
Minimum Splits Based Discretization for Continuous Features 

Ke Wang and Han Chong Goh 
Dept of Information Systems and Computer Science 

National University of Singapore 
Lower Kent Ridge Road, Singapore, 119260 

wangk@iscs.nus.sg 

Abs t rac t 

Discretization refers to spl i t t ing the range of 
continuous values into intervals so as to pro­
vide useful information about classes. This is 
usually done by minimizing a goodness mea­
sure, subject to constraints such as the maxi­
mal number of intervals, the minimal number 
of examples per interval, or some stopping cri­
terion for spl i t t ing. We take a different ap­
proach by searching for minimum splits that 
minimize the number of intervals wi th respect 
to a threshold of impuri ty (i.e., badness). We 
propose a "total entropy" motivated selection 
of the "best" split from min imum splits, wi th­
out requiring additional constraints. Experi­
ments show that the proposed method produces 
better decision trees. 

1 In t roduc t ion 
Continuous values refer to linearly ordered values, 
mainly numeric values. While continuous values are 
common in real applications, many learning algorithms 
focus on unordered discrete values. A common practice 
is to discretize continuous values into intervals so as to 
provide useful information wi th respect to classes. Dis­
cretization can be performed either on the whole dataset 
prior to induction, i.e, global discretization, or on local 
regions during induction, i.e., local discretization. We 
focus on local discretization as it takes into account the 
context sensitivity of the nature. One example of local 
discretization is the entropy-based C4.5 [Quinlan, 1993], 
in which continuous values are split into two intervals, 
i.e., binary spl i t t ing, for consideration at a node. How­
ever, as pointed out in [Fayyad and Irani , 1993], an in­
teresting range is usually an internal interval within the 
feature's range, and to get to such an interval a binary-
split-at-a-time leads to unnecessary and excessive part i ­
tioning of the examples. We now provide further reasons 
for multi-way splits. 

One frequent argument against mult i-way spli t t ing is 
that a multi-way split can be "simulated" by a series of 
binary splittings. Though theoretically true, this argu­
ment is false in the process of generating decision trees 
where there is no guarantee that all "simulating" binary 
splittings wi l l be finished up before considering other 
features because the spl i t t ing at each level is performed 
independently. As a result, a structured multi-way split 
is hardly simulated by binary splits in practice. In ad­
di t ion, by restricting to only binary splits, an unstruc­
tured feature could be selected instead of a structured 
but never explored multi-way split of a continuous fea­
ture, making the simple structure disappear. Consider 
the following two decision trees bui l t in one of the 10-
fold cross validation on Iris dataset. The first tree is 
produced by the mult i-way split proposed in this paper, 
and the second by C4.5. Though both trees have the 
same size and same error rate on test data, the first tree 
classifies most examples at the first level using simple 
rules and thus is preferred. The reason why C4.5 didn' t 
select petal length at the first level is because the op­
t imal binary split of petal length loses to that of petal 
width. As a result, the simple one-level test for most 
examples, as in the first tree, is not discovered. This 
example also reveals the bias of the tree size measure: 
it does not take the frequency, i.e., importance, of rules 
into consideration. 

942 LEARNING 



The brute-force solution is exponential in k - 1, where k 
is the number of intervals considered. Since the number 
of intervals in a multi-way split is unknown and not fixed 
a prior, goodness measures such as the gain that are al­
ways improved by further spli t t ing do not work directly, 
and have to be coupled wi th other constraints or criteri-
ons. In this paper, we address the search problem in two 
steps. First, we define the notion of minimum splits as 
a necessary condition for a good split. A minimum split 
wrt a threshold of impuri ty is a split that minimizes the 
number of intervals subject to the threshold. We propose 
a dynamic programming algorithm for finding a mini­
mum split for any impur i ty measure that is additive in 
the sense that the impur i ty of several intervals is the sum 
of the impurities of each interval. This includes most 
standard impuri ty measures, such as entropy [Quinlan, 
1993], twoing rule and Gini index [Breiman et al., 1984], 
Sum Minority, inconsistency rate, and others. The dy­
namic programming algorithm runs in a quadratic time 
in the number of starting intervals. We describe two ap­
proximation algorithms that can compute nearly optimal 
solutions efficiently for large datasets. 

