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Abstract

Topological maps provide a useful abstraction
for robotic navigation and planning. Although
stochastic maps can theoretically be learned us-
ing the Baum-Welch algorithm, without strong
prior constraint on the structure of the model
it is slow to converge, requires a great deal of
data, and is often stuck in local minima. In
this paper, we consider a special case of hid-
den Markov models for robot-navigation envi-
ronments, in which states are associated with
points in a metric configuration space. We as-
sume that the robot has some odometric ability
to measure relative transformations between its
configurations. Such odometry is typically not
precise enough to suffice for building a global
map, but it does give valuable local information
about relations between adjacent states. We
present an extension of the Baum-Welch algo-
rithm that takes advantage of this local odo-
metric information, yielding faster convergence
to better solutions with less data.

1 Introduction

Hidden Markov models (HMMs), as well as their exten-
sion to partially observable Markov decision processes
(POMDPs) model a variety of nondeterministic dynami-
cal systems as abstract probabilistic state-transition sys-
tems with discrete states, observations and possibly ac-
tions.' Such models have proven particularly useful as
a basis for robot navigation in buildings, providing a
sound method for localization and planning [Simmons
and Koenig, 1995; Nourbakhsh et a/., 1995; Cassandra
et al., 1996]. Much previous work has required that the
model be specified manually; this is a tedious process
and it is often difficult to obtain correct probabilities.
An ultimate goal is for an agent to be able to learn
such models automatically, both for robustness and in

' Actions are modeled by POMDPs but not by HMMs.
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order to cope with new and changing environments.
The Baum-Welch algorithm [Rabiner, 1989] is frequently
used to learn HMMs. Since POMDPs are a simple exten-
sion of HMMs, they can, theoretically, be learned with a
simple extension to the Baum-Welch algorithm. How-
ever, without strong prior constraint on the structure of
the model, the Baum-Welch algorithm does not perform
very well: it is slow to converge, requires a great deal of
data, and is often stuck in local minima.

In this paper, we consider a special case of HMMs
(extendable to POMDPs) for robot navigation, in which
states are associated with points in a metric configura-
tion space. We assume the robot has some odometric
ability to measure relative transformations between its
configurations. Such odometry is typically not precise
enough to suffice for building a global map, but it does
give valuable local information about relations between
adjacent states. This information is readily available in
most robots and is often ignored during the process of
learning topological maps. We present an extension of
the Baum-Welch algorithm that takes advantage of this
local odometric information, yielding faster convergence
to better solutions with less data.

2 Related Work

There has been a great deal of work on learning maps
for mobile robotics and on learning stochastic models of
dynamical systems in general. In this section, we focus
on map learning for robots.

Sometimes it is necessary for a robot to know its lo-
cation accurately in terms of metric coordinates; in such
cases, metric maps are clearly the best choice. In many
other environments, such as office buildings with cor-
ridors and rooms, or networks of roads, maps that sim-
ply specify the topology of important locations and their
connections suffice. Such maps are typically less complex
and support much more efficient planning than metric
maps. Topological maps are built on lower-level abstrac-
tions that allow the robot to move along arcs (perhaps
by wall- or road-following) and to recognize properties



of the locations; they are flexible in allowing a more gen-
eral notion of state, possibly including information such
as the robot's battery voltage or whether or not it is
holding a bagel.

There are two typical strategies for deriving topolog-
ical maps: one is to learn the topological map directly;
the other is to first learn a geometric map, then to derive
a topological map through some process of analysis.

A nice example of the second approach is provided by
Thrun and Biicken [1996b; 1996a], who use occupancy-
grid techniques to build the initial map. This strategy
is appropriate when the primary cues for decomposition
and abstraction of the map are geometric. However, in
many cases, the nodes of a topological map are defined
in terms of other sensory data (e.g. labels on a door).
Learning a geometric map first also relies on the odo-
metric abilities of a robot; if they are weak and the space
large, it is very difficult to derive a consistent map.

