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Abs t rac t 
Control l ing a complex dynamic system, such 
as a plane or a crane, usually requires a skilled 
operator. Such a control skill is typically hard 
to reconstruct through introspection. There­
fore an attractive approach to the reconstruc­
t ion of control skil l involves machine learning 
from operators' control traces, also known as 
behavioural cloning. In the most common ap­
proach to behavioural cloning, a controller is 
induced in the form of a rule set or a deci­
sion or regression tree that maps system states 
to actions. Unfortunately, induced controllers 
usually suffer from lack of robustness and lack 
typical elements of human control strategies, 
such as subgoals and substages of the control 
plan. In this paper we present a new approach 
to behavioural cloning which involves the in­
duction of a model of the controlled system and 
enables the identification of subgoals that the 
operator is pursuing at various stages of the ex­
ecution trace. The underlying formal basis for 
the present approach to behavioural cloning is 
the theory of LQ controllers. Experimental re­
sults show that this approach greatly improves 
the robustness of the induced controllers and 
also offers a new way of understanding the op­
erator's subcognitive ski l l . 

1 In t roduc t i on 
Controllers can be designed by Machine Learning using 
different kinds of information available to the learning 
system. Approaches like reinforcement learning, genetic-
algorithms and neural networks typically don't use prior 
knowledge about the system to be controlled. 

Humans, however, rarely attempt to learn from 
scratch. They extract in i t ia l biases as well as strategies 
from their prior knowledge of the system or from demon­
stration of experienced operators. Control theory makes 
use of the former, but it doesn't consider operator's skil l. 
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On the other hand, the idea of behavioural cloning 
(a term introduced by Donald Michie [Michie, 93]) is 
to make use of the operator's skill in the development 
of an automatic controller. A skilled operator's control 
traces are used as examples for machine learning to re­
construct the underlying control strategy that the oper­
ator executes subconsciously. The goal of behavioural 
cloning is not only to induce a successful controller, but 
also to achieve better understanding of the human oper­
ator's subconscious skill [Urbancic and Bratko, 94]. Be­
havioural cloning was successfully used in problem do­
mains as pole balancing, production line scheduling, pi­
loting [Sammut et al. , 92] and operating cranes. These 
experiments are reviewed in [Bratko et al., 95]. Con­
trollers were usually induced in the form of decision or 
regression trees. 

Although successful clones have been induced in the 
form of trees or rule sets, the following problems have 
generally been observed with this approach: 

• Typically, induced clones are bri t t le with respect to 
small changes in the control task. 

• The clone induction process typically has low yield: 
the proportion of successful controllers among all 
the induced clones is low, typically well below 50%. 

• Resulting clones are purely reactive and inade­
quately structured as conceptualisations of the hu­
man skil l . They lack typical elements of human con­
trol strategies: goals, subgoals, phases and causal­
ity. 

In this paper we propose a different approach to be­
havioural cloning which exploits some results f rom con­
trol theory. In particular, our clones take the form of 
LQ controllers. The approach also involves induction of 
approximate models of controlled systems. It is experi­
mentally demonstrated that this approach dramatically 
improves both the clones' robustness wi th respect to the 
changes of the control task, and the yield of the cloning 
process. Also, the approach provides a way of interpret­
ing the induced clones in terms of the operator's goals 
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and subgoals. 
In this paper, the reconstruction of human opera­

tor's skill exploits some elements of the theory of Lin­
ear Quadratic Regulator problems [Bertsekas, 87]. Both 
the dynamics of the system and the example behavioural 
trace are considered in the learning process. First, the 
system dynamics is learned using locally weighted re­
gression. Then, a linear quadratic regulator which per­
forms similar to the operator is constructed . Since the 
controller is goal-directed and takes into account the 
system dynamics, good performance and robustness are 
achieved. The parameters of induced controllers give 
some insight in the human control skil l . This provides 
an interesting possibility of studying human control skill 
apart from the system dynamics. 

