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Abstract 
We specify a model for the conceptual interpre­
tation of positive gradable adjectives. Building 
on a classification-based terminological reasoning 
approach we define comparison classes and class 
norms and specify how a degree is related to its cor­
responding class norm. 

1 Introduction 
There is a wide-spread consensus in the linguistic community 
that the semantics of positive adjectives like "rai l" is captured 
by a binary predicate relating a degree to a comparison class 
(cf., e.g., [Klein, 1980; Bierwisch, 1989]). Hence, "Peter in 
( lb) should not be referred to as "tall" in a general sense, but 
as "tall in comparison to a class C", where C is constrained 
by the context in which "tall" occurs. This becomes evident 
considering the full version of example (1), where the utter­
ance ( la) crucially determines the valid comparison class for 
"tall(Pcter,C)'\ C being the class of "4-year-old-boys". 
(1) a. Peter is 4 years old. b. Peter is tall. 

From a computational point of view, two questions arise. 
First, how are degree expressions - positive gradable adjec­
tives, in particular - represented? And, second, how are valid 
comparison classes for positive adjectives determined? The 
representation problem has already been tackled from a quan­
titative perspective employing interval representations [Sim­
mons, 1993] and fuzzy logic [Zadeh, 1978], but also quali­
tative approaches have been considered [Kamei and Muraki, 
1994; Schwartz, 1989]. While both schools have notorious 
difficulties in incorporating the corresponding complemen­
tary methodology, in addition, they both fail to treat ordi­
nal information appropriately such as for transitive reason­
ing on comparative constructions. As an alternative, we pro­
pose a qualitative representation and commonsense inferenc-
ing scheme that overcomes these deficits (cf. Section 2). 

Until now, only [Bierwisch, 1989] has touched on the prob­
lems how to determine comparison classes, though in a rather 
sketchy way. Hence, our algorithm in Section 3 constitutes 
the first attempt at providing an explicit computation proce­
dure for the conceptual interpretation of positive gradable ad­
jectives in terms of finding its proper comparison class. 

2 The Degree Calculus 
A general representation and inferencing scheme for natu­
ral language degree expressions must account for several re­
quirements simultaneously. First, it must allow for different 
forms of degree expressions, esp. comparatives and positive 
adjectives. Second, it must allow for a basically qualitative 
representation, since many expressions cannot be attributed 
any numbers at all, or only in an ad hoc way. Third, it must 
allow for transitive inferences, since these are the most basic 
reasoning patterns for degrees. Fourth, at least for technical 
domains, measure phrases must be incorporated, too. None of 
the approaches mentioned in Section 1 are able to cope with 
these criteria, while the Degree Calculus we sketch below of­
fers a synthesis of these four requirements. 
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3 Comparison Classes 
In this section, we specify an algorithm that relates the degree 
described by a positive gradable adjective a to a class norm.2 

This class norm is a degree of the same type (e.g., HEIGHT) 
as the one described by the adjective (e.g., "tall"). The class 
norm belongs to a comparison class, (e.g., the set of 4-year-
old-boys) which is a set of individuals or - in terminological 
terms - a concept C with instances oi. If the degree of such 
an instance oi of C exceeds the class norm, then it can be as­
serted that "oi is a for C". At the core of the algorithm lies 
knowledge of interrelations which must be available for infer-
encing and wil l subsequently be considered in more detail. 

3.1 Representation of Comparison Classes 
Sentence (9) contains an occurrence of a positive gradable 
adjective. Computing its comparison class is common part 
of the determination of the conceptual interpretation of that 
utterance, since it is explicitly given by the underlined phrase. 
(9) The XI1 offers very good quality for 

Considering this example, we focus on how the declarative 
representation of a comparison class is dynamically created 
from the utterance and the concepts given in a domain knowl­
edge base. The terminological system we use (cf. [Woods and 
Schmolze, 1992] for a survey) allows to define a comparison 
class C O M P - C L A S S - 1 (cf. Fig. 1) on the fly, by restricting 
the object class, LASER-PRINTER, to a certain price, PRICE-
800,3 which is a subconcept of PRICE (COMP-CLASS-1 = 

As a neces­
sary result, the printer X11 is classified as belonging not only 
to L A S E R - P R I N T E R but also to C O M P - C L A S S - 1. If this were 
not the case, either the comparison class definition or the ut­
terance itself would be invalid. In a metarelation (CLASS-
NORM-OF) the comparison class is associated with the class 
norm for quality, CLASS-NORM-1, which is related to the 
quality of the printer X I I by the predicate LESS-1. 