We take the approach of learning the topological map
directly, assuming that abstraction of the robot's per-
ception and action abilities has already been done (we
do it by hand, but see work of Pierce and Kuipers [1997]
for an automatic method). Some approaches learn an
underlying deterministic map of the world, independent
of the noise in the robot's sensing and action processes.
We prefer to learn a combined model of the world and
the robot's interaction with the world; this allows ro-
bust planning that takes into account likelihood of error
in sensing and action.

Kuipers and Byun [I199]] provide a strategy for learn-
ing deterministic topological maps. It works well in do-
mains in which most of the noise in the robot's percep-
tion and action is abstracted away, learning from single
visits to nodes and traversals of arcs. It is unable to han-
dle situations in which long strings of actions and obser-
vations are necessary to disambiguate the robot's loca-
tion. Another set of learning algorithms, based on the
theory of learning deterministic finite state automata,
work in much noisier environments with much less global
information. Basye, Dean, and Kaelbling [1995] provide
algorithms for learning deterministic maps given fairly
strong assumptions; these algorithms come with proba-
bilistic correctness guarantees for learning in polynomial
time with a polynomial amount of data.

Engelson and McDermott [1992] learn "diktiometric"
maps (topological maps with metric relations between
nodes) from experience. The uncertainty model they
use is interval based rather than probabilistic, and the
learned representation is deterministic. Ad hoc routines
handle problems resulting from failures of the uncer-
tainty representation.

The work most closely related to ours is by Koenig
and Simmons [1996b; 1996a], who learn POMDP models
(stochastic topological maps) of a robot hallway environ-

ment. They also recognize the impossibility of learning
such a model without initial information; they solve the
problem by using a human-provided topological map, to-
gether with further constraints on the shared structure
of the model. A modified version of the Baum-Welch al-
gorithm learns the parameters of the model. They also
developed an incremental version of Baum-Welch that
allows it to be used on-line in certain kinds of environ-
ments. Their models contain very weak metric informa-
tion, representing hallways as chains of one-meter seg-
ments and allowing the learning algorithm to select the
most probable chain length. This method is effective,
but results in large models with size proportional to the
hallways length.

We show that, by using odometric information di-
rectly, we can avoid the use of a priori models and still
learn stochastic maps efficiently and effectively.

3 Models and Assumptions

In the following sections, we describe the model and algo-
rithms used for learning an HMM, rather than a POMDP.
Extension to POMDPs is technically straightforward but
notationally more cumbersome.

The world is composed of a finite set of states. The
states do not necessarily correspond directly to locations
of the robot; they may include other state information,
such as orientation or battery level. The dynamics of
the world are described by state-transition distributions
that specify the probability of making transitions from
one state to the next. There is a finite set of observations
that can be made in each state; the frequency of such ob-
servations is described by a probability distribution and
depends only on the current state. In our model, ob-
servations are multi-dimensional, so an observation is a
vector of values, each chosen from a finite domain. It is
assumed that observation values are conditionally inde-
pendent, given the state. Each state is assumed to be
associated with a point in some metric space. Whenever
a state transition is made, the robot records an odometry
vector, which estimates the location of the current state
relative to the previous state. It is assumed that the
components of the odometry vector are corrupted with
independent normal noise (extension to dependent noise
is possible, and requires reestimation of the complete co-
variance matrix).

More formally, 2 model is a
(5,0,A, B, R, ), where

s §={s1,...,8n} is a finite set of ¥ states;

tuple A =

e 0= H:=1 0; is a finite set of observation vectors of
length I; the ith element of an observation vector is
chosen from the finite set O;;

e A is a stochastic transition matrix, with A;; =
Prigie1 = 8ilge = 8); 1 <4, < N; q; is the state at
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time t;

o B is an array of ! stochastic observation matri-
ces, with By ;. = Pr(WV[i] = olg: = 5;); 1 £i <Y,
1 <7 £ N,0€ Oy; V; is the observation vector at
time t;