Bradtke [Bradtke, 93] also explored the idea using 
LQR, but in his case in combination wi th a reinforcement 
learning method. However, he did not pay attention to 
the interpretation of the opt imal policy as Q-function in 
terms of the underlying operator's control skil l. 

The structure of the paper is as follows. The next 
section reviews the basics of LQR theory that wil l be 
needed in Section 3, which describes the methods used 
to construct controllers from behavioural traces. In Sec­
tion 4 the ideas are extended to subgoal identification in 
more complex control tasks. Section 5 gives some exper­
imental results. 

2 L inear Quadrat ic Regulat ion 

In many systems it, is not always possible to reach the 
desired state in one step. In such systems, one must 
init ial ly move away from the desired state in order to 
approach it later. Linear Quadratic Regulation facili­
tates such policies through minimization of a long term 
cost function. Let x(t) be the system state vector, u(t) 
the action vector and xdes the desired goal state. Then 
LQ-Cost is defined as: 

where Q is a positive definite matr ix, R is a positive 
semi-definite matr ix and u0 is a user defined lowest cost 
action. Elements of matrices Q and R set the tradeoff 
between the cost of the action components and the error 
components. If, for example, Q and R were set to iden­
t i ty matrices, then the sum of squared deviations from 
desired performance would be penalized. Usually hu­
man supervisor specifies the relative importance of the 
state and action components by suitable adjustments to 
Q and R. An alternative to using explicit human spec­
ification of the importance of various state and action 
components is in automatic induction of matrices Q and 
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Optimal control theory gives the optimal action u, which 
minimizes this cost-to-go function, by a simple gain ma­
tr ix A": 

Linear system dynamics is assumed. However empiri­
cal results often show good robustness of LQ-controllers 
even if the actual system is non-linear and approximated 
by a linear model. 

3 A p p r o x i m a t i n g the operator 's value 
func t ion 

Our aproach to behavioural cloning in the LQR frame-
work relies on the following observations: 

1. An approximate model of the controlled system, 
in the form of a linear state transition function 
T, can be induced by locally weighted regression 
[Schaal and Atkeson, 94] from some available exe­
cution traces. 

2. Generally, when (a) cost matrices Q and R are given 
and the execution cost is defined as LQ cost (func­
tion of Q and R), and (b) the system is linear, for­
mulas from control theory can be used to compute 
the state value function V(x) and corresponding op­
t imal actions u(x). 

3. We assume that the operator's actions in the avail­
able execution traces are intended to optimise the 
LQ cost. So in the case of behavioral cloning we 
have to solve the inverse to the opt imal control prob­
lem: given the actions, find the matrices Q and R 
for which the actions are (approximately) opt imal. 

4. The operator may be executing a more elaborate 
plan when he pursues different subgoals at different 
stages of the execution trace. In such cases, the 
trace can be broken into stages whose subgoals are 
reflected in different Q and R matrices. 

In the following we develop the details of this idea. 
A continous trace is sampled so that we have a se­

quence of pairs (xk,uk), k = l , 2 , . . . N, ordered accord­
ing to t ime. Goal state xdes is known in advance. The 
state transition function T(x,u) is estimated using lo­
cally weighted regression. Assuming the linear dynamics 
of the system we can compute LQ cost-to-go function as 

where P is computed as the solution of the Riccatti equa­
tion as explained erlier. 

Define LQ-opt imal action as an action which mini ­
mizes the LQ-cost for particular Q* and R*: 

i.e, by finding "least-squares fit" of operator's cost-to-go 
function and LQ-controller cost-to-go function. When 
Q* and R* are found, the corresponding LQ-controller 
can be constructed. Matrices Q* and R* can also be 
used to explain how the operator is performing the task. 
Local optimization optimizes matrices of Q and R, so the 
number of optimization parameters grows as the square 
of the number of state variables and control variables. 