Figure 1: Representing Comparison Class and Class Norm 

2The reasons why we focus on the interpretation of positive ad­
jectives are twofold. First, the analytic mechanisms they require 
are entirely different from other kinds of degree expressions, and, 
second, they constitute the overwhelming proportion of degree ex­
pressions. In our corpus, e.g., we found 120 adjectives among the 
4,300 words (2.8%) we considered. In [Staab and Hahn, 1997a], we 
analyzed comparative constructions and found approximately 150 
comparatives among 30,000 words (0.5%). 

3For reasons of simplicity of the description of the algorithm in 
Section 3.3, we here assume the comparison class to denote a single-
valued price, rather than a more reasonable price interval. 
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3.2 Knowledge about Interrelations 
In a discourse setting, a multitude of possibilities exist to fix 
the comparison class for a given adjective. 
(10) Paul is 4 years old. He is tall. 
(11) Paui celebrated his 4th birthday, yesterday. He is tall. 
(12) Paui is tall for a 4 year old boy. 

The examples (10), (11) and (12) indicate that purely 
linguistic restrictions are not sufficient for restricting the 
comparison class of an adjective. Similarly, knowledge-
based computations that rely on static knowledge only, fail 
to determine the proper interpretations (e.g., if comparison 
classes cannot be created dynamically but must be prede­
fined). Therefore, we use (meta)knowledge of interrelations 
that describes how a class subhierarchy may influence the re­
lations of class norm instances on a scale or how two degrees 
of a given concept are interrelated. As examples, consider 
the sentences (13) and (14). In both of these the compari­
son classes are stated explicitly, and, thus, elucidate the dis­
tinction between a proper comparison class restriction and an 
improper one: 
(13) Peter is tall for a gymnast. 
(14) ? Peter is tall for a flute player. 

The interrelation that exists between "hasHeight" and 
"conductsExercises" describes gymnasts to be usually 
smaller than the average people. So, being tall for a gym­
nast does not necessarily imply being tall for the comparison 
class of all people. It is exactly the absence of correspond­
ing interrelations between "hasHeight" and "playsFlute" that 
renders the restriction of the comparison class to flute players 
awkward. Two things become evident here. First, knowledge 
about interrelations is everyday knowledge; it constitutes a 
common part of human knowledge. Second, these interrela­
tions need not be symmetrical.4 

In order to exploit the kind of knowledge just described 
we use a description logics notation (as for the representa­
tion of the comparison classes mentioned before). This no­
tation has the advantage that it combines formal explicit-
ness with algorithmic convenience. The interrelations have 
in common that they describe local restriction classes that 
wi l l later be combined to define the comparison class. We 
distinguish two basic types of interrelations which are illus­
trated by the examples (15) - (17) (the relevant comparison 
classes are underlined). Sentence (15) is a simple example 
where a degree-hierarchy interrelation is important (for a de­
scription of the relevant relations in the knowledge base (KB), 
cf. Fig. 2). In this example, the relevant comparison class 
(LASER-PRINTER) is the concept NOISE-LEVEL is directly 

4Commonsense knowledge tells us that though gymnasts tend to 
be smaller than the average people, small people do not tend to do 
gymnastics very much. Assume that a population consists of 50% 
small and 50% tall people, respectively, 1% being gymnasts, and 
90% of the gymnasts being small people. Then the probability that 
a gymnast is small is 90%. However, the probability that a small 
person is a gymnast is only 1.8%. Thus, restricting a comparison 
class from all people to gymnasts, in fact, decreases the class norm 
for height considerably, while the reverse is not true. 

(15) Degree-hierarchy interrelation (with distance 1): 
The noise level of the 300dpi laser printer XI1 is high 
for a laser printer. 

