
Combining Knowledge Acquisition and Machine Learning
to Control Dynamic Systems

G.M. Shiraz C. Sammut
School of Computer Science and Engineering

University of New South Wales
Sydney 2052

Australia

Abstract
This paper presents an interactive method for
building a controller for dynamic systems by using
a combination of knowledge acquisition and ma­
chine learning techniques. The aim is to build the
controller by acquiring the knowledge of an opera­
tor skilled at that task. This method has been
demonstrated for the skill of learning to f i l l an air­
craft in a flight simulator. The simulator has been
augmented to interact with a knowledge acquisition
program for creating rules and logging the pilot's
actions along with fl ight information. We have
developed a method called Dynamic Ripple Down
Rules for knowledge acquisition and Learning
Dynamic Ripple Down Rules for automatically
generating rules from the logged data. The rules
were tested by running the flight simulator in au­
topilot mode where the autopilot code is imple­
mented by the rules.

1 Introduction
In this paper, we report on an experiment that demonstrates
how a combination of knowledge acquisition and machine
learning techniques can be used to build a controller for a
dynamic system. The aim is to build the controller by ac­
quiring the knowledge of an operator skilled at that task. To
demonstrate the effectiveness of this approach, a flight sim­
ulation program has been modified to interact with a knowl­
edge acquisition program. A method, called Dynamic Ripple
Down Rules (DRDR), has been developed to acquire knowl -
edge by interaction with the pilot and another system,
Learning Dynamic Ripple Down Rules (LDRDR), has been
used to generate rules automatically from data logged dur­
ing a flight. The results have been tested by running the
flight simulator in autopilot mode where the autopilot code
has been replaced by the generated rules.

Due to complexity or lack of information about a plant,
it is often difficult or impossible to construct a controller us­
ing classical methods. However, a competent human opera­
tor is often able to control a dynamic system. As a result,
there is growing interest in mimicking the skills of the hu­
man operator (Michie et al, 1990; Sammut, et al 1992;
Shiraz & Sammut 1995b; Urbancic & Bratko; 1994).

Creating a set of rules that models the strategy used by the
operator to control the task is one way to do this. The prob­
lem is how to determine a set of rules that captures the ex­
pert's strategy. Experiments have shown that it is often dif­
ficult for an expert to describe his or her strategy and the
reason for choosing a particular strategy (Compton &
Jansen, 1990). Sometimes it is even impossible for them to
describe their strategies, especially when they are control -
ling a fast dynamic system such as an aircraft. The reason
for this is that many skills are performed at a sub-cognitive
level. These skills can be demonstrated, but are very hard to
describe explicitly. Moreover, descriptions may be incom­
plete and approximate. Therefore, such descriptions can not
be translated directly into an automatic controller. However,
operator descriptions may contain general information
which might be used as guidelines for constructing a con­
troller automatically or semi-automatically.

In this paper, we propose a new interactive method, in
which the expert (operator) and a learning program co-oper­
ate with each other to create the controller. The expert's de­
scription about his or her task is considered to be a set of
general rules for controlling the system. These rules are
refined by adding rules that are automatically created from
the logged behaviour of the expert.

2 Previous Experiments
Michie et al (1990) in their pole-balancing experiments in­
troduced the use of machine learning for learning to control
dynamic systems. This method was later called behavioural
cloning. In behavioural cloning, an operator skilled in a task
is asked to control the system. During his or her perfor­
mances, the state of the system, along with his or her ac­
tions, are logged into a file. This process is repeated several
times until enough information is collected. In the next
stage, a learning program uses the logged information to
construct control rules for the system. Behavioural cloning
was further refined by Sammut et al (1992) in their
'Learning to Fly' experiments and the technique has also
been extended to other domains (Michie & Camacho, 1994;
Shiraz & Sammut, 1995a; Urbancic & Bratko, 1994;
Esmaili et al, 1995).

In addition to performing behavioural cloning experi­
ments, in their 'Container Crane Controller' work, Urban lit
& Bratko (1994), also recorded the advice that an operator

908 LEARNING

would give to a novice. They asked six volunteers to learn
to control a crane simulator. After the operators had mas­
tered the task, they asked the operator to write down their
advice. They also encouraged them to discuss their experi­
ence and their written instructions with other operators to
see if such discussions lead to improved performance.