e R is a relation matrix, specifying for each pair
of states, s; and 5;, the mean and variance of
the D-dimensional metric relation between them;
u(R; ;k]) is the mean of the kth component of
the relation between s; and #; and o?(R,;[k]),
the wvariance; furthermore, R is geometrically
consistent: for each component &k, the relation
R*(a,4) S y(Ras[k]) must be a directed metric, sat-
isfying the following properties for all states a, &,
and c:

o R*(e,a) = 0;
o R*(a,b) = =R*(b,a) (anti-symmetry); and
o R*(a,c) = R*(a,b) + R*(b,c) (additivity);

e 7 i8 a stochastic initial probability vector describing
the distribution of the initial state; for simplicity it
is assumed here to be {1,0,0,...,0}, implying that
the robot is always started in state sq.

A learning algorithmn starts from an initial model A;
and is given a sequence of experience F; it returns a
revised model A, with the goal of maximizing Pr(E}}).
The experience sequence E is of length T'; each element is
a pair {r, Vi), where r; is the observed relation between
¢:-1 and ¢; and 1} is the observation vector at time (.

To extend the above model to a POMDP, actions need
to be introduced into the model. Each possible action
is associated with a separate set of three matrices 4, B
and R. In addition, each item in the expetrience sequence
E contains the action which caused the transition and
the observation associated with it. The algorithmic com-
plexity of learning a POMDP compared with that of learn-
ing an HMM is within a factor proportional to the number
of possible actions, which is usually much smaller than
the number of states.

4 Algorithm

Our algorithm is a straightforward extension of Baum-
Welch to deal with the relational information and the
factored observation sets. The Baum-Welch algorithm is
an expectation-maximization {EM) algorithm [Dempster
et al., 1977k it alternates between

» the E-step of computing the state-occupation prob-
abilities v at each time in the sequence given E and
the current model A, and

o the M-step of finding a new model A that maximizes
Pr{E|A, ¥).
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An EM algorithm is guaranteed to provide monotoni-
cally increasing convergence of Pr{£]A). Baum-Welch
has been proven to be an EM algorithm; it has also been
provably extended to real-valued observations {Liporace,
1882; Juang, 1985]. Qur algorithm introduces an addi-
tional matrix, and enforces the first two geometric con-
sistency conatraints on the M-step, but like the standard
Baum-Welch it is still guaranteed to converge to a local
maximum of the likelihood function [Shatkay and Kael-
bling, 1997). The proof is along the lines of the one
presented by Juang et al [1986] for the standard Baum-
Welch algorithm, and is beyond the scope of this paper.

4.1 Computing State-Occupation
Probabilities

Following Rabiner [1989], we first compute the forward
{a) and backward {#) matrices. When all measurements
are discrete, a.(f) is the probability of observing £,
through E, and g, = s;, given X; and 8 (i) is the proba-
bility of observing E,4; through Ey_, given ¢; = s; and
A. When some of the measurements are continuous (as
is the case with R), these matrices contain probability
density values rather than probabilities.

The forward procedure for calculating the o matrix is
initialized with

§ e gm
aoli) = { b ifw{i) =1

0 otherwise ,
and continued for 0 < ¢ < T — 1 with
ar(§) = Y aeoa{i) A f(re| Ri)b
i

where f(r¢|f; ;) is the density at point r, according to
the normal distribution represented by the means and
variances in entry 1, j of the relation matrix R, and & is
the probability of observing vector v; in state s;; that is,

i ¢
8 = Iliz1 Biwdi) -

The backward procedure for caiculating the g matrix
is initialized with

Bral)=1,

and continued for 0 <t < T — 1 with

Be(i) = Bier (i) Ais flreas | Ri )by, -
. ,

Given o and 8, we now compute the state-occupation
and state-transition probabilities (-y and £ respectively).
The state-occupation probabilities are computed as fol-
lows:

flg: = 8, E\))
F(E{X)

Prig: = 6;)E,A) =
a(i)B:(i)
N
Y (B )

i=3

1 (5)



Similarly, the state-transition probabilities are computed
as:

(i J)

Pr(ge = 8i,9t41 = 8;|E, X)

o () Aig 141 (reas | R 5) Bea (3)
N N

33 anli) A1 flret| B ) Bega ()

i=1j5=1

We note that the numerator and the denominator in the
fractions are both density functions, but the quotient is
a discrete probability function. These are essentinlly the
same formulae appearing in [Rabiner, 1989), hui, taking
into account the density of the relational observalion.

