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Abs t rac t 

Topological maps provide a useful abstraction 
for robotic navigation and planning. Although 
stochastic maps can theoretically be learned us­
ing the Baum-Welch algori thm, without strong 
prior constraint on the structure of the model 
it is slow to converge, requires a great deal of 
data, and is often stuck in local minima. In 
this paper, we consider a special case of hid­
den Markov models for robot-navigation envi­
ronments, in which states are associated wi th 
points in a metric configuration space. We as­
sume that the robot has some odometric abi l i ty 
to measure relative transformations between its 
configurations. Such odometry is typically not 
precise enough to suffice for building a global 
map, but it does give valuable local information 
about relations between adjacent states. We 
present an extension of the Baum-Welch algo­
r i thm that takes advantage of this local odo-
metric information, yielding faster convergence 
to better solutions wi th less data. 

1 In t roduc t i on 
Hidden Markov models (HMMs), as well as their exten­
sion to partial ly observable Markov decision processes 
(POMDPs) model a variety of nondeterministic dynami­
cal systems as abstract probabilistic state-transition sys­
tems with discrete states, observations and possibly ac­
tions.1 Such models have proven particularly useful as 
a basis for robot navigation in buildings, providing a 
sound method for localization and planning [Simmons 
and Koenig, 1995; Nourbakhsh et a/., 1995; Cassandra 
et a/., 1996]. Much previous work has required that the 
model be specified manually; this is a tedious process 
and it is often difficult to obtain correct probabilities. 

An ul t imate goal is for an agent to be able to learn 
such models automatically, both for robustness and in 

1 Actions are modeled by POMDPs but not by HMMs. 

order to cope wi th new and changing environments. 
The Baum-Welch algori thm [Rabiner, 1989] is frequently 
used to learn HMMs. Since POMDPs are a simple exten­
sion of HMMs, they can, theoretically, be learned with a 
simple extension to the Baum-Welch algori thm. How­
ever, without strong prior constraint on the structure of 
the model, the Baum-Welch algori thm does not perform 
very well: it is slow to converge, requires a great deal of 
data, and is often stuck in local minima. 

In this paper, we consider a special case of HMMs 
(extendable to POMDPs) for robot navigation, in which 
states are associated wi th points in a metric configura­
tion space. We assume the robot has some odometric 
abil i ty to measure relative transformations between its 
configurations. Such odometry is typically not precise 
enough to suffice for building a global map, but it does 
give valuable local information about relations between 
adjacent states. This information is readily available in 
most robots and is often ignored during the process of 
learning topological maps. We present an extension of 
the Baum-Welch algori thm that takes advantage of this 
local odometric information, yielding faster convergence 
to better solutions wi th less data. 

2 Related W o r k 

There has been a great deal of work on learning maps 
for mobile robotics and on learning stochastic models of 
dynamical systems in general. In this section, we focus 
on map learning for robots. 

Sometimes it is necessary for a robot to know its lo­
cation accurately in terms of metric coordinates; in such 
cases, metric maps are clearly the best choice. In many 
other environments, such as office buildings wi th cor­
ridors and rooms, or networks of roads, maps that sim­
ply specify the topology of important locations and their 
connections suffice. Such maps are typically less complex 
and support much more efficient planning than metric 
maps. Topological maps are bui l t on lower-level abstrac­
tions that allow the robot to move along arcs (perhaps 
by wall- or road-following) and to recognize properties 
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of the locations; they are flexible in allowing a more gen­
eral notion of state, possibly including information such 
as the robot's battery voltage or whether or not it is 
holding a bagel. 

There are two typical strategies for deriving topolog­
ical maps: one is to learn the topological map directly; 
the other is to first learn a geometric map, then to derive 
a topological map through some process of analysis. 

A nice example of the second approach is provided by 
Thrun and Biicken [1996b; 1996a], who use occupancy-
grid techniques to build the init ial map. This strategy 
is appropriate when the primary cues for decomposition 
and abstraction of the map are geometric. However, in 
many cases, the nodes of a topological map are defined 
in terms of other sensory data (e.g. labels on a door). 
Learning a geometric map first also relies on the odo-
metric abilities of a robot; if they are weak and the space 
large, it is very difficult to derive a consistent map. 