One of the goals of this experiment was to see if there
was any correspondence between the induced clone and the
operator's instructions. It was found that the induced clone
can uncover some of operator's subconscious control skill.
They also reported how the verbal description of the opera­
tor can be used to improve the induced rules, when the in­
duction program has failed to capture the behaviour for a
particular condition. However, there was no systematic way
of using the human operator's advice as background knowl­
edge for machine learning technique. Moreover, often there
was considerable divergence between the operator's de­
scription of the control strategy and the rules created by in­
duction on that same operators performance.

Another approach to using an expert's advice during be­
havioural cloning is to combine a knowledge acquisition
technique with induction (Shiraz et al, 1995c). While most
of the skills involved in controlling a dynamic system are
subcognitive and are therefore inaccessible to introspection,
there are some aspects of those skills that may be explain­
able by an operator, particularly those involving high-level
knowledge. By providing a suitable knowledge acquisition
tool, this kind of knowledge can be documented in term of
rules. As a result, the induction can be assisted to produce
more transparent and robust clones.

They chose to modify Compton's (1989) Ripple-Down
Rule (RDR) method for knowledge acquisition. RDR's pro­
vide a simple and powerful method for building a knowl­
edge base interactively. The initial knowledge base usually
consists of a simple rule for specifying what to do in the
default case. When a rule is found to fail for a particular
case, an exception rule is appended to the failed rule. The
conditions required in the body of the exception rule can be
easily determined by comparing the new case with cases
that were previously handled successfully by the original
rule.

In previous work (Shiraz & Sammut, 1995a) a controller
that for flying a simulated aircraft through a predefined
flight plan was constructed using a combination of RDR's
and Gaines' (1992) Induct program. The use of an expert's
advice resulted in the creation of rules that were more trans­
parent and robust than those created by induction alone
(Sammut et al, 1992). A major limitation of this work was
that knowledge acquisition and machine learning were two
separate tasks. In that experiment, following Sammut et al
(1992), the flight was divided into seven different stages
based on the predefined flight plan. For each stage, four
separate RDR's for each of the four control actions
(elevators, flaps, ailerons and throttle) were created. Each of
these twenty eight RDR's was constructed either by using
the RDR interactive knowledge acquisition method de­
scribed above or by applying Induct to the logged data. In

the work presented in this paper, we propose a method that
merges knowledge acquisition and machine learning.

3 The Experiment
The flight simulator used in this experiment is one available
on Silicon Graphics workstations. The pilot's task is re­
stricted to flying a Cessna 150 through a predefined flight.
The original program also gives the user the choice to fly
different aircraft. The simulator was modified so that the pi -
lot can run a trace of a flight and using the knowledge ac­
quisition facility, diagnose and correct any incorrect deci­
sions. These modifications wil l be described in more detail
later.

The strategy a pilot uses for landng an aircraft is quite
different from the strategy needed 'for straight and level
flight. Sammut et al (1992) divided a flight into different
stages according to the flight plan. The present experiments
follow the same approach and use the same flight plan:

1. Take off : Take off and fly to 2000 feet.
2. Level out: Fly straight and level to a distance of 32000

feet from the airport.
3. Turn right: At a distance of 32000 feet 1, turn right to a

compass heading of 330 degree.
4. Turn left: At a North/South distance of 42000 feet, turn

left toward the runway.
5. Lining up: Change the aircraft's heading to line up on

the runway.
6. Descending: descend to the runway.
7. Land: Land on the runway.

A modification of the original RDR knowledge acquisition
method, Dynamic Ripple Down Rules (DRDR), is used for
those parts of the flight where it was possible for the pilot to
verbalise his or her strategy and, thus, write rules. However,
some parts of the flight involve such subtle control
strategies that it is very difficult, or even impossible, to
verbalise those strategies. In those cases, LDRDR's
(Learning Dynamic RDR's), an automatic rule generator,
produces rules from the data logged data during a flight
Figure 1 illustrates the architecture of the system.

3.1 Dynam ic R ipp le D o w n Rules (D R D R)

The basic form of a ripple-down rule is as follows:

if condition then conclusion because case except
if condition then conclusion because case except

if...
else if ...

Initially an RDR may consist of the single rule:

if true then default conclusion because default case

1 Distances were chosen to correspond to features in the
simulators landscape.

SHIRAZ & SAMMUT 909

Figure 1: The basic algorithm for learning to control a
dynamic system using a combination of knowledge ac­
quisition (DRDR) and machine learning (LDRDR).

