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Abstract* 
Most automated graphics generation systems 

employ either a constructive or a parametric graph­
ics synthesis approach. Constructive graphics syn­
thesis is a deductive approach that builds visual 
presentations from scratch by gluing together the 
most basic visual variables. Conversely, parametric 
graphics synthesis defines a set of parametrized 
visual models and interprets the information to be 
presented through instantiation of the selected 
model. To increase efficiency, we have combined 
parametric and constructive approaches in a system 
called IMPROVISE. In this paper, we focus on the 
parametric aspect of our approach. We present a 
comprehensive, general, and extensible formalism 
to represent a visual lexicon for use in automated 
graphics generation. A visual lexicon is a collection 
of parametrized primitive visual objects that serve 
as building blocks for constructing more complex 
visual presentations. We also illustrate how this rep­
resentation can be effectively employed to aid the 
selection and instantiation of a visual lexical item in 
the graphics generation process. Examples are 
given from IMPROVISE to demonstrate the represen­
tation and use of this visual lexicon. 

1 Introduction 
Automated graphics generation is a computationally 

complex task. Most research systems that have been devel­
oped to explore it use one of two approaches: parametric 
graphics synthesis and constructive graphics synthesis. 

Parametric graphics synthesis defines a set of parame­
trized visual models. It analyzes the data attributes, maps the 
data attributes onto the parameters of the models, and instan­
tiates the visual parameters of the selected model to interpret 
the data (e.g., [Robertson, 1991]). In contrast, constructive 
graphics synthesis does not predefine a set of visual models. 
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Center for Telecommunications Research under NSF Grant ECD-88-
11111,and ONR Contract N00014-94-1 -0564. 

Instead, it reasons about visual design principles (e.g., 
[Mackinlay, 1986]) and attempts to compose visual presenta­
tions from scratch by gluing together the most basic visual 
variables [Bertin, 1983] to form a coherent whole. 

We are developing a system called IMPROVISE (Illustra­
tive Metaphor Production in Reactive Object-oriented 
VISual Environments) that can automatically generate visual 
presentations using a combination of parametric and con­
structive approaches. Unlike most of the constructive sys­
tems (e.g., [Mackinlay, 1986; Roth and Mattis, 1991]), 
IMPROVISE constructs a wide variety of visual presentations, 
including 2D static graphs and 3D animations, to convey het­
erogeneous information [Zhou and Feiner, 1996]. IMPROVISE 
begins by sketching abstract plans from scratch to create par­
tially specified visual presentations. These vague descrip­
tions are progressively replaced by more complete 
descriptions [Zhou and Feiner, 1997]. In a top-down fashion, 
a complex visual presentation is recursively built by using 
primitive visual objects that can be handled by a rendering 
component. We refer to a collection of the primitive visual 
objects as a visual lexicon. Each primitive visual object in 
the lexicon is called a visual word or a visual lexical item. 

A visual word can be any type of visual form, ranging 
from a 2D static text string to a video clip. Rather than list all 
the possible primitives and their combinations or construct 
them from scratch, we abstract and parametrize the basic 
visual forms. We have developed a comprehensive, general, 
and extensible formalism to represent a visual word. Much 
like a lexical component in natural language' generation sys­
tems [Gates et al., 1991; Elhadad et al., 1997], the represen­
tation is not only comprehensive enough to capture the 
syntactic, semantic and pragmatic features of each word, but 
is also compact enough for the visual words to be easily 
manipulated by the design process. Furthermore, the formal­
ism is general enough to support a wide range of visual 
forms, including 3D graphical models, images, and video. 
The representation can also be easily extended to accommo­
date new visual forms. 

Based on the lexical representation, we have formulated 
a set of constraints to guide the selection and instantiation of 
a visual word. Those constraints come from a wide variety of 
sources including: syntax (e.g., only certain visual words can 
be used in a composition), semantics (e.g., only certain 
visual words can be used to fulfi l l a particular information-
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seeking goal), and pragmatics (e.g., available resources, such 
as a type of display, require certain types of visual words). 