4.2 Updating Model Parameters

In this phase of the algorithm, the goal is to find a new
model, A, that maximizes P{E|A,v). Generally, this is
done by simple maximum-likelihood estimation of the
probability distributions in A and B by computing ex-
pected transition and obsesvation frequencies. It is more
difficult in our model, because we must also compute a
new relation matrix, R, under the constraint that it re-
main geometrically consistent.

The A and B matrtices can be straightforwardly re-
estimated; A;; is the expected pumber of transitions
from s; to s; divided by the expected number of transi-
tions from s,:

A; Zr-—o Ef[' J}
WS TST- o
e=0 (i)
and B, ;. is the expected number of times o is observed

along the ith dimeusion when in 5; divided by the ex-
pected number of times of being in #;:

_ ,_0 f[Vl[i] —Oht(.?)
Et —n Yeli

where I(c) is an indicator function with value 1 if ¢ is
true and 0 otherwise.

If we were not going to enforce geometrical consis-
tency, then the R matrix would be re-estimated by:

too rilklé (i, 4)
I = __—__

(R 5 (k]) ‘=° &[‘ 7

2:1;:_02["8{*] #{R:,a[kl)]zfr(m}

g-..u 51(’ J] *

By .o

o’ (R, 5[k}

In the current implementation, we enforce only two
of the three constraints of geometrical consistency, Zero
distances between states and themselves are trivially en-
forced. Anti-symmetry is enforced by using the data

from s; to s; as well as from s; to s; when reestimat-
ing (i ;). Thus the actual reestimation formula for

u(B ) is:

i [fs[k]&(', 7 ekl )]
Too 6 §) + &G, 9]

The additivity constraint is not currently enforced
through the updates, although it is satisfied in the ini-
tial tnodels, thus biasing the learned model towards sat-
isfying it. We are exploring some relaxation techniques,
based on spring systems, for enforcing the additivity con-
straint. The complexity of the algorithin per iteration is
still O(T'N?), like the standard Baum-Welch.

4.3 Finding an Initial Model

It is typical in instances of the Baum-Welch algorithm
to simply initialize the model at random, perhaps try-
ing multiple initial models to find different local like-
lihood maxima. We have tried random initial models,
as well as starting from a more informed model, based
on the odometry information. In both the random and
informed initializations the initial R matrix satisfies all
Lhree properties of geometrical consistency.

To build an informed model, we begin by assigning
global metric coordinates to each element in the sequence
E. This is done by accumulating the observed relations
hetween consecutive pairs of states., This data set (ig-
noring other observation information) is fed into a simple
k-means clustering algorithm, yielding a clustering of the
data into N clusters. The clusters are taken to be the
states, and the observations associated with a given clus-
ter are interpreied as having been generated in the asso-
ciated stale. We Lher compute 4 and £ values, with Lthe v
values being 0 or 1, since we use a deterministic cluster-
ing algorithm (it might be beneficial to use a stochastic
clustering algorithm, such as Autoclass [Cheeseman et
al., 1990]). The A, B, and R matrices ate all estimated
frotn 4 and £ as described in the previous section, Fi-
nally, an ad hoc process is used to adjust R to satisfy the
additivity constraint.

H(Ri;[K]) =

5 Experiments

The goal of this work is to use odometry to improve
the learning of topological models, while using fewer it-
erations and less data. We tested our algorithm in a
simple robot-navigation world. Our experiments consist
of running the algorithm both on data obtained from
a simulated model and on data gathered by our mobile
robot, Ramona, which is a modified RWI B21 robot. It
has a cylindrical synchro-drive base, 24 ultrasonic sen-
sors and 24 infrared sensors, situated evenly around its
circumference. The infrared sensors are used mostly for
short-range obstacle avoidance. The ultrasonic sensors
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Figure 1: True map of the corridors Ramona tra-
versed.