(16) Degree-hierarchy interrelation (with distance 2): 
The test picture of the XI1 has a good quality for the 
test picture of a 300dpi laser printer. 

(17) Degree-degree interrelation (with distance 2): 
The XI1 offers very good quality for a 
laser printer that costs $800. 

Figure 2: Hierarchy and Definitory Roles in the KB T-Box 

associated with (assuming property inheritance). Therefore, 
the path from the relevant degree N O I S E - L E V E L to the rele­
vant restriction class LASER-PRINTER has the unit length J 
(inheritance links are not counted). (16) refers to the same 
type of interrelation, but differs in the length of the distance 
(two relations have to be passed) between one of the rele­
vant restrictions, 300DPI-LASER-PRINTER, and the degree 
Q U A L I T Y (of the test picture). 

In order to represent the above-mentioned interrelations 
knowledge must be available about which relations (in the last 
example: Q U A L I T Y - O F and PRINTED-BY5) lie between the 
restricting hierarchy (here, the subhierarchy of PRINTERS) 
and the interrelated degree (here, QUALITY). Moreover, it 
must be known which subclasses of PRINTER have a norm at­
tached relating to noise level, which is either below or above 
the class norm associated with their direct superclass.6 In our 
example, L A S E R - P R I N T E R , I N K J E T - P R I N T E R and 6 0 0 D P I -

LASER-PRINTER belong to the set of classes that are associ­
ated with class norms above that of their superclass, while 
D O T - M A T R I X - P R I N T E R and 3 0 0 D P I - L A S E R - P R I N T E R re­

late to corresponding lower class norms. 
For degree-hierarchy interrelations we define the operator 

SH as in Table 2 to represent this knowledge. This opera­
tor SH takes a list of pairs of restriction classes (RESTRC j) 
and relations (R j ) . The relations, R j , are furthermore re­
stricted to R'j in order to allow the definition of more con­
strained interrelations. This is especially necessary if the do­
main of a relation is not specific enough to ensure an ad­
equate interrelation representation (e.g., cf. Fig. 3, where 
QUALITY-OF is restricted to REL-l-P, which can be de­
scribed as "quality-of of a test picture"). Furthermore, the 

5For each relation (e.g., HAS-QUALITY, PRINTS-TEST-
PICTURE) and relation instance we always assume the existence of 
its inverse which is then referred to by an intuitively plausible, name 
such as QUALlTY-OFor PRINTED-BY. 

6We here abstract from the consideration of multihierarchies. 
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Table 2: Representing Degree-Hierarchy Interrelations 

operator takes sets of concepts that are associated with class 
norms above and below the class norm of their direct super­
class, respectively ( { P o s C j vs. { N E G C J , } ) . SH maps them 
onto assertions of a degree-hierarchy interrelation instance 
(i1 : H-lNTERREL). These assertions are propositions about 
the relations in the T-Box, and, thus, they form an indepen­
dent level of assertional metaknowledge. The knowledge re­
quired for the processing of example (16) can be recorded as 
in the terminological structures from Fig. 3. 

Figure 3: The Interrelation Knowledge Needed for (16). 

For degree-degree interrelations (such as needed for (17)) a 
similar operator, SD, has to be defined. Its definition requires 
simpler constructs. Just like SH it takes restriction classes 
and relations, but instead of positive or negative subclass rela­
tions ( H A S - P 0 S - C L A S S , H A S - N E G - C L A S S ) its specification 
only includes whether an interrelation is a positive or nega­
tive correlation. 

3.3 Computing Comparison Classes 
Most often positive gradable adjectives refer to comparison 
classes that are only implicitly available (cf. (10) and (11)). 
In this subsection we wil l give an algorithm that computes 
implicit comparison classes by making use of semantic rela­
tions, of the knowledge of interrelations described in Section 
3.2, of text-specific and world knowledge, and of the mecha­
nism for computing explicitly given comparison classes from 
Section 3.1. We here assume the completion of a full seman­
tic interpretation, including anaphora resolution. 