In the rest of the paper, we first briefly discuss several 
parametric graphics synthesis systems in Section 2. Then we 
present our representation formalism for the visual lexicon in 
Section 3. Based on the representation, we postulate a set of 
constraints that guide the selection and instantiation of a 
visual word. Finally, in Section 4 we present our conclusions 
and discuss possible future work. 

2 Related Work 
The foundation of parametric graphics synthesis is a set 

of parametrized visual models. Through careful examina­
tion, the mapping between the visual attributes of the models 
and the data properties can be established in a formal and 
systematic manner. Most systems that employ a parametric-
approach are quite similar but have minor differences in the 
methodologies they use to map data onto their visual models. 
Nevertheless, systems can be differentiated by the richness 
and flexibility of their parametrized visual models, as well as 
their capabilities to compose various models into a coherent 
presentation. 

BHARAT [Gnanamgari, 1981] was developed at Uni­
versity of Pennsylvania to generate 2D displays for quantita­
tive information: pie graphs, bar graphs, and line graphs. It 
maps numeric data to one of these graphs determined by the 
data characteristics. Once a graph type is selected, it is 
instantiated based on the data properties and its syntactic 
parameters. 

Robertson's natural scene paradigm (NSP) 
[Robertson, 1991] maps data variables to various features of 
a 3D realistic natural scene, such as surface condition, sur­
face height, and density based on data characteristics. He 
postulates a set of mapping rules to correlate the properties 
of the natural scene, the data characteristics, and the user's 
interpretation goals. NSP focuses on representing scientific 

or statistical data sets, it does not address how to represent 
qualitative (i.e., non-quantitative) information. 

VISTA (Senay and Ignatius, 1994] is a knowledge-based 
visualization system that suggests various visual techniques 
for a given data set and also allows the user to modify the 
design interactively. Compared to other parametric systems, 
VISTA offers a much richer set of visual techniques that can 
effectively express a wide range of scientific data. Further­
more, it employs a sophisticated compositional design 
approach to design a composite visual display. VISTA parti­
tions a large data set into simple sets of data, selects unused 
primitive visualization techniques to represent each small 
data set, and assembles all selected primitive visualization 
techniques together. Like NSP, VISTA also emphasizes sci­
entific visualization and does not address visual techniques 
for representing qualitative information. 

3 Visual Lexicon Representation and Usage 
Since most parametric synthesis systems have focused 

on presenting quantitative information, their representation 
formalisms usually are not comprehensive or general enough 
to handle heterogeneous information. Moreover, most of 
their parametrized visual models are characterized by their 
syntactic features: the semantics and pragmatics of the mod­
els are cither ignored or simplified. However, to effectively 
synthesize visual presentations, we need a comprehensive 
representation of each model that captures its syntactic, 
semantic, and pragmatic features. The representation formal­
ism should also be general and extensible. In our case, each 
visual word in the lexicon corresponds to such a model. To 
meet these criteria of comprehensiveness, generality, and 
extensibility, we have adopted an object-oriented paradigm 
to represent a visual word. 

3.1 Representation 
A visual word is always associated with a single domain 
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#Text # Simple body model # Complex body model # Image 
(sensel (sense2 (sense3 (sense4 

(syntax (syntax (syntax (syntax 
(category VISUAL-UNITY) (category VISUAL-UNITY) (category VISUAL-UNITY) (category VISUAL-UNITY) 
(subcategory TEXT) (subcategory 3D-SHAPE) (subcategory 3D-SHAPE) (media Image TIFF))) 
(media Graphical-Model))) (media Graphical-File))) (media Graphical-File))) 

Figure 2. Syntax for patient entry 

object. However, each domain object can be represented by 
one or more visual words. In a visual lexicon, we say that a 
domain object has multiple senses. For example, an instance 
of object PATIENT could be displayed as one of the senses 
shown in Figure 1. Each sense (i.e., visual word) has its syn­
tax, semantics and pragmatics in the context of graphic 
design. In addition, a graphical expression, called a lexeme, 
is also stored. 