_'l. 18 4 u oz

12@-——- o - &

. &
“5 4
#

=

'i_
"
L
L]
LJ
-
"
¥
1
1
1
L}
1
1
¥
]
b
1
I
1
+
1
I
b
]
]
1
¥
]
1
]
1
1
1
]
1
1
]
1

o e

Figure 3: Learned map of the corridors Ramona tra-
versed.

are longer ranged, and are used for obtaining (noisy)
observations of the environment. The amount of data
gathered by Ramona is used here as a proof of concept
but is not sufficient for statistical analysis. For the lat-
ter, we use data obtained from the simulated model.

5.1 Robot Domain

The robot follows a prescribed path through the cor-
ridors in an office environment. Low-level software pro-
vides a level of abstraction that allows the robot to move
through hallways from intersection to intersection and to
turn ninety degrees to the left or right. At each intersec-
tion, ultrasonic data interpretation allows the robot to
perceive, in each of the four cardinal directions, whether
there is an open space, a door, a wall, or something un-
known. The robot also identifies doors and openings
that it passes along the corridors. Of course, both the
action and perception routines are subject to error. Fi-
nally, the robot has encoders on its wheels that allow it
to estimate its pose (position and orientation) with re-
spect to its pose at the previous intersection. The path
Ramona followed consists of 4 connected corridors in our
building, which include 17 states, as shown in Figure 1.

In our simulation, we manually generated an HMM
representing a prescribed path of the robot through the
complete office environment, consisting of 44 states, and
the associated transition, observation, and odometric
distributions. Figure 2 shows the HMM corresponding to
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Figure 4: Learned map of the simulated hallway en-
vironment.

the simulated hallway environment?. Further interpre-
tation of the figures is provided in the following section.

5.2 Evaluation Method

There are a number of different ways of evaluating the re-
sults of a model-learning algorithm. None is completely
satisfactory, but they all give some insight into the utility
of the results.

In this domain, there are transitions and observations
that usually take place, and are therefore more likely
than the others. Furthermore, the relational information
gives us a rough estimate of the metric locations of the
states. To get a qualitative sense of the plausibility of a
learned model, we can extract an essential map from the
learned model, consisting of the states, the likely tran-
sitions and the metric measures associated with them,
and ask whether this map corresponds to the essential
map underlying the true world.

Figures 1 and 2 are such essential versions of the true
maps, while Figures 3 and 4 are essential versions of rep-
resentative learned maps. Black dots represent the phys-
ical locations of states. Multiple states (depicted as num-
bers in the plot) associated with a single location typi-
cally correspond to different orientations of the robot at
that location. The larger black circle represents the ini-
tial state. Arrows represent transitions that have prob-
ability 0.2 or higher. Solid arrows represent the most

2 Observations and orientation are omitted for clarity.
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Figure 5: A data sequence gathered by Ramona.

likely transitions between the states, and dashed arrows
represent the less likely ones®. Note that the length of
the arrows is significant and represents the length of the
corridors, drawn to scale.

More traditionally, in simulation experiments, the
learned model is quantitatively compared to the actual
model that generated the data. Each of the models in-
duces a probability distribution on strings of observa-
tions; the asymmetric Kullback-Leibler divergence [Kull-
back and Leibler, 1951] between the two distributions is
a measure of how good the learned model is with respect
to the true model. Given a true probability distribution
P = {p4,...,pn} and a learned one Q = {q4, ...,gn}, the
KL divergence of Q with respect to P is:

D(PI|Q) ¥ Zp.-:og%
i=1 1

We report our results in terms of a sampled version of
the KL divergence, as described by Rabiner [1989]. It
is based on generating sequences of sufficient length (5
sequences of 1000 observations in our case) according to
the distribution induced by the true model, and compar-
ing their likelihoods according to the learned model with
the true model likelihoods. We ignore the odometry in-
formation when applying the KL measure, thus allowing
comparison between models that are learned with and
without odometry.