We then propose a method of determining the "best" 
split f rom a collection of min imum splits called candidate 
splits, found in a single run of the algorithm for finding 
minimum splits. The "best" split of continuous values is 
the candidate split that has the smallest product of en­
tropy and number of intervals. Intuitively, this product 
measures the total information, rather than the average 
information like the standard entropy, of all intervals. 
We compared the proposed minimum split method wi th 
Release 8 of C4.5, a substantial improvement of early re­
leases on handling continuous values. The study shows 
that multi-way splits usually build decision trees that are 
shallow and classify more examples at upper levels of the 
tree, compared to binary splits. We propose the notion 
of testing depth to capture this aspect of simplicity of 
decision trees, which is not addressed by the tree size. 

Several recent papers have examined discretization of 
continuous values. One approach, e.g., [Kerber, 1992; 
Richeldi and Rossotto, 1995], starts with one inter­
val per value and repeatedly merges adjacent intervals 
based on some "similari ty" measure. It could be diffi­
cult to specify a good threshold of similarity so that not 
too many intervals are constructed. Another approach 
aims at finding a split that optimizes some goodness 
criterion. Examples are [Quinlan, 1993; Catlett, 1991; 
Holte, 1993; Chiu et a/., 1990; Fulton et a/., 1995; 
Auer et a/., 1995]. See [Dougherty et a/., 1995 ] for 
more on these work. In these methods, additional con­
straints, such as the maximum number of intervals, 
the min imum number of examples in each interval, a 
penalty function on the number of intervals, are needed 
to control the number of intervals. [Catlett, 1991; 

WANG 6c GOH 943 



strong min imum split. The min imum split problem has 
immediate application in feature selection. For example, 
if the impuri ty measure is the inconsistency rate, detect­
ing irrelevant continuous features is equivalent to finding 
features whose min imum splits wi th respect to zero im­
purity have only one interval. As another example, if a 
discrete feature A has entropy a, solving the minimum 
split problem for a continuous feature C w i th respect to 
a gives the min imum number of intervals for C to beat 
A in entropy. W i t h this information, one can choose the 
feature that has fewer branches. 

944 LEARNING 



WANG & GOH 945 



2.1 is reduced to k'2. In general, the switching point k' 
represents a trade-off between opt imal i ty and speed. 

3 The op t ima l sp l i t 
We now address the central question of how to determine 
the optimal split for a continuous feature at a node of 
decision trees. Once the opt imal split is determined for 
every continuous feature, any existing selection criterion 
for discrete features is applied to select the best feature 
at the node. We use the entropy [Quinlan, 1993] as the 
impuri ty measure. 

As motivated in Section 2, a good split must be a min­
imum split, therefore we consider only minimum splits 
when searching for the opt imal split. Since any thresh­
old larger than eb gives a min imum split having at most 
two intervals, where eb is the entropy of opt imal binary 
splits, we need only to consider thresholds not more than 
eb. In other words, the search space of the optimal split 
is the set of min imum splits of X1,..., Xk wrt x, where 
x = which have at least two intervals. 
From Section 2, these min imum splits can be found in 
a single run of the dynamic programming algorithm wrt 
eb. We call these splits candidate splits for feature A. 
The set of candidate splits is empty only if all examples 
belong to the same class, in which case there is no need 
of splitt ing at the node. If the greedy algorithm is run in­
stead, splits after each iteration form an approximation 
of candidate splits. 