We take the approach of learning the topological map 
directly, assuming that abstraction of the robot's per­
ception and action abilities has already been done (we 
do it by hand, but see work of Pierce and Kuipers [1997] 
for an automatic method). Some approaches learn an 
underlying deterministic map of the world, independent 
of the noise in the robot's sensing and action processes. 
We prefer to learn a combined model of the world and 
the robot's interaction with the world; this allows ro­
bust planning that takes into account likelihood of error 
in sensing and action. 

Kuipers and Byun [ l99 l ] provide a strategy for learn­
ing deterministic topological maps. It works well in do­
mains in which most of the noise in the robot's percep­
tion and action is abstracted away, learning from single 
visits to nodes and traversals of arcs. It is unable to han­
dle situations in which long strings of actions and obser­
vations are necessary to disambiguate the robot's loca­
t ion. Another set of learning algorithms, based on the 
theory of learning deterministic finite state automata, 
work in much noisier environments with much less global 
information. Basye, Dean, and Kaelbling [1995] provide 
algorithms for learning deterministic maps given fairly 
strong assumptions; these algorithms come with proba­
bilistic correctness guarantees for learning in polynomial 
t ime with a polynomial amount of data. 

Engelson and McDermott [1992] learn "dikt iometr ic" 
maps (topological maps with metric relations between 
nodes) from experience. The uncertainty model they 
use is interval based rather than probabilistic, and the 
learned representation is deterministic. Ad hoc routines 
handle problems resulting from failures of the uncer­
tainty representation. 

The work most closely related to ours is by Koenig 
and Simmons [1996b; 1996a], who learn POMDP models 
(stochastic topological maps) of a robot hallway environ­

ment. They also recognize the impossibil ity of learning 
such a model without ini t ia l information; they solve the 
problem by using a human-provided topological map, to­
gether with further constraints on the shared structure 
of the model. A modified version of the Baum-Welch al­
gorithm learns the parameters of the model. They also 
developed an incremental version of Baum-Welch that 
allows it to be used on-line in certain kinds of environ­
ments. Their models contain very weak metric informa­
t ion, representing hallways as chains of one-meter seg­
ments and allowing the learning algori thm to select the 
most probable chain length. This method is effective, 
but results in large models wi th size proportional to the 
hallways length. 

We show that, by using odometric information di­
rectly, we can avoid the use of a priori models and stil l 
learn stochastic maps efficiently and effectively. 

3 Models and Assumpt ions 
In the following sections, we describe the model and algo­
rithms used for learning an HMM, rather than a POMDP. 
Extension to POMDPs is technically straightforward but 
notationally more cumbersome. 

The world is composed of a finite set of states. The 
states do not necessarily correspond directly to locations 
of the robot; they may include other state information, 
such as orientation or battery level. The dynamics of 
the world are described by state-transition distributions 
that specify the probability of making transitions from 
one state to the next. There is a finite set of observations 
that can be made in each state; the frequency of such ob­
servations is described by a probabil i ty distr ibution and 
depends only on the current state. In our model, ob­
servations are multi-dimensional, so an observation is a 
vector of values, each chosen from a finite domain. It is 
assumed that observation values are conditionally inde-
pendent, given the state. Each state is assumed to be 
associated with a point in some metric space. Whenever 
a state transition is made, the robot records an odometry 
vector, which estimates the location of the current state 
relative to the previous state. It is assumed that the 
components of the odometry vector are corrupted with 
independent normal noise (extension to dependent noise 
is possible, and requires reestimation of the complete co-
variance matr ix) . 
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Similarly, the state-transition probabilities are computed 
as: 

5 Exper iments 
The goal of this work is to use odometry to improve 
the learning of topological models, while using fewer it­
erations and less data. We tested our algorithm in a 
simple robot-navigation world. Our experiments consist 
of running the algorithm both on data obtained from 
a simulated model and on data gathered by our mobile 
robot, Ramona, which is a modified RWI B21 robot. It 
has a cylindrical synchro-drive base, 24 ultrasonic sen­
sors and 24 infrared sensors, situated evenly around its 
circumference. The infrared sensors are used mostly for 
short-range obstacle avoidance. The ultrasonic sensors 
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F i g u r e 1: True map of the corridors Ramona tra­
versed. 

F i g u r e 3: Learned map of the corridors Ramona tra­
versed. 

are longer ranged, and are used for obtaining (noisy) 
observations of the environment. The amount of data 
gathered by Ramona is used here as a proof of concept 
but is not sufficient for statistical analysis. For the lat­
ter, we use data obtained from the simulated model. 

