abundance levels). In the 
first experiment we started wi th the CN2 rules whose 
accuracy was found to be 0.53 on unseen cases (compare 
this to the 0.64 accuracy of the same rule set under the 
CN2 classification procedure) and removed all NAF l i t ­
erals form these to produce an overgeneral theory. The 
task was then to specialize these rules wi th appropriate 
constraints by following algorithm 1 and applying the 
same types of analysis as above for generating constraint 
bias. It was again possible to learn an integrated theory 
whose accuracy (0.59 on testing examples) is compara­
ble to that of the ful l CN2 rules wi th NAF although this 

time more constraints were necessary. 
In the second experiment, we removed the abun­

dance information from the G O L E M rules dis­
cussed above to produce an overgeneral set of 
rules. Examples of these rules are: class0(X) <-
chironomidae(X), heptageniidae(X),perlodidae(X) for 
classO, classl(A) - ancylidae(A), erpoddellidae(A), 
hydropsychidae(A) for classl and class2(A) <-
asellidae(A), erpoddellidae(A), physidae(A). To spe­
cialize these rules, we used some of the constraints from 
the first experiment, together wi th some new constraints 
that were added because negative examples were sti l l 
covered by the theory. Examples of these constraints 
are: false <- c l a s s l ( X ) , leuctridae{X), physidae{X) 
and lymnaeidae(X) <- classl(X), asellidae(X), 
gammaridae(X), corixidae(X) restricting classl and 
false <-- class2(X), heptageniidae(X), perlodidae(X) 
and baetidae(X) <-- class2(X), hydrobiidae(X), 
leptoceridae(X). Most of the new constraints were se­
lected based on the number of misclassifications they cor­
rect. The resulting theory has accuracy 0.72 on unseen 
cases. This compares well wi th the accurary of 0.80 of 
the original GOLEM rules as these rules were generated 
from the whole data including the testing data. 

The overall conclusions drawn from these experiments 
is that it is indeed possible to generate complementary 
information in the form of constraints wi th comparable 
accuracy as that of a given explanatory theory. Further­
more, it is possible to learn simpler overgeneral explana­
tory rules, which when augmented wi th constraints in an 
integrated theory have comparable and sometimes better 
accuracy. 

4 Conclusions and Related work 
We have presented a new framework for learning that 
integrates explanatory and descriptive learning. This 
framework allows us to synthesize complementary infor­
mation from the same learning data by applying interac­
tively both explanatory and descriptive learning meth­
ods and is particularly useful when the given learning 
problem is incompletely specified. 

The need to strongly integrate learning of rules and 
integrity constraints (ICs) was proposed recently in [Di-
mopoulos and Kakas, 1996] in their study of the relation­
ship of abductive and inductive reasoning. As mentioned 
though in the introduction, ICs have been often used in 
explanatory ILP. The interactive theory revision system 
CLINT [De Raedt, 1992] introduced the use of ICs in ex­
planatory ILP. Intermediate revisions of the theory are 
tested for consistency w i th the ICs, and further revised 
if found inconsistent. 

Most explanatory ILP systems that learn starting 
from an empty theory on the target predicate(s) do not 
make use of ICs. The MONIC-SKIL i t system [Jorge and 

DIMOPOULOS. DZEROSKI, & KAKAS 905 



Brazdil , 1996] is a notable exception. Clauses proposed 
for addit ion to the theory are checked for consistency 
wi th the ICs. This is done in a stochastic fashion: a 
number of consequences of the theory are randomly gen­
erated; if none of these violate the ICs the theory is 
considered consistent. 

PROGOL [Muggleton, 1995] learns from entailment. 
Whi le it has been mostly used to learn definite clauses, 
it can also learn integrity constraints in the form of de­
nials. C L A U D I E N ( [De Raedt and Bruynooghe, 1993], 
[De Raedt and Dehaspe, 1996]) learns from interpreta­
tions: it takes as input a set of interpretations P and 
learns a set of constraints C that hold in each of the 
given interpretations. ICL [De Raedt and Van Laer, 
1995] takes an additional set of interpretations N re­
quir ing that at least one constraint in IC is violated by 
each interpretation in N. 

To sum up, some explanatory ILP systems can take 
into account ICs given by the user. These are used in 
the learning phase, but seldom (if ever) together w i th 
the learned rules of the theory. On the other hand, ILP 
systems that can learn constraints do not use them (if 
at all) as constraints in their coverage (classification) re­
lation as we are proposing in this paper. 

Several issues remain for future work. On the theoret­
ical level the relationship wi th nonmonotonic reasoning 
needs to be explored further to study problems of learn-
abil i ty and compactness of the learned theory in this new 
framework. On the practical level, the development of an 
integrated learning system is needed for the application 
of the framework to other real life problems. 
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