Object Pattern 
To map an object onto a visual word, we first need to 

know the object pattern including the type, attributes, and 
other object characteristics [Zhou and Feiner, 1996]. As 
shown in Figure 1, variable ?patient stands for an instance of 
PATIENT. More complex patterns can also be represented 
through pattern description keywords. Currently, we have 
implemented two keywords: type and attribute. Type speci­
fies the domain of the object, while attribute restricts the 
objects to a subset that satisfies the specified attributive con­
straints. For example, to represent any PATIENT whose age 
must be greater than 20, we use: 

(object-pattern (?patient (type PATIENT) (attribute (> ;age 20)))) 
Note that the name of each attribute is preceded by a ":". 

Syntax 
Syntax describes the structure or pattern of a visual 

word. In particular, category, subcategory, and media 
together specify the syntactic features (Figure 2). 

Category provides the type of a visual word based on the 
visual hierarchy described in [Zhou and Feiner, 1997], while 
subcategory further classifies the type information. For 
example, a visual word is an instance of a VISUAL-STRUC­
TURE. More specifically, it is in the TABLE-CHART subcate­
gory. Although we could go even deeper to further 
distinguish the visual word types, we have found a two-level 
hierarchy to be adequate thus far. 

IMPROVISE is designed to deal with a wide variety of 
visual presentation forms (i.e., visual media formats). We 
allow four media formats: graphical model, graphical file, 
image, and movie. 

A graphical model describes a visual object in a particu­
lar graphics language. In graphical model mode, all graphi­
cal expressions are explicitly written out as a lexeme. 
However, in graphical file mode the lexeme refers to the 

name of a file that contains all the graphical expressions. For 
example, a human model might be expressed in Inventor 
[Wernecke, 1994J file format in graphical model mode as: 

Human{ 
Head ( . . . ) 
Body{ 

Chest ( . . . ) 
Waist { . . . } . . . } 

} 
Alternatively, this description can be kept in a file named 
"human.iv" in graphical file mode. Image mode signifies that 
the current visual object is an image file. Optionally, it can be 
followed by an argument to indicate the image format as 
shown in sense4 of Figure 2. The last media category, movie, 
indicates the current visual object is a video clip. Similar to 
image, it can also be further qualified by appending a type 
argument (e.g., MPEG1). 

The advantage of providing media information is to 
simplify the process of handling multiple media formats and 
to make the system more general and extensible. 

Usually, we specify a set of abstract visual operations 
(e.g., Scale, and Move) at a high level without worrying 
about the implementation details for different media. At a 
lower level, based on the provided media information, the 
abstract operations are realized by media-specific proce­
dures. Hiding the details of abstract visual operations makes 
it easier to extend the system. Consider the abstract visual 
operation Scale. Scale transforms the modeling matrix for a 
graphical model, which can change the dimensions of an 
image. To support a new media format, we only need to 
write a set of procedures to perform the Scale operation for 
the new medium without affecting the rest of the knowledge 
base. 

Semantics 
While syntax focuses on describing the structure or pat­

tern of a visual word, semantics abstracts the meaning of the 
syntactic features, summarizes the thematic roles of a visual 
word, and identifies the scope of its role. Figure 3 shows the 
semantic features for the PATIENT-ENTRY. 

Semantic sense specifies the abstraction of syntactic fea­
tures of a visual word, while semantic role indicates what a 
visual word is capable of when it participates in a visual pre­
sentation. Moreover, semantic scope elaborates how well a 

Figure 3. Semantics for patient entry 
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# Text # Simple body model # Complex body model # Image 
(sensel (sense2 (sense3 (sense4 

(semantics (semantics (semantics (semantics 
(role Identify) (role Locate) (role Locate) (role Identify) 
(scope Naming) (scope SpatialPosition) (Scope SpatialPosition) (scope Appearance) 
(sense LABEL))) (sense SYMBOL))) (sense SYMBOL))) (sense PORTRAIT))) 



# Text # Simple body model # Complex body model # Image 
(sense1 (sense2 (sense3 (aense4 

(pragmatics (pragmatics (pragmatics (pragmatics 
(domalnlnfo . . . ) (domaininfo...) (domaininfo . . . ) (domaininfo...) 
(hardware (hardware (hardware (hardware 

(platform SGI I PC) (platform SGI I PC) (platform SGI) (platform SGI I PC) 
(cpu R4400 I Pent ium.. .) 
(graphics Extreme I . . . ) (display Color I Grayscale)) (display Color I Grayscale)) (display Color I Grayscale)) 
(display Color I Grayscale)) (performance FAST)).. .) (performance MEDIUM)).. .) (performance MEDIUM)). . . ) 

(performance FAST)) . . . ) 

Figure 4. Pragmatics for patient entry 

visual word can perform in the specified role. In Figure 3, 
sensel is a label that can only identify the patient by naming, 
but sense4 is a portrait that can identify the physical appear­
ance of the patient. 