5.1 R o b o t D o m a i n 

The robot follows a prescribed path through the cor­
ridors in an office environment. Low-level software pro­
vides a level of abstraction that allows the robot to move 
through hallways from intersection to intersection and to 
turn ninety degrees to the left or r ight. At each intersec­
t ion, ultrasonic data interpretation allows the robot to 
perceive, in each of the four cardinal directions, whether 
there is an open space, a door, a wall , or something un­
known. The robot also identifies doors and openings 
that it passes along the corridors. Of course, both the 
action and perception routines are subject to error. Fi­
nally, the robot has encoders on its wheels that allow it 
to estimate its pose (position and orientation) wi th re­
spect to its pose at the previous intersection. The path 
Ramona followed consists of 4 connected corridors in our 
bui lding, which include 17 states, as shown in Figure 1. 

In our simulation, we manually generated an HMM 
representing a prescribed path of the robot through the 
complete office environment, consisting of 44 states, and 
the associated transit ion, observation, and odometric 
distributions. Figure 2 shows the HMM corresponding to 

F i g u r e 2: True map of simulated hallway environment. 

F i g u r e 4: Learned map of the simulated hallway en­
vironment. 

the simulated hallway environment2. Further interpre­
tation of the figures is provided in the following section. 

5.2 Eva lua t ion M e t h o d 
There are a number of different ways of evaluating the re­
sults of a model-learning algori thm. None is completely 
satisfactory, but they all give some insight into the ut i l i ty 
of the results. 

In this domain, there are transitions and observations 
that usually take place, and are therefore more likely 
than the others. Furthermore, the relational information 
gives us a rough estimate of the metric locations of the 
states. To get a qualitative sense of the plausibility of a 
learned model, we can extract an essential map from the 
learned model, consisting of the states, the likely tran-
sitions and the metric measures associated wi th them, 
and ask whether this map corresponds to the essential 
map underlying the true world. 

Figures 1 and 2 are such essential versions of the true 
maps, while Figures 3 and 4 are essential versions of rep­
resentative learned maps. Black dots represent the phys­
ical locations of states. Mul t ip le states (depicted as num­
bers in the plot) associated wi th a single location typi­
cally correspond to different orientations of the robot at 
that location. The larger black circle represents the ini­
t ial state. Arrows represent transitions that have prob­
abil i ty 0.2 or higher. Solid arrows represent the most 

2 Observations and orientation are omitted for clarity. 
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F i g u r e 5: A data sequence gathered by Ramona. 

likely transitions between the states, and dashed arrows 
represent the less likely ones3. Note that the length of 
the arrows is significant and represents the length of the 
corridors, drawn to scale. 

More tradit ionally, in simulation experiments, the 
learned model is quantitatively compared to the actual 
model that generated the data. Each of the models in­
duces a probabil i ty distr ibution on strings of observa­
tions; the asymmetric Kullback-Leibler divergence [Kull-
back and Leibler, 1951] between the two distributions is 
a measure of how good the learned model is with respect 
to the true model. Given a true probability distribution 
P = {p 1 , . . . , p n } and a learned one Q = {q1, . . . ,gn } , the 
KL divergence of Q wi th respect to P is: 

We report our results in terms of a sampled version of 
the KL divergence, as described by Rabiner [1989]. It 
is based on generating sequences of sufficient length (5 
sequences of 1000 observations in our case) according to 
the distr ibut ion induced by the true model, and compar­
ing their likelihoods according to the learned model with 
the true model likelihoods. We ignore the odometry in­
formation when applying the KL measure, thus allowing 
comparison between models that are learned with and 
without odometry. 

5.3 Resul ts 
We let Ramona go around the path depicted in Fig­
ure 1 and collect a sequence of about 300 observations. 
Figure 5 plots the sequence of metric coordinates ob­
tained by accumulating consecutive odometric readings 
(as described in Section 4.3). We applied the learning 
algori thm to the data 40 times. 20 of these runs were 
started from an informed (cluster based) ini t ial model 
and 20 started f rom a random ini t ia l model. (Note that 
there is non-determinism even when using informed ini­
t ial models, since the clustering starts with random k-
means, thus mult iple runs give mult iple results). 

8Bold dashed arrows represent transitions that are almost 
as likely as the most likely. 