Let M(x,k) and M(x,k) denote the number of inter­
vals and entropy of a min imum split of X\,..., Xk wrt 
x. In the search for the goodness measure of a split, 
we observed that the product usually 
gives a reasonable quality measure of the min imum split. 
On one hand, a "good" split usually has both a small 
number of intervals and a small entropy, thus yielding 
a small product. On the other hand, a small product 
but a "not-so-small" interval number entails a very small 
entropy, thus a nearly pure classification wi th no unnec­
essary spl i t t ing (due to min imum splits). It is possible, 
however, that some of these intervals are very small. We 
avoid such splits by requiring a minimal number of ex­
amples in an interval of a min imum split. W i t h these 
said, we have: 

T h e o p t i m a l sp l i t f o r a con t i nuous fea tu re : 
choose the candidate split that has the smallest prod­
uct of entropy and number of intervals. 

There is a natural interpretation for the above selec­
t ion. Suppose that feature A is split into d intervals, 
wi th n, examples and e i entropy for the i th interval. Let 
N be the total number of examples. The entropy of the 
split is then given by 

This is exactly the weighed average of entropies for all 

intervals. Therefore, the above min imum product selec­
t ion aims at minimizing the total entropy of a split. The 
following corollary says that the opt imal split is well be­
haved by being actually a strong min imum split. 

C o r o l l a r y 3.1 The optimal split selected above is a 
strong minimum split of X1,..., Xk wrt some x. 

In fact, if the opt imal split is not strong, there must 
be another min imum split (also in the set of candidate 
splits) having the same number of intervals but a smaller 
entropy, which yields a smaller product and thus it is 
preferred to the other one. 

4 Emp i r i ca l evaluat ion 
We compared three algorithms: Release 8 of C4.5 (the 
latest release) wi th the default setting, the multi-way 
spl i t t ing based on dynamic programming, the mul t i -
way spl i t t ing based on the greedy algorithm. These 
algorithms are denoted by C4.5(R8), Dynamic, and 
Greedy, respectively. The hybrid algorithm is not in­
cluded because its performance is expected to lie be­
tween Dynamic and Greedy. In Dynamic, the bins to 
start w i th correspond to examples having the contin­
uous value. Unlike early releases, C4.5(R8) improves 
the performance on continuous values by employing an 
MDL-inspired penalty to adjust the gain of a binary 
split of continuous values. As shown in [Quinlan, 1996], 
C4.5(R8) compares favorably wi th the multi-way split 
method T2 [Auer et al., 1995] and the discretization 
method [Fayyad and Irani , 1993]. Therefore, we choose 
C4.5(R8) as a benchmark. Dynamic and Greedy deter­
mine the opt imal split of continuous values as in Section 
3 and select a feature for branching as in C4.5 using the 
optimal splits for continuous features. A l l three algo­
rithms are applied to 15 datasets from the UCI reposi­
tory [Murphy and Aha, 1994], all involving some continu­
ous features and some involving many. A l l experiments 
are performed using 10-fold cross validation. The size 
and error rate of pruned decision trees are collected on 
test data. A summary is given in Table 1. The numbers 
following ± are standard errors. 

In Table 1, the testing depth of a decision tree is de-
fined as the average length of root-to-leaf paths weighed 
by the numbers of examples covered by leaves. Thus, 
the testing depth measures the average number of tests 
needed to classify an example, thus, the average com­
plexity of rules used. A decision tree wi th a small testing 
depth is likely to classify examples by simple rules. This 
aspect of complexity is not reflected by the simple tree 
size. We highlight a few results shown in Table 1: (a) 
Except for a few datasets, Dynamic wins over Greedy in 
all three measurements, (b) On tree size Dynamic wins 
over C4.5(R8) in 12 out of 15 datasets, wi th 1 tie, and 
on error rate Dynamic wins over C4.5(R8) in 8 out of 15, 