The basic idea of the algorithm for computing comparison 
classes is expressed in Fig. 4: A positive adjective a denotes 
a degree d in the current text fragment (at present, this in­
cludes the current and the previous utterance). This degree 
d is related to an object o1 which itself is related to another 
object op. Of course, there might be no object or several ob­
jects related to and itself might have other relations as 
well. Each object has a most specific type The goal 
of the algorithm is to select all objects oi that are relevant 
for the computation of the correct comparison class. Further­
more, for each object oi it must select its correct intermediate 
superconcept which does neither restrict the compar-

7Degree-degree interrelations have the type D-lNTERREL. 
INSTOF, ISA, RANGE and HASROLE denote the common termino­
logical relations. As mentioned before the relevant part of our KB 
is a simple hierarchy, thus there is only a single path from a concept 
to the topmost concept and "min" and "max" applied to a (possibly 
empty) subset of concepts of such a path are, therefore, partial and 
single-valued. 
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4 Related Work 
Though comparison classes are referred to by many authors 
(e.g. [Klein, 1980; 1991; Simmons, 1993]), only [Bierwisch, 
1989] sketches a procedure for the determination of com­
parison classes for gradable adjectives. However, his model 
is too weak to infer complex comparison classes like "pic­
ture printed by laser printer". [Kyburg and Morreau, 1997] 
present an "extension stretching" approach that may treat ref-
erentially used adjectives, but fails to account for attribu­
tive ones which are in the focus of this paper and occur at 
a much higher frequency (cf. [Klein, 1979] for the referen­
tial/attributive distinction). 

Inference models for degree representations usually distin­
guish between two major approaches. In qualitative models, 
such as those proposed by [Schwartz, 1989] and [Kamei and 
Muraki, 1994], inferences are drawn on fixed sets of two to 
seven ordered qualitative labels that represent degree expres­
sions. However, while their representation schemata success­
fully handle several particular problems, they do not allow for 
the representation of comparatives and inferences like (7) or 
even simpler transitive inferences. 

Quantitative models, on the other hand, face the princi­
pal problem that they must assign functions to lexical entries 
which map comparison classes to numbers. Since this assign­
ment is highly controversial, it is usually not even done for 
simple examples. As mentioned before, a quantitative inter­
val approach as proposed by [Simmons, 1993] for the linguis­
tic description given by [Bierwisch, 1989] is unable to draw 
transitive inferences. The often cited advantage of interval 
approaches, their ability to reason with factor phrases when 
the input is inexact, does neither seem to be cognitively very 
plausible nor very important for text understanding systems. 
Fuzzy logic [Zadeh, 1978] faces similar problems and has 
been rejected with convincing arguments concerning natural 
language processing by [Pinkal, 1995]. However, the alter­
native Pinkal proposes, a supervaluation approach, though it 
is extremely handsome for theoretical reasons, can hardly be 
applied to real-world text understanding systems due to com­
plexity considerations. 

5 Conclusion 
In this paper, we have defined the Degree Calculus the basic 
constructs of which (class norms, modifier labels, inference 
rules) are general enough to account for natural language de­
gree expressions of a wide variety, viz. positives, compara­
tives, equatives and superlatives (in their all-quantified read­
ings as comparatives). Furthermore, we have formulated an 
interpretation methodology for natural language degree ex­
pressions. Our proposal covers declarative issues of repre­
senting comparison classes and their associated class norms, 
as well as procedural aspects of how to determine the appro­
priate one for a particular adjective. The homogeneous for­
mal treatment we give within a terminological specification 
framework is unique as is the provision of a comprehensive 
algorithm for computing comparison classes at all. 

The approach we propose is based on a deep knowledge 
model of natural language understanding. We consider this 
a feasibility study which explores the possible limits of the 
terminological knowledge representation approach for an ex­
tremely demanding natural language understanding task. The 
empirical results we have gathered convey some good news. 
When we supply sufficient knowledge the approach works as­
tonishingly well (as it outperforms naive approaches in a sig­
nificant way). When we do not supply sufficient knowledge 
it degrades, but still produces reasonable (though suboptimal) 
results. We stipulate that non-knowledge-based approaches 
are entirely inadequate to cope with this problem at all. 

Though our treatment of comparison classes is far from be­
ing complete, it is the first comprehensive treatment of com­
parison classes we know of. Coupled with the Degree Calcu­
lus it offers far more benefits than competing approaches. 
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