5.3 Results

We let Ramona go around the path depicted in Fig-
ure 1 and collect a sequence of about 300 observations.
Figure 5 plots the sequence of metric coordinates ob-
tained by accumulating consecutive odometric readings
(as described in Section 4.3). We applied the learning
algorithm to the data 40 times. 20 of these runs were
started from an informed (cluster based) initial model
and 20 started from a random initial model. (Note that
there is non-determinism even when using informed ini-
tial models, since the clustering starts with random k-
means, thus multiple runs give multiple results).

®Bold dashed arrows represent transitions that are almost
as likely as the most likely.

] T
L= 2
et 4111 1P

Figure 6: A data sequence generated by our simulator.

Figure 3 shows an essential representation of a typical
learned map starting from an informed model. The ge-
ometry of the learned map strongly corresponds to that
of the true map, and most of the states positions were
learned correctly. Although the figure does not show it,
the learned observation distributions at each state match
well with the true observation distributions. When start-
ing from an uninformed model, the results were not as
satisfactory, which was predictable.

For obtaining statistically sufficient information, we
generated 5 data sequences, each of length 1000, using
Monte Carlo sampling from the model shown in Figure 2.
One of these sequences is depicted in Figure 6. The figure
demonstrates that the noise model used in the simulation
is indeed compatible with the noise pattern associated
with real robot data.

We used three different settings of the learning algo-
rithm:

+ starting from an informed (cluster based) initial
model and using odometry information;

+ starting from a random initial model and using
odometry information;

+ starting from a random initial model without using
odometry information (standard Baum-Welch).

For each sequence and each of the three algorithmic set-
tings we ran the algorithm repeatedly 5 times. In all the
experiments, TV was set to be 44, which is the "correct"
number of states; for generalization, it will be necessary
to use cross-validation or regularization methods to se-
lect model complexity.

Figure 4 shows the essential version of one learned
map (obtained from the sequence of Figure 6) for a rep-
resentative run. We note that some of the states whose
locations overlap in the true model (e.g. 8,9) become sep-
arated in the learned model (e.g. 33,17,3), due to noise in
the odometry readings and observations. However, there
is an obvious correspondence between groups of states in
the learned and true models, and most of the transitions
(as well as the observations, which are not shown) were
learned correctly.
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Sug. Informed Handom No Odo Seq. Informed Randeom No Ode
* XL Tear. 3 KL Tter, # KL Iter. # length || Mean | Std. || Mean | Std. Mean | Std.
1 7047 | 0340 || 3797 | 110.00 ]| 10.130 | 201.80 KL | Dev. KL | Dev. KL | Dev. |
2 T338 | B400 || 2.830 | B3.00 || 11.400 | 31380 | [ 1060 ]| 2.087 | 0.71 || 5.018 | 1.24 || [0.130 | 1.50 ]
3 5572 BLAD || S.088 | 15000 11,683 | 195.40 R00 || 1.805 | 0.28 || 2.084 1.75 13.310 | 1.26
[} 7185 | 85.90 A58 | 114.20 || 11810 | 2%4.00 600 2.353 | 1.14 2.580 1 1.36 14842 { 1.62
g 4.154 11620 AETT | 102.40 13.258 | 156.80 400 1953 | 060 7.801 1.69 T2.714 | 469 ||
300 3,925 153 3.32_3 1,60 - o NA
. . : : 20D 5.3 .09 ¥ 480 5.26 = oo A
Table 1: Average results of three learning settings with 100 — WA = A — NA

five training sequences.

Table 1 lists the KL divergence between the true and
learned model, as well as the number of runs until conver-
gence was reached, for each of the 5 sequences under each
of the 3 learning settings, averaged over 5 runs per se-
quence. From the table it is clear that the KL divergence
with respect to the true model for models learned using
odometry, starting from either an informed or a random
initial model, is about 4 times smaller than for models
learned without odometry data. The standard deviation
around the means was about 1.5 for all KL distances. To
check the significance of our results we used the simple
two-sample t-test. The models learned using odometric
information have statistically significantly (p < 0.005)
lower average KL divergence than the others.