That is, in the absence of any other information, the RDR
recommends taking some default action. For example, in a
control application it may be to assume everything is normal
and to make no changes. If a condition succeeds when it
should not, then an exception is added (ie. a nested if-state-
ment). Thus the initial condition is always satisfied so when
the 'do nothing' action is inappropriate, an exception is
added. If a condition fails when it should succeed, an alter­
native clause is added (i.e an else-statement). The new con­
dition in the exception or alternative clauses is easy to de­
termine.

With each condition/conclusion, RDR's store the cor­
nerstone case, i.e. the case that caused the new condition to
be created. When a new cases is incorrectly classified, it is
compared with the cornerstone case of the incorrect condi­
tion and the differences are used to construct the new condi­
tion. Usually, the difference list is presented to the expert so
that he or she may select the most relevant differences or
generalise the conditions.

Originally, RDR's were developed for classification
tasks such as medical diagnosis. To facilitate knowledge ac­
quisition for controll ing dynamic systems, additional
facilities have been added:

Multiple knowledge bases: A pilot must often perform
severl actions simultaneously, e.g., to turn the aircraft, the
elevators and ailerons must be adjusted at the same t ime2 .
DRDR can manage several knowledge bases
simultaneously. In this case, there is one for each of the
four control actions.

New conclusions can be entered graphically. The user
interface for a knowledge acquisition tool must be
tailored for the application. For example, rules presented
as text have l itt le meaning for pilots. Therefore a
graphical interface that provides analogues to an aircraft's
instruments are important.

Transferring information from flight simulatot to DRDR:
The pilot can pause a flight to investigate the RDR when
it is not flying according to the pilot's wishes. When this
happens information must be transferred from the flight
simulator to the knowledge acquisition tool. Much of this
information is then presented graphically.

3.2 L e a r n i n g D y n a m i c R i p p l e D o w n
Rules (L D R D R)

The manual knowledge acquisition of DRDRs is effective
when it is possible for the expert to articulate rules about his
or her performance. However, in many circumstances, it is
very difficult for an expert to describe the control strategy.
Often, attempts at such descriptions are incomplete and ap­
proximate and cannot be translated directly into an auto­
matic controller. However, these descriptions may contain
general information that can be used to guide the search that
a machine learning system may conduct when trying to
automatically build control rules from performance data.

3.2.1. Data preparation
The logged data usually contain information from different
stages. These data are usually noisy and contain many re­
dundant records. Pre-processing prepares the logs for the
learning program. The pre-processing includes:

Segmenting the data: The data may contain information
about a complete flight or only those parts of a flight
where the pilot decided to record additional information.
The first stage of pre-processing is to segment the data
into the stages of the flight plan.

Discretising control values: The Cessna aircraft's control
system consists of three control surfaces (elevators, flaps
and ailerons) plus the throttle. The values of the control
variables should be continuous. However, the learning
algorithm can only deal with discrete class values,
therefore the control variable values are discretised. In
practice this is easy because the variables are only
recorded to a limited precision and are, therefore, already
discrete.

To simplify the task, the rudder is ignored. Of course, this would
not be appropriate for a real aricraft.

910 LEARNING

Eliminating spurious values: It is useful to eliminate
intermediate values of the state variables so that the
learning program is not swamped with spurious data. For
example, when there is a change in elevator setting, eg.
from 0° to 4°, all values in between are considered redun­
dant and removed. Note that this preprocessing is vital,
otherwise the number of rules generated by the learner
wil l be extremely large.

Creating separate input for each control action: The data
file from each stage contains information about all the
manoeuvres performed by the pilot during that stage.
Four separate files for each control action (elevator,
flaps, rollers, throttle) are created for input to the learn ing
program. To create a fi le for each control action, the
attribute describing the control action is treated as the
class variable and the rest of the attributes including at­
tributes describing other control actions are treated as or­
dinary attributes.

3.2..2. The Learning Algor i thm
The LDRDR algorithm constructs a controller as follows:

Inputs: current knowledge base; the behavioural traces; the
priority list.

foreach record in the behavioural trace:
1. Test the next record against the knowledge base
2. If the conclusion of the RDR differs from the recorded

trace, create a new rule to correctly handle the new
record.