Pragmatics 
In language or image understanding, pragmatic features 

usually refer to the roles or influences that the language or 
image possesses to help the user understand distinguishing 
features and appropriate contexts (e.g., [Goldsmith, 1984]). 
To facilitate visual design, we have extended the connotation 
of the pragmatic features of a visual word. Not only do we 
include word features that are directly related to the charac­
teristics of the user and context, such as the user's identity, 
expectations, and application type, but we also cover factors 
that describe the relationships between the word and the 
design or execution environment, such as the hardware 
requirements (e.g., display type) of the word. Since model­
ing users and system environments is a complex task itself, 
we concentrate on a few types of information that are partic­
ularly useful. They are domain information, hardware 
requirements, and performance estimation. Figure 4 lists the 
pragmatics of each word in PATIENT-ENTRY, with domain 
information omitted since they all share the same one: 

(domalnlnfo 
(appType MEDICAL) 
(audienceType NURSE I DOCTOR)) 

The pragmatics features of sensel in Figure 4 can be 
read as: the text representation of a patient's name is suitable 
for both nurses or doctors in a medical application. More­
over, this text can be rendered on a SGI or PC with color or 
grayscale display. The rendering speed of such a text string 
is fast (e.g., under a millisecond). 

Although the pragmatic features involve domain-spe­
cific information, we can consolidate all domain-specific 
information by expressing it in a disjunctive form. For exam­
ple, if we want to use the PATIENT-ENTRY for both medical 
and military logistics applications, we can write: 

(domalnlnfo 
(infol (appType MEDICAL) 

(audienceType NURSE I DOCTOR)) 
(Info2 (appType LOGISTICS) 

(audienceType MEDIC I DOCTOR))) 

Lexeme 
In a visual lexicon, each lexeme is a graphical represen­

tation of a visual word. Each type of representation {graphi­
cal model, graphical file, image, and movie) is actually a 

parametrized template. For example, the lexeme of sense1 in 
PATIENT-ENTRY is: 

(lexeme (VISUAL-UNITY (geometry (Text2 
(string (get-name ?patient)))))) 

This says that the visual word is an instance of VISUAL-
UNITY with a geometry of 2D text, which in turn requires 
that the string be the name of a patient. Embedding proce­
dures in the representation can be very useful. It eases infor­
mation encoding by abstracting the common features of a 
visual word and expressing them in a procedural format. 
Suppose that every patient's picture is stored as an image in 
the knowledge base, and is named by the patient's ID num­
ber with a suffix "t i f ' . Instead of explicitly listing all the 
patients and the file names of their pictures in the visual lexi­
con, we can use a single expression: 

(lexeme (IMAGE (fileName (string-cat (get-id ?patient) ".tif")))) 
This states that the file name can be constructed by concate­
nating the patient's ID and the suffix " . t i f " 

To be consistent with the constructive theme of IMPRO­
VISE, the visual lexicon stores only visual words that repre­
sent atomic objects. Visual representations for composite 
objects are built from scratch by piecing together their com­
ponent representations. 

3.2 Usage 
IMPROVISE'S visual lexicon is first searched to select a 

visual word for a given object and then the parameters of the 
selected visual word are instantiated. 