F i g u r e 6: A data sequence generated by our simulator. 

Figure 3 shows an essential representation of a typical 
learned map starting from an informed model. The ge­
ometry of the learned map strongly corresponds to that 
of the true map, and most of the states positions were 
learned correctly. Although the figure does not show i t , 
the learned observation distributions at each state match 
well with the true observation distributions. When start­
ing from an uninformed model, the results were not as 
satisfactory, which was predictable. 

For obtaining statistically sufficient information, we 
generated 5 data sequences, each of length 1000, using 
Monte Carlo sampling from the model shown in Figure 2. 
One of these sequences is depicted in Figure 6. The figure 
demonstrates that the noise model used in the simulation 
is indeed compatible wi th the noise pattern associated 
with real robot data. 

We used three different settings of the learning algo­
r i thm: 

• starting from an informed (cluster based) ini t ia l 
model and using odometry information; 

• starting from a random ini t ial model and using 
odometry information; 

• starting from a random init ial model without using 
odometry information (standard Baum-Welch). 

For each sequence and each of the three algorithmic set­
tings we ran the algorithm repeatedly 5 times. In all the 
experiments, TV was set to be 44, which is the "correct" 
number of states; for generalization, it wil l be necessary 
to use cross-validation or regularization methods to se­
lect model complexity. 

Figure 4 shows the essential version of one learned 
map (obtained from the sequence of Figure 6) for a rep­
resentative run. We note that some of the states whose 
locations overlap in the true model (e.g. 8,9) become sep­
arated in the learned model (e.g. 33,17,3), due to noise in 
the odometry readings and observations. However, there 
is an obvious correspondence between groups of states in 
the learned and true models, and most of the transitions 
(as well as the observations, which are not shown) were 
learned correctly. 
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Tab le 1: Average results of three learning settings with 
five training sequences. 

Table 1 lists the KL divergence between the true and 
learned model, as well as the number of runs unt i l conver­
gence was reached, for each of the 5 sequences under each 
of the 3 learning settings, averaged over 5 runs per se­
quence. From the table it is clear that the KL divergence 
with respect to the true model for models learned using 
odometry, starting from either an informed or a random 
init ial model, is about 4 times smaller than for models 
learned without odometry data. The standard deviation 
around the means was about 1.5 for all KL distances. To 
check the significance of our results we used the simple 
two-sample t-test. The models learned using odometric 
information have statistically significantly (p < 0.005) 
lower average KL divergence than the others. 

In addit ion, the number of iterations required for con­
vergence when learning using odornetry information is 
roughly half that required when ignoring odornetry in­
formation. Again, the t-test verifies the significance of 
this result. 

The ini t ial clustering strongly biases the outcome of 
learning; it is important to understand whether this bias 
is useful. When the entire model is initialized at random, 
the convergence t ime (measured in number of iterations) 
as well as the KL measure are somewhat higher on aver­
age, than when starting at an ini t ial model based on clus­
tering. The difference between the two starting points 
is not highly statistically significant since the clustering 
in many cases is not good. When the init ial clustering 
is good, most of the work is already done and the EM 
algorithm quickly fills in the details. However, if the 
ini t ia l clustering is bad, it is often close to a poor local 
min imum and the algori thm is unable to adjust it well. 
It wi l l be important to try more sophisticated clustering 
algorithms. It may be best to run the algori thm mul­
tiple times, some wi th ini t ial clustering and some with­
out, taking the model wi th the highest likelihood as the 
final result. 

To examine the influence of the amount of data on 
the quality of the learned models, we took one of the 
5 sequences (Seq. # 1 ) and used its prefixes of length 
100 to 1000 (the complete sequence), in increments of 
100, as individual sequences. We ran each of the three 
algorithmic settings over each of the 10 prefix sequences, 
10 times repeatedly. We then used the KL-divergence as 
described above to evaluate each of the resulting models 
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Tab le 2: Average results of three learning settings with 
10 incrementally longer sequences . 

F i g u r e 7: Average KL-divergence as a function of the 
sequence length. 

with respect to the true model. For each prefix length 
we averaged the KL-divergence over the 10 runs. 