The condition part of a new rule is constructed by examin­
ing those variables which change most in correspondence
with changes in control actions. The behavioural trace in­
cludes all the information that a pilot would normally see in
the aircraft instruments. LDRDR tries to relate the pilot's
actions to changes in the instrument readings and thereby
predict what actions are required depending on the state of
the instruments.

It is clear that a human expert only considers a relatively
small number of variables at any time. To emulate this be­
haviour, LDRDR limits the number of conditions per rule.
In order to avoid missing the important conditions in rule
generation, LDRDR maintains a priority list of attributes for
each control action. This list can be provided by the expert
or created by the system. During learning this list is updated
automatically by considering attributes that contribute more
in rule generation.

After performing the pre-processing described previously,
each of the data files and the existing RDR for a particular
control action are used to extend the RDR using the
LDRDR algorithm. LDRDR also uses the current priority
lists.

The algorithm extends the RDR as follows:

foreach attribute in the priority list:
1. Compare the attribute's previous direction with its next

direction. If there is a change in direction (e.g. it was
increasing and becomes steady) then:

2. Create a test for the attribute. The test is based on the at­
tribute's current value and its previous direction. The
test always has the form:

attribute op value
where op is ">=" if the previous direction was increas­
ing and "<=" if it was decreasing. Value is the value in
the current record. The new test is applied to the corner-
stone case associated with the last rule that was satisfied
to make sure the test is correct for the current case but
excludes the cornerstone case.

3. Add the test into a condition list.
4. Attributes in the priority list are ordered by a numerical

score. Increment the attribute's priority.
5. If the number of tests in the condition reaches a user de­

fined maximum, scan the rest of the attributes and just
update their priorities if their direction has changed.
The maximum is domain dependent and was set to 3 for
these experiments.

end loop

If the condition list is not empty, create a rule and add it to
the RDR. The conclusion of the rule comes from the action
recorded in the trace. The current record becomes the rule's
cornerstone case. The rule wil l be added as an exception to
the last rule in the RDR if that rule is evaluated true. It is
added as an alternative if false.

The output of LDRDR is an extension of the original
RDR to cover cases in the input data that were not covered
by the original RDR. The new RDR is converted into C if-
statements by recursively traversing the RDR and creating
one if-statement for each rule. An if-statemenf s conditions
are the conjunctions of all true conditions in the RDR from
the root to the rule.

4 Rule Construction
The learning task begins with some simple rules created by
DRDR or by using LDRDR, applied to logged information.
In both cases, the rules can be tested by running the simula­
tion in autopilot mode where the autopilot code is derived
from the rules. During the flight, if the aircraft does not be­
have as the pilot would expect, the pilot is able to pause the
flight and trace the executed rules or the rules currently un­
der execution. The pilot is also able to modify existing rules
that seem incorrect by adding new rules. In this case, the
previous and current situations of the aircraft, plus all the
relevant flight variables, are presented to the pilot. As well,
all the rules under execution for each control action are re­
ported to the pilot. Whenever the flight is paused, there are
several options available. Each of these options is described
in the following sections.

4.1 A n a l y s i n g ru les
Information about the knowledge structure in the system is
presented graphically to assist the pilot in understanding the
current state of the knowledge base. The pilot may view the
RDR either in text form as rules or graphically as a tree

SHIRAZ & SAMMUT 911

structure drawn on the monitor. The tree may be traversed
by moving the mouse over the tree.

4.2 Creat ing new rules
After evaluating the existing rules, if the pilot finds a con­
clusion is wrong or there is no interpretation for the current
situation then he or she is able to add new rules. To help the
pilot in creating new rules, the system provides a list of dif­
ferences between the current state of the flight and the situa­
tion associated with the last condition that was satisfied.
Choosing one or more variables from this list guarantees to
produce a rule that wi l l correctly interpret the new case but
not the old one.

4.3 Flying the aircraft

This option is useful for the pilot to explore new flight plans
or become familiar with existing stages. It can also be used
by new pilots to get acquainted with the program.
Moreover, during the learning task, pilots can use this op­
tion to fly some part of the flight manually and then put the
aircraft in a specific state to investigate the behaviour of the
autopilot at that situation or start recording data from that
position.

4.4 Logging f l igh t in fo rmat ion
For those parts of the flight that are difficult for the pilot to
diagnose a problem or suggest correct rules, he or she can
simply show the correct action by switching to manual
mode and flying the aircraft. During the flight, the pilot's
actions, along with the flight information are logged to a
data file. The flight's information is logged every second or
when a change in a control action has been detected. These
data can then be used to construct rules using LDRDR.