Visual Lexicon Selection 
As described above, only atomic objects can be directly 

matched against the object-pattern specified in a visual lexi­
con entry. For example, suppose the task is to display patient 
Jones's demographics information to a nurse in a medical 
application. In our case, "demographics" is a composite 
object whose component objects include name, age, and gen­
der. The system iteratively refines the abstract plan for 
accomplishing the task and reaches the point where it must 
decide how to represent the "age" object. At this point, the 
system needs to match the object description (i.e., Jones-
Age) against each object-pattern in the lexicon. The pattern 
matching is conducted by unifying the object description 
with an object-pattern. If the unification is successful, then 
all the visual words for the specific object-pattern become 
candidates, of which one wil l be selected to represent the 
object. In this example, the two unified entries are: 

Object: (Jones-Age (type PHYSICAL-ATTRIBUTE)) 
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Pattern-1: (?attribute (type ATTRIBUTE)) 
Note that the two matched types are not necessarily the 

same. But PHYSICAL-ATTRIBUTE is indeed a subclass of 
ATTRIBUTE. For generality, matching by inheritance is 
allowed. If an object description matches more than one 
object-pattern, the system always chooses the most specific 
one. The lower the object type is positioned in the domain 
ontology hierarchy, the more specific the object type is. 
Moreover, the more attributive constraints an object pattern 
has, the more specific the pattern is. Naturally, the more spe­
cific object pattern inherits the lexemes that are defined for 
more general object patterns. Suppose there is another 
object-pattern: 

Pattern-2: (?attribute (type PHYSICAL-ATTRIBUTE)) 
In this case, pattern-2 is used instead of pattern-1 and patter-
2 also inherits all lexeme expressions defined in pattern-1. 
Moreover, through unification, the variable specified in the 
object-pattern is bound to the matched object. Thus, variable 
?attribute is bound to object Jones-Age. 

The task of the selection stage is to single out the most 
appropriate candidate. Many factors can affect the decision. 
We have established a set of syntactic, semantic, and prag­
matic constraints to aid the selection. 

Syntactic constraints. Syntax governs the pattern formation 
in a synthesis process [Marks, 1991]. Syntactic features 
specified at different visual presentation levels are used to fil­
ter out undesired patterns to keep them from participating in 
higher-level patterns. Figure 5 was automatically generated 
by IMPROVISE to present a patient's information summary to 
a nurse. The top-level visual description for the entire dis­
play is a STRUCTURE-DIAGRAM [Lohse et al., 1994], which is 
a subtype of VISUAL-STRUCTURE. The syntax of a STRUC­
TURE-DIAGRAM requires that its core component be a 
VISUAL-UNITY that is not in the TEXT subcategory. In this 
case, the core component could be one of the patient's visual 
representations shown in Figure 1. 

Based on the descriptions in Figure 2, all visual words 
satisfy the syntactic constraint except sense] which is a 
TEXT. (The patient name in Figure 5 is not generated through 
defining the core component, but as part of the demographics 
information.) However, there are still multiple candidates 

Figure 5. IMPROVISE'S presentation for a nurse 

that need to be ruled out. 

Semantic Constraints. While syntactic constraints guarantee 
that visual representations have valid structures, semantic 
constraints can be used to ensure that the syntactically valid 
structures are also perceptually correct. Semantic constraints 
can come from different aspects. One type arises from infor­
mation-seeking goals [Casner, 1991]. These constraints are 
evaluated by matching the semantic requirements to the role 
or scope description of the visual word. Some visual words 
can play some roles to a certain extent to meet the goals 
while others cannot. In the example of Figure 5, the task 
actually requires locating positions on the patient's body so 
that other information can be arranged around the body. By 
this criterion, only two choices remain: sense2 and sense}, 
since only these two can locate body positions. 

Another type of constraint is specified by high-level 
visual preferences. These constraints usually require that the 
selected visual word have a certain visual sense (e.g., be a 
symbol instead of a portrait), which in turn defines the 
potential usability of the visual word [Arens et al., 1993]. 
For example, a symbolic 3D graphical model can be viewed 
from different angles, while a portrait image cannot. In our 
case, the core component of the STRUCTURE-DIAGRAM is 
required to be a symbol. Fortunately, since both sense2 and 
sense3 satisfy the requirements, there is no conflict. 

In case all semantic constraints can be satisfied but result 
in a conflict set, we order the constraints by decreasing 
importance: first information-seeking goals, then visual pref­
erences. This order in turn determines the importance rank­
ing of the semantic features of a visual word: role, scope, 
and sense. In other words, when semantic constraints help 
determine visual word selection, a visual word should be 
weighted first to see whether it can fill the role to achieve the 
information-seeking goals, as measured by the scope of its 
role. While not posing any threat for achieving any informa­
tion-seeking goals, sense can be considered last to see 
whether the user's or application's visual preference can be 
met. 