Table 2 summarizes the results of this experiment. It 
lists the mean KL-divergence over the 10 runs for each 
of the prefixes, as well as the standard deviation around 
this mean. Entries with KL-divergence —> indicate 
that sequences generated by the true model were as­
signed negligible (-0) probabil i ty by the learned model, 
which corresponds to an infinite KL-divergence. The plot 
in Figure 7 depicts the KL-divergence as a function of 
the sequence length for each of the three settings. Both 
the table and the plot demonstrate that, in terms of the 
KL-divergence, our algori thm, which uses odometric in­
formation, is robust in the face of data reduction. In 
contrast, learning without the use of odornetry is much 
more sensitive to reduction in the amount of data. 

Again, we applied the two-sample t-test to verify the 
statistical significance of these results. For example, the 
KL-divergence being greater for sequences of length 800 
than for sequences of length 1000 when learning wi th­
out the use of odornetry is highly statistically significant 
(p << 0.005). In contrast, the KL-divergence is not statis­
tically significantly greater when the odornetry is used, 
for either informed or uninformed models. The informed 
model is even somewhat better, (with moderate statis­
tical significance, p < 0.11), when using the sequence of 
length 800, due to better clustering when there is less 
accumulated noise on the odornetry data. 



We no te t h a t the d a t a sequence is tw ice as " w i d e " 
when o d o m e t r y is used t h a n when i t is no t , t h a t is, there 
is m o r e i n f o r m a t i o n in each e lement o f the sequence when 
o d o m e t r y d a t a is recorded. However, the effort o f record­
i ng th i s a d d i t i o n a l o d o m e t r i c i n f o r m a t i o n i s negl ig ib le , 
a n d is wel l rewarded by the fac t t h a t fewer observat ions 
and less e x p l o r a t i o n are requi red for o b t a i n i n g a d a t a 
sequence suf f ic ient fo r adequate learn ing . 

6 Conclusions 
O d o m e t r i c i n f o r m a t i o n , wh i ch is of ten read i ly ava i lab le , 
makes i t possible to learn HMMs (or P O M D P models) 
fo r r o b o t n a v i g a t i o n ef f ic ient ly and effect ively. I f we 
are in terested in l ea rn ing the geometr ic re la t ionsh ips be­
tween states, us ing the o d o m e t r y readings is obv ious ly 
very he l p f u l . Moreover , ou r exper iments show t ha t even 
when we are on ly in terested in the u n d e r l y i n g topo log i ­
cal m o d e l , us ing o d o m e t r y can bo th reduce the number 
o f i t e ra t i ons requ i red by the a l g o r i t h m and improve the 
resu l t i ng m o d e l , wh i l e r equ i r i ng shor ter d a t a sequences. 

T h e work descr ibed in th is paper i s f a i r l y p re l im ina ry . 
In the very near f u t u r e , we w i l l ex tend the example to 
learn the f u l l y con t ro l l ab le POMDP ra ther t h a n the HMM. 
T h e cu r ren t i m p l e m e n t a t i o n uses a very na ive c lus ter ing 
a l g o r i t h m ; i t w i l l be useful to invest igate more sophis­
t i ca ted c lus te r ing m e t h o d s . T h e a l g o r i t h m described i n 
th i s paper is a ba tch a l g o r i t h m . I t wou ld be useful to 
a d a p t i t t o be an i nc remen ta l on- l ine a l g o r i t h m . F ina l l y , 
we w o u l d l i ke to f i n d an i m p r o v e d M-step t h a t wou ld 
preserve the a d d i t i v i t y cons t ra in t . 

Acknowledgments 
W e t h a n k J i m K u r i e n for p r o v i d i n g and s u p p o r t i n g the 
low level code for R a m o n a , and W i l l i a m S m a r t and Ja­
son Lango fo r he lp ing to keep her a l ive. We are also 
i ndeb ted to J o h n Hughes for the t e r m " a d d i t i v i t y " and 
Sam T r y c h i n for l e t t i n g us use his ska teboard . 

T h i s wo rk was suppo r t ed in pa r t by the A i r Force and 
A R P A under g ran t N o . F30602-95-1-0020, by the N S F in 
c o n j u n c t i o n w i t h A R P A under g ran t No . IR I -9312395 , 
a n d by the N S F under g ran t N o . IR I -9453383 . 

References 
[Basye et al., 1995] K. Basye, T. Dean and L. P. Kaelbl ing. 

Learning dynamics: System identif ication for perceptually 
challenged agents. Artificial Intelligence, 72(1), 1995. 