4.5 F l y i n g on a u t o p i l o t

In this mode, the flight simulator is controlled by an autopi -
lot built by the system. The autopilot code is derived from
the rules that have been created by the pilot during his or
her previous flights and LDRDR from the logged data. This
is used to test the rules.

5 Constructing an Autopilot

In this section we describe the results of a series of experi -
ments with this system.

After every modification of the RDR, the flight simula­
tion was run in autopilot mode to test the new RDR. To do
this, the code of the original autopilot was replaced by the
RDR (translated into C). A C function is also incorporated
into the flight simulator to determine the current stage of the
flight and when to change stages. The appropriate set of
rules for each stage is then selected from four independent
if-statements created in each stage for every control action
(Sammut et al, 1992).

In the following section we describe a controller built
for the first stage to demonstrate how these rules operate.

Please note that these are the rules created by one pilot
(either manually or by cloning). Another pilot would almost
certainly create slightly different rules.

Stage 1

The rules for this stage are shown below, after translation to
C:

ELEVATORS:
if (airspeed <= 50) return level_pitch;
if (elevation < 100) return pitch_up_3;
if (elevation < 110 && y_feet < 1970) return pitch_down_2;
if (elevation < 110) return pitch_up_1;
if (elevation < 130) return pitch_down_l;
if (elevation > 130) return pitch_down_3;
return leveLpitch;

AILERONS:
if (azimuth <= 50) return left_roll_l;
if (azimuth <= 1800) return left_rolL2;
if (azimuth <= 3550) return right_roll_l;
if (azimuth <= 3599) return right_roll_l;
return no_roll;

FLAPS:
if (yJeet <= 250) return full_flaps;
if (y_feet <= 500) return half_flaps;
return no_flaps;

THROTTLE:
return throttlc_1OO;

The rules for the elevator indicate that if the speed of the
aircraft reached 50 knots, pull back on the stick to take off
until the elevation increases to 10° (values in the rules are
shown in tenths of degrees). Then push the stick forward to
reach an elevation of 11 degrees. After that try to maintain
the degree of elevation at 11* which is close to the value
usually obtained by the pilot. When the aircraft reaches an
altitude of 1970 feet decrease the elevator to get ready for
the levelling out. Pitch-up-5 indicates a large elevator action
and pitch-up-1 means a gentle elevator action. These elvator
action names result from the discretisation of the actions,
menioned previously.

The last statement is the default rule. It is the default action
in that stage for the particular controller. For example the
default rule for the elevator in all stages is level_pitch. Use
of a default rule, results in a reduces number of rules.

The flaps rules states that as the aircraft reaches an alt i­
tude of 250 feet, decrease the flaps by half and if it reaches
an altitude of 500 feet raise the flaps completely. The rules
for the aileron keep the aircraft in the straight line. During
take-off, the pilot who created these rules always applied
full throttle.

6 Testing the system
The system tested using three volunteers: one of them was
familiar with the system and another one was familiar with
f l ight simulators. Their task was to create a set of
knowledge bases using DRDR and LDRDR that can
successfully complete the flight plan, described previously

912 LEARNING

Prior to the experiments, the subjects received a one
hour tutorial in the use of the system. They also attended a
demonstration. During the demonstration, the demonstrator
explained how he flies the aircraft and the subjects were al­
lowed to ask questions about the flight and the plan. The
were allowed to practice until they become proficient in
flying the aircraft.

During the experiments, the number of times that sub­
jects interrupted the flight simulator, number of rules they
created, the frequency use of DRDR and LDRDR and the
amount of time they spent creating rules were recorded.

A l l the subjects were successful in creating a set of
rules that could fly the aircraft through the given flight plan.
The size of knowledge bases varied considerably from one
subject to another one. One subject was cautious in creating
rules for any possible state of the aircraft and thus produced
a large RDR. Another subject was only interested in writing
a set of rules that could fly the specific plan and so
produced a much smaller RDR.

An interesting observation during these experiments was
the reuse of knowledge. A l l the subjects tried to use rules
created in an earlier stage if the task was similar. In
particular, when creating rules for the elevator in stages
three, four and five, they used the rules created for stage two
and added some exception rules, if necessary.