A simplification is to assume Q and R are diago­
nal. In this case the number of optimization parameters 
grows linearly wi th the number of variables. This re­
duces the complexity of local optimization problem, and 
sometimes improves the comprehensibility of the induced 
controller. 

4 Learn ing subgoals 
In complex control tasks (like flying a plane for exam­
ple) the operator's policy usually changes in t ime. To 
achieve the final goal, the operator must first achieve 
some subgoals. Those subgoals define stages of a pol­
icy. Each stage ends when its subgoal is reached. One 
possible approach is to break the execution trace into 
stages by hand, and learn a controller for each stage 
separately. However, it is not always possible to define 
stages by hand. An operator learns his skills by practice. 
The rules underlying these skills are typically opaque to 
the operator, and he is not able to describe them com­
pletely. The obvious alternative is to induce the subgoals 
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from execution trace and construct a controller for each 
stage. We define a subgoal as a point in a state space 
approached by the operator and after which the opera­
tor's policy changes in the sense of LQ-cost. Accordingly 
we define a subgoal candidate xg(j) at time step j as the 
point in the state space with coordinates computed as 
mean of the most recent 5 states. 

The change of a policy is detected as minimization of 
weighted LQ-fit error at a given subgoal candidate: 

First the whole execution trace is searched for a subgoal 
xg{j) which minimizes weighted LQ-fit error. Given the 
subgoal xg{j), the execution trace is divided into two 
stages, one before subgoal is reached and the other after 
the subgoal is reached. Both stages are then recursively 
searched for subgoals. This is done until the error of the 
divided stage is greater than the error of the undivided 
stage. For every stage an LQ-controller is computed. 
When controller's subgoal is approached, the next con­
troller is activated. 

5 Exper imenta l results 
5.1 Container crane 
In this section we describe experiments in LQR cloning 
in the domain of container cranes [Urbancic and Bratko, 
94], systems wi th nonlinear dynamics. 

To transport a container from a shore to a target po­
sition two operations are to be performed: positioning 
of the trolley, bringing it above the target load posi­
t ion, and rope operation, bringing the load to the de­
sired height. The performance requirements include ba­
sic safety, stop-gap accuracy and as high capacity as 
possible. The last requirement means that the time for 
transportation is to be minimized. The most difficult 
aspect of the task is to control the swing of the rope. 
When the load is close to the goal position, the swing 
should ideally be zero. 

A crane simulator was used in our experiments. The 
state of the system is specified by six variables: trolley 
position X and its velocity X, rope inclination angle 
and its angular velocity rope length L and its velocity 
L. Two control forces are applied to the system: force 
XF to the trolley in the horizontal direction and force 
YF in the direction of the rope. 

We used experimental data from manually controlling 
the crane from a previous study [Urbancic and Bratko, 
94]. In that study, six students volunteered to learn to 
control the simulator. Al l of them succeeded to accom­
plish the task. However, remarkable individual differ-

ences were observed regarding the speed of controlling 
and the characteristics of the strategy they used. Some 
operators tended towards fast and less reliable opera­
t ion, others were more conservative and slower, in order 
to avoid large rope oscillations. Our goal of cloning was 
also to reconstruct these individual differences between 
the operators in the style of driving the crane. 

Previous experiments in this domain involve be­
havioural cloning with regression trees and combining 
skills from several operators. The main problem for re­
gression trees was the swing control, i.e large rope oscil­
lations when the trolley approached its goal position. 

5.2 Experimental details 
To complete the task successfully, the operator had to 
reach the goal position within 180 s. Each trace was 
sampled wi th frequency 4 Hz. A successful trace typi­
cally lasts between approximately 50 and 120 s, so such 
a trace gives about 200 to 480 state-action pairs. For 
local optimization Powell's method wi th discarding the 
direction of largest decrease was used. Matrices Q and 
Ft were restricted to diagonal. 