946 LEARNING 



Table 1: 10-fold cross validation results 

with 2 ties, (c) On tree size, C4.5(R8) performs better 
than Greedy in general, and on error rate, about half-
half, (d) On testing depth, both Dynamic and Greedy 
win over C4.5(R8) for all 15 datasets. Decision trees 
produced by Dynamic and Greedy usually are not as 
deep as those produced by C4.5(R8); they tend to have 
more "parallel" branches at a node, instead of "nested" 
ones into the tree. After comparing actual trees, we feel 
that "parallel" branches are easier to understand than 
"nested" ones. In running t ime, Dynamic is slowest and 
the other two are comparable. In this regard, the hy­
brid algorithm could be more promising to offer both 
quality trees and fast speed. In conclusion, the proposed 
multi-way spl i t t ing of continuous values shows some ad­
vantages over C4.5(R8). We believe that for many ap­
plication domains a multi-way splitt ing coupled with a 
careful control on over-splitting is a powerful technique 
for handling continuous values. 

References 
[Auer et al, 1995] P. Auer, R.C. Holte, W. Maass. The­

ory and Application of Agnostic Pac-Learning with 
Small Decision Trees. In 12th International Confer­
ence on Machine Learning. 

[Breiman et al, 1984] L. Breiman, J.H. Friedman, R.A. 
Olshen, and C.J. Stone. Classification and Regression 
Trees. Belmont, CA: Wadsworth International Group, 
1984. 

[Catlett, 1991] J. Catlett. On Changing Continuous At­
tributes into Ordered Discrete Attributes. In the Eu-
ropean Working Session on Learning, Springer Verlag, 
164-178 

[Chiu et ai, 1990] D.K.Y. Chiu, B. Cheung, and A.K.C. 
Wong. Information Synthesis Based on Hierarchical 
Maximum Entropy Discretization. Journal of Experi­
mental and Theoretical Artificial Intelligence, 2(1990), 
117-129 

[Dougherty et ai, 1995] J. Dougherty, R. Kohavi, M. 
Sahami. Supervised and Unsupervised Discretization 
of Continuous Features. In the 12th International 
Conference on Machine Learning. 

[Elrnasri and Navathe, 1994] R. Elmasri and S.B. Na-
vathe. Fundamentals of Database Systems. Second 
Edition, The Benjamin/Cummings Publishing Com­
pany, Inc. 

[Fayyad and Irani, 1993] U.M. Fayyad and K.B. Irani. 
Multi-Interval Discretization of Continuous-Valued 
Attributes for Classification Learning. In 13th Inter­
national Joint Conference on Artificial Intelligence, 
1022-1027. 

[Fulton et ai, 1995] T. Fulton, S. Kasif, and S. Salzberg. 
Efficient Algorithms for Finding Mult i -Way Splits for 
Decision Trees. Machine Learning. 

[Holte, 1993] R.C. Holte. Very Simple Classifica­
tion Rules Perform Well on Most Commonly Used 
Datasets. Machine Learning, 11, 63-91. 

[Kerber, 1992] R. Kerber. ChiMerge: Discretization of 
Numeric Attributes. In Ninth National Conference on 
Artificial Intelligence, 123-128. 

[Murphy and Aha, 1994] P. Murphy and D. Aha. 
Uci Repository of Machine Learning Databases. 
http://www.ics.uci.edu/ mlearn/MLRepository.html 

[Quinlan, 1993] J.R. Quinlan. C4.5: Programs for Ma­
chine Learning. Los Altos, CA: Morgan Kaufmann. 

[Quinlan, 1996] J.R. Quinlan. Improved Use of Contin­
uous Attributes in C4.5. In Journal of Artificial In­
telligence Research 4, 77-90 

[Richeldi and Rossotto, 1995] 
M. Richeldi and M. Rossotto. Class-driven Statistical 
Discretization of Continuous Attr ibutes. In Proc. of 
European Conference on Machine Learning. Lecture 
Notes in Artif icial Intelligence 914, Springer Verlag, 
335-338 

WANG & GOH 947 





NATURAL-LANGUAGE PROCESSING 
A N D GRAPHICAL PRESENTATION 





N A T U R A L LANGUAGE PROCESSING 
A N D GRAPHICAL PRESENTATION 

Natural-Language Processing 1: Generation 