In addition, the number of iterations required for con-
vergence when learning using odornetry information is
roughly half that required when ignoring odornetry in-
formation. Again, the t-test verifies the significance of
this result.

The initial clustering strongly biases the outcome of
learning; it is important to understand whether this bias
is useful. When the entire model is initialized at random,
the convergence time (measured in number of iterations)
as well as the KL measure are somewhat higher on aver-
age, than when starting at an initial model based on clus-
tering. The difference between the two starting points
is not highly statistically significant since the clustering
in many cases is not good. When the initial clustering
is good, most of the work is already done and the EM
algorithm quickly fills in the details. However, if the
initial clustering is bad, it is often close to a poor local
minimum and the algorithm is unable to adjust it well.
It will be important to try more sophisticated clustering
algorithms. It may be best to run the algorithm mul-
tiple times, some with initial clustering and some with-
out, taking the model with the highest likelihood as the
final result.

To examine the influence of the amount of data on
the quality of the learned models, we took one of the
5 sequences (Seq. #1) and used its prefixes of length
100 to 1000 (the complete sequence), in increments of
100, as individual sequences. We ran each of the three
algorithmic settings over each of the 10 prefix sequences,
10 times repeatedly. We then used the KL-divergence as
described above to evaluate each of the resulting models
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Table 2: Average results of three learning settings with
10 incrementally longer sequences .
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Figure 7: Average KL-divergence as a function of the
sequence length.

with respect to the true model. For each prefix length
we averaged the KL-divergence over the 10 runs.

Table 2 summarizes the results of this experiment. It
lists the mean KL-divergence over the 10 runs for each
of the prefixes, as well as the standard deviation around
this mean. Entries with KL-divergence —> = indicate
that sequences generated by the true model were as-
signed negligible (-0) probability by the learned model,
which corresponds to an infinite KL-divergence. The plot
in Figure 7 depicts the KL-divergence as a function of
the sequence length for each of the three settings. Both
the table and the plot demonstrate that, in terms of the
KL-divergence, our algorithm, which uses odometric in-
formation, is robust in the face of data reduction. In
contrast, learning without the use of odornetry is much
more sensitive to reduction in the amount of data.

Again, we applied the two-sample t-test to verify the
statistical significance of these results. For example, the
KL-divergence being greater for sequences of length 800
than for sequences of length 1000 when learning with-
out the use of odornetry is highly statistically significant
(p << 0.005). In contrast, the KL-divergence is not statis-
tically significantly greater when the odornetry is used,
for either informed or uninformed models. The informed
model is even somewhat better, (with moderate statis-
tical significance, p < 0.11), when using the sequence of
length 800, due to better clustering when there is less
accumulated noise on the odornetry data.



We note that the data sequence is twice as "wide"
when odometry is used than when it is not, that is, there
is more information in each element of the sequence when
odometry data is recorded. However, the effort of record-
ing this additional odometric information is negligible,
and is well rewarded by the fact that fewer observations
and less exploration are required for obtaining a data
sequence sufficient for adequate learning.

6 Conclusions

Odometric information, which is often readily available,
makes it possible to learn HMMs (or POMDP models)
for robot navigation efficiently and effectively. If we
are interested in learning the geometric relationships be-
tween states, using the odometry readings is obviously
very helpful. Moreover, our experiments show that even
when we are only interested in the underlying topologi-
cal model, using odometry can both reduce the number
of iterations required by the algorithm and improve the
resulting model, while requiring shorter data sequences.

The work described in this paper is fairly preliminary.
In the very near future, we will extend the example to
learn the fully controllable POMDP rather than the HMM.
The current implementation uses a very naive clustering
algorithm; it will be useful to investigate more sophis-
ticated clustering methods. The algorithm described in
this paper is a batch algorithm. It would be useful to
adapt it to be an incremental on-line algorithm. Finally,
we would like to find an improved M-step that would

preserve the additivity constraint.
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