[Cassandra et al., 1996] A. R. Cassandra, L. P. Kaelbl ing 
and J. A. Kur ien . Ac t ing under uncertainty: Discrete 
Bayesian models for mobile-robot navigation. In Proceed­
ings of JEEE/RSJ International Conference on Intelligent 
Robots and Systems, 1996. 

[Cheeseman et al., 1990] P. Cheeseman et al. Autoclass: A 
Bayesian classification system. In J. W. Shavlik and T. G. 
Diet ter ich, editors, Readings in Machine Learning, pages 
296-306. Morgan-Kaufmann, 1990. 

[Dempster et al., 1977] A. P. Dempster, N. M. La i rd and 
D. B. Rubin. Max imum likelihood f rom incomplete data 
via the EM algor i thm. Journal of the Royal Statistical 
Society, 39(1): 1-38, 1977. 

[Engelson and McDermot t , 1992] S. P. Engelson and D. V. 
McDermot t . Error correction in mobile robot map learn­
ing. In Proceedings of the IEEE International Confer­
ence on Robotics and Automation, pages 2555-2560, Nice, 
France, May 1992. 

[Juang et al., 1986] B. H. Juang, S. E. Levinson and M. M. 
Sondhi. Max imum likelihood estimation for mult ivar iate 
mixture observations of Markov chains. IEEE Transac­
tions on Information Theory, 32(2), March 1986. 

[Juang, 1985] B. H. Juang. Max imum likel ihood estimation 
for mixture mult ivariate stochastic observations of Markov 
chains. AT&T Technical Journal, 64(6), July-August 1985. 

[Koenig and Simmons, 1996a] S. Koenig and R. G. Sim­
mons. Passive distance learning for robot navigation. In 
Proceedings of the Thirteenth International Conference on 
Machine Learning, pages 266-274, 1996. 

[Koenig and Simmons, 1996b] S. Koenig and R. G. Sim­
mons. Unsupervised learning of probabil ist ic models for 
robot navigation. In Proceedings of the IEEE International 
Conference on Robotics and Automation, 1996. 

[Kuipers and Byun, 1991] B. Kuipers and Y . - T . Byun. A 
robot exploration and mapping strategy based on a seman­
tic hierarchy of spatial representations. Journal of Robotics 
and Autonomous Systems, 8:47-63, 1991. 

[Kullback and Leibler, 1951] S. Kul lback and R. A. Leibler. 
On information and sufficiency. Annals of Mathematical 
Statistics, 22( l ) :79-86, 1951. 

[Liporace, 1982] L. A. Liporace. Max imum l ikel ihood esti­
mation for mult ivariate observations of Markov sources. 
IEEE Transactions on Information Theory, 28(5), 1982. 

[Nourbakhsh et al., 1995] I. Nourbakhsh, R. Powers and 
S. Birchfield. Dervish: An office-navigating robot. AI 
Magazine, 16( l ) :53-60, 1995. 

[Pierce and Kuipers, 1997] D. Pierce and B. Kuipers. Map 
learning w i th uninterpreted sensors and effectors. Artificial 
Intelligence, 1997. (To appear). 

[Rabiner, 1989] L. R. Rabiner. A tutor ia l on hidden Markov 
models and selected applications in speech recognit ion. 
Proceedings of the IEEE, 77(2):257-285, February 1989. 

[Shatkay and Kaelbling, 1997] H. Shatkay and L. P. Kael­
bl ing. Learning hidden Markov models w i th geometric 
information. Technical Report CS-97-04, Department of 
Computer Science, Brown University, Apr i l 1997. 

[Simmons and Koenig, 1995] R. G. Simmons and S. Koenig. 
Probabil istic navigation in part ial ly observable environ­
ments. In Proceedings of the International Joint Confer­
ence on Artificial Intelligence, 1995. 

[Thrun and Biicken, 1996a] S. T h r u n and A. Biicken. Inte­
grat ing grid-based and topological maps for mobile robot 
navigation. In Proceedings of the Thirteenth National Con­
ference on Artificial Intelligence, pages 944-950, 1996. 

[Thrun and Biicken, 1996b] S. T h r u n and A. Biicken. Learn­
ing maps for indoor mobile robot navigation. Techni­
cal Report CMU-CS-96-121, School of Computer Science, 
Carnegie Mellon University, Pi t tsburgh, PA, Apr i l 1996. 

S H A T K A Y & K A E L B L I N G 927 





LEARNING 

Learning 8 