Another observation was that the subjects began trying
to use DRDR to manually construct rules, but when this
became difficult, the subjects switched to LDRDR to build
rules.

7 Conclusion
We have demonstrated that knowledge acquisition and ma­
chine learning techniques can be combined to successfully
build control strategies for a dynamic system. We believe
that this approach is applicable to other, similar domains,
such as the container crane (Urbancic & Bratko, 1993) and
others. In using "heuristics" such as limiting the number of
conditions in each rule, we have followed the observation
that experts rarely consider more than a few attributes when
making a decision. Since we are trying to emulate the hu­
man trainer, it is reasonable to impose similar restrictions on
the computer program.

A l l the testing up to this point has been in a noise-free
simulation environment. The same technique should be able
to handle noise, but further work is required to establish this
claim. Further work is also required in improving the user
interface. Ideally, pilots should never have to see any rules,
but should be able to interact with the system entirely
through the familiar surroundings of the cockpit. We also
need more rigorous testing to measure the relative merits of
LDRDR versus the more conventional induction programs
previously used in behavioural cloning.

Acknowledgment
We thank Paul Compton and Philip Preston for their help in
understanding and using RDR's in this project.

References
Compton, P. & Jansen, R. (1989). A Philosophical basis for

knowledge acquisition. 3rd European Knowledge
Acquisition for Knowledge Systems Workshop, 1-17.

Compton, P. & Jansen, R. (1990). Knowledge in context: A
Strategy for expert system maintenance. In C. Barter &
M. Brooks (Eds.). Proc AI 88, Lecture notes in Artif icial
Intelligence, 406 (pp. 292-306). Berlin: Springer-Verlag.

Compton, P. (1992). Insight and Knowledge. In J. Boose,
W. Clancey, B. Gaines, & A. Rappaport (Ed.), AAAI
Spring Symposium: Cognitive aspects of knowledge ac­
quisition, (pp. 57-63). Stanford University.

Esmaili, N., Sammut, C. & Shiraz, G. M., (1995).
Behavioural Cloning in Control of a Dynamic System. In
The 1995 IEEE International Conference on System, Man
and Cybernetics, (pp. 2904-2909). Vancouver, Canada:
IEEE.

Gaines, B. R., P. Compton (1992). Induction of Ripple-
Down Rules. Proceeding of the 5th Australian Joint
Conference on Artificial Intelligence, Hobart, Tasmania.

Michie, D., Bain, M., and Hayes-Michie, J. E. (1990).
Cognitive model from subcognitive kills. In M. Grimble,
S. McGhee, and P. Mowforth (Eds.) Knowledge-base
Systems in Industrial Control, Peter Peregrin us.

Michie, D. & R. Camacho (1994). Building Symbolic
Representations of Intuitive Real-Time Skills from
Performance Data. In Machine Intelligence 13, Eds. K.
Furukawa, D. Michie, and S. Muggleton, pp. 1-30.

Sammut, C, S. Hurst, D. Kedzier. , D. Michie (1992).
Learning to Fly. In Proceeding of the 9th International
Workshop on Machine Learning, edited by D. Sleeman
and P. Edwards, Morgan Kaufmann, 385-393.

Shiraz, G. M. & Sammut, C. (1995a.) An Incremental
Method for Learning to Control Dynamic Systems. In The
Machine Learning Workshop of the IJCA1-95, (pp. 139-
175). Montreal, Canada: IJCAI.

Shiraz, G. M. & Sammut, C. (1995b). Learning to Fly in the
Presence of an Expert. In The third ICEE-95 (Control), 3
(pp. 77-85). Tehran, Iran: Iran University of science and
Technology Press.

Shiraz, G. M., Sammut, C. & Esmaili, N. (1995c). Man,
Machine Cooperation for Learning to Control Dynamic
Systems. In The 1995 IEEE International Conference on
System, Man and Cybernetics, (pp. 1108-1112).
Vancouver, Canada: IEEE.

Urbancic, T. & Bratko, I. (1993). Learning to control dy­
namic systems. Machine Learning and Statistical
Classification, D. Michie(ed.), Ellis-Horwood.

Urbancic, T. & Bratko, I. (1994). Reconstructing human
Skill with Machine Learning. 11th European Conference
on Artificial Intelligence, Ed. A. Cohn, 489-502.

SHIRAZ & SAMMUT 913