Since state is a 6 dimensional and action is a 2 di­
mensional vector, 7 parameters were approximated by 
local optimization. It took about 15 sec. on Pentium 
133 Hz to find matrices Q and R and construct the cor­
responding controller. When learning subgoals S was set 
to 10. To minimize time needed to find the best subgoal, 
a subgoal candidate was tested every 10 t ime steps. It 
took about, 8 minutes to find the best one among those 
candidates. 

To learn a linear model locally weighted regression at 
the mean point of the stage was used. To learn a model 
we used several operators' execution traces: first, the 
trace used to approximate the value function, another 
two traces of the same operator, and typically one more 
trace from another operator. There was no particular 
reason for this choice of traces and we feel that other 
choices would produce similar results. 

5.3 Expe r imen ta l resul ts 
Experiments with clones based on LQR showed that the 
swing control is not as difficult as it seems to be for 
regression tree clones. Even when a controller acceler­
ates and this causes a huge swing of the rope, the con­
troller usually manages to stabilize the rope angle within 
a few seconds. Most experiments were done wi th con­
trollers where matrices Q and R were restricted to diag­
onal matrices. The reason for this restriction was simply 
in smaller complexity of local optimization. Also, so re­
stricted controllers are easier to comprehend. 

Controllers without subgoals, i.e single LQ controllers 
usually failed to accomplish the task. 

This observation lead us to conclusion that LQ con­
trollers with subgoals should be sought. There is also a 
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Figure 1: Trace 8 of subject S and trace of its clone 

5.4 Robustnes 

The first observation is that the percentage of success­
ful controllers among all the induced ones is above 60%. 
This is a significant improvement over the previous ex­
periments wi th regression trees in the crane domain 
where the reported yield was less than 10%. 

Robustness of controllers was tested by modifying two 
crane parameters: fr iction of the trolley on the trai l and 
cargo weight. During the learning process these two pa­
rameters were as in the original simulator but were than 
changed at clone execution t ime. During testing both 
parameters were changed by -10%>, 0% and 10% wi th 
respect to their original values. For each of the nine 
combinations of parameter settings we get slightly dif­
ferent system dynamics. Twenty controllers which ac­
complished the original task were randomly selected and 
tested. Out of the total of 20 controllers induced from 
traces on the original system, betwen 13 and 18 con-
trollers performed successfully also on the thus modified 
systems. 

These results show that the controllers are rather ro­
bust against the change in the system dynamics. 

The controllers were also tested for their robustness 
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Figure 2: Trace 12 of subject V and trace of its clone 

against changes in the start state, the test where the con­
trollers in the form of decision or regression trees usually 
fai l . Since LQ controllers are goal directed, the change 
of the start state didn' t affect their performance signifi­
cantly. Starting horizontal position was modified by 10% 
and 50%, and starting rope angle by -20%o, 0% and 20%. 
This amounts to six combinations - six different tasks. 
Nineteen of twenty controllers tested accomplished all 
six different tasks. 

The results show that induced controllers perform very 
well and often accomplish the task faster than the orig­
inal operator. 

6 Conclusion 
A new approach to behavioural cloning was presented in 
the paper. In previous work, the cloning problem was 
usually formulated as one of inducing a straightforward 
mapping from system states to actions. Our approach 
on the other hand also involves the induction of a model 
of the dynamics of the controlled system, and takes into 
account the order of the example state-action pairs. It 
in a way enables the identification of subgoals that the 
operator is pursuing at various stages of the execution 
trace. Experiments in the crane domain show that the 
(automatic) breakdown of the control traces into stages 
with their corresponding subgoals is essential for induc­
ing robust controllers. 

The underlying formal basis for the present approach 
to behavioural cloning is the theory of LQ controllers, 
and the cloning problem is here done as the inverse of 
the usual problem of designing an optimal controller. As 
experimental results show, this approach in comparison 
wi th most of the previous experiments greatly improves 
the robustness of induced controllers and the yield of the 
cloning process. 
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