Pragmatic Constraints. Pragmatic constraints can be used to 
further filter out some of the undesired candidates. Like 
other constraints, pragmatic constraints also arise from a 
wide variety of sources. We have formulated several types of 
constraints that are most important to our applications. They 
come from the following aspects: application situation 
(including presentation type, targeted audience, and loca­
tion), available hardware, criticality, and timing. Continuing 
with our patient example, a set of system pragmatic con­
straints is specified as: 

(appSituation 
(type SUMMARY) 
(audience NURSE) 
(location CARDIAC-ICU)) 

(hardware (platform PC) 
(display MEDIUM.RESOLUTION & COLOR)) 

(timing SHORTJTIME) 
(criticality CRITICAL) 
More specifically, the system needs to present the 

patient's summary to a cardiac ICU nurse in a short time. 
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The presentation wi l l run on a PC with a medium-resolution 
color display. Recall that the candidates left, after screening 
by both syntactic and semantic constraints, are sense! and 
sense3. Based on Figure 4, sense! is eventually chosen over 
sense3 since sense! meets both timing and hardware con­
straints. This filtering process is done by checking the list of 
pragmatic features (e.g., performance) of each candidate 
against the pragmatic constraints (e.g., timing). Based on the 
success of the match, the candidate set is further pruned. 

As in ordering different semantic constraints, we also 
rank those pragmatic constraints based on their importance: 
application situation, criticality, timing, and hardware. 

Unlike other graphics generation systems, IMPROVISE 
does not require a specific order of constraint satisfaction 
(e.g., satisfying pragmatic constraints before syntactic con­
straints) in its design process. Instead, IMPROVISE allows the 
constraints to float with the design process [Elhadad 
et al., 1997] and solves them when the time is right. If there 
is enough evidence to indicate that a constraint is satisfiable, 
then IMPROVISE asserts this fact by taking appropriate actions 
(e.g., eliminating unwanted candidates). Otherwise, IMPRO­
VISE defers its decision until more information is available. 
Thus, IMPROVISE operates in a least-commitment manner 
[Cohen and Feigenbaum, 1989J and avoids unnecessary 
backtracking over arbitrary decisions. 

Visual Lexicon Instantiation 
After a visual word is selected, it wil l be instantiated 

once there is enough information to supply parameter values. 
Like selection process, the instantiation also adopts a least-
commitment algorithm: no instantiation is made unless there 
is enough information. 

Instantiation involves two steps. The first step is to 
replace the object variable specified in the object-pattern. 
This is straightforward: the object variable is replaced, wher­
ever it appears, with the name of the object with which the 
variable is unified. For example, if variable ?patient is bound 
to patient Jones, an expression such as (get-name ?patient) wil l 
be replaced by (get-name Jones). The second step deals with 
the parameters in a lexeme. For conciseness and efficiency, 
only key information is explicitly expressed in a lexeme. For 
example, if text is chosen to represent patient Jones's name, 
the lexeme in the visual word specifies: 

(Text2 (string (get-name Jones))) 
However, this is inadequate for realizing the name: addi­
tional information, such as text font or text color, needs to be 
supplied. Certainly, default values can be provided as part of 
the knowledge base (as they are in IMPROVISE), but default 
values are not always the desired ones. Moreover, different 
visual words have a different set of parameters and the num­
ber of parameters can be large (e.g., 10 to 15). Instead of 
explicitly expressing all parameters for each word in the 
visual lexicon, a set of variables is automatically generated 
to represent those parameters once a word is selected. In our 
example, the expression is actually expanded as: 

(Text2 
(string (get-name Jones)) 
(font?font-1) 
(color ?color-1) 

(justification ?justify-1)) 
Instantiating each variable in this extended format is a 

challenging task because effectiveness and consistency must 
be taken into account. Effectiveness constraints from various 
sources restrict the variable to certain values. For example, if 
the system runs on a very slow platform, it would probably 
be better to display a 3D graphical model as a wireframe 
instead of with shaded polygons. Thus, the parameter draw-
mode for this particular graphical model might take value 
wireframe instead of solid. 

Unlike most text generation systems that try to use para­
phrasing to avoid repetitions, most graphics generation sys­
tems try to maintain design consistency by reusing the same 
visual cues whenever possible [Zhou and Feiner, 1997]. 
Unless there is a good reason to do otherwise, similar objects 
should appear alike in the course of visual presentation. 
Using variables in visual word descriptions eases this task. 
For example, if a consistency rule asserts that all text objects 
that represent a patient's name should appear in the same 
font and color, then all the variables representing font and 
color in the text can be co-referred (e.g., ?font-1 is ?font-2, 
and vice versa). In other words, if any one of them is instan­
tiated, all co-referred variables are instantiated at the same 
time to the same value. 

There are other factors that also need to be taken into 
account in instantiation; for example, instantiating one vari­
able could affect the instantiation of another. Assuming that 
the current background color is instantiated to blue, then per­
ceptual rules demand that the text color should not be instan­
tiated to red. 

4 Conclusions and Future Work 
We have implemented a system that combines a con­

structive graphics synthesis approach with a parametric 
graphics synthesis approach. In this paper, we have pre­
sented the core component of our parametric approach. A 
visual lexicon is used to generate visual descriptions for 
atomic domain objects during synthesis. We have described 
a comprehensive, general, and extensible formalism to repre­
sent the lexical entries. Figure 6 summarizes all possible val­
ues that are used to describe the syntax and semantics of a 
visual word. However it is worth noting that some of the val­
ues are correlated; for example, if syntactic category takes 
VISUAL-UNITY as its value, then its subcategory can never be 
a TABLE-CHART. Theoretically, we could encode complex 
visual representations such as TIME-CHART in a visual word. 
To retain the flexibility and extensibility of constructive 
graphics synthesis, we usually construct complex visual pre­
sentations from scratch while keeping already-made simple 
visual representations in the visual lexicon. Furthermore, we 
have formulated a set of constraints to guide the selection 
and instantiation of the visual lexical items in parametric 
synthesis. 

We believe that this hybrid takes advantage of both para­
metric and constructive approaches to make graphics genera­
tion more powerful, efficient, and flexible. As in a 
constructive approach, the system is inherently flexible and 
extensible. As in a parametric approach, we gain efficiency 
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Syntactic Descriptions Semantic Descriptions 
Slots Value Description 

LABEL 
LIST 

Sense PLOT 
SYMBOL 

PORTRAIT 
CLUSTER 
IDENTIFY 

R o l e LOCATE 
DISTINGUISH 

PROPOSITION 
S c o p e SPATIAL-RELATION 

CONCEPT-FUNCTION 

Figure 6. Syntactic and semantic descriptions of a visual word 

by providing a reduced search space and facilitate knowl­
edge encoding through reuse of visual words. 

Several areas could be further improved to make the 
approach more systematic and comprehensive. One is to use 
a good computational model (e.g., a probability model) to 
describe various constraints more accurately. As most of the 
constraint values are expressed qualitatively in discrete val­
ues (e.g., short and long describe the timing information), a 
better model can be used to provide more precise quantita­
tive measurements. Probabilistic reasoning [Russell and 
Norvig, 1995] could also be incorporated to aid the genera­
tion process and model constraints. Last, but not least, the 
capabilities of each visual word need to be further studied to 
allow a more comprehensive understanding of various visual 
forms. 
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Slots Value Description 
Category VISUAL-STRUCTURE VISUAL-UNITY 

TABLE-CHART IMAGE 
TIME-CHART VIDEO 

Subcate- BAR-GRAPH TEXT 
gory LINE-GRAPH 2D-SHAPE 

PIE-GRAPH 3D-SHAPE 

GRAPHICS-MODEL GRAPHICS-MODEL 
GRAPHICS-FILE GRAPHICS-FILE 

Medium IMAGE 
[TIFF I RGB I GIF I PICT] 

VIDEO 
[MPEG1 I SGI I QTIME] 



NEURAL NETWORKS 
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Neural Nets 1: Rule Extraction 


