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In the last few years it has been shown that 
recurrent neural networks are adequate for 
processing general data structures like trees 
and graphs, which opens the doors to a number 
of new interesting applications previously 
unexplored. In this paper, we analyze 
the efficiency of learning the membership of 
DO AGs (Directed Ordered Acyclic Graphs) in 
terms of local minima of the error surface by 
relying on the principle that their absence is 
a guarantee of efficient learning. We give 
sufficient conditions under which the error 
surface is local minima free. Specifically, we 
define a topological index associated wi th a 
collection of DOAGs that makes it possible 
to design the architecture so as to avoid local 
minima. 

1 I n t r oduc t i on 
It is well-known that connectionist models are not only 
capable of dealing with static patterns, but also with 
sequential inputs. Real world, however, often proposes 
structured domains that can hardly be represented 
by simple sequences. For instance, there are cases 
in which the information can be framed naturally in 
graphs of variable size, and one may be interested in 
processing these structures as a whole, and not pay 
attention specifically to their nodes. The abil ity to 
classify these structured data is fundamental in a number 
of different applications such as medical and technical 
diagnoses, molecular biology and chemistry, automated 
reasoning, software engineering, geometrical and spatial 
reasoning, and pattern recognition. Neural networks 
for processing data structures have been proposed by 
Pollack [1990] and, recently, by Sperduti, Starita & 
Goller [1995], and by Sperduti & Starita [1997]. It has 
been shown that they can actually be used for classifying 
data structures by using an algorithm, referred to 

as BPTS (backpropagation through structure), that 
extends naturally the time unfolding carried out by 
B P T T , in the case of sequences. It has also been pointed 
out that BPTS is significantly better suited for dealing 
wi th long-term dependencies than B P T T , because of its 
inherent unfolding through structures instead of simple 
lists, the data structure counterpart of sequences. As 
for any neural network learning algorithm, however, the 
efficiency of BPTS, may be seriously plagued by the 
presence of local minima in the associated error function. 
In the epilogue of the expanded edition of Perceptron, 
Minsky [1988] pointed out that 

"... as the field of connectionism becomes 
more mature, the quest for a general solution 
to all learning problems wi l l evolve into an 
understanding of which types of learning 
processes are likely to work on which classes of 
learning problems. And this means that, past 
a certain point, we won't be able to get by with 
vacuous generalities about hil l-climbing. We 
wi l l really need to know a great deal more about 
the nature of those surfaces for each specific 
realm of problems that we want to solve." 

In this paper, we analyze the efficiency of learning 
the membership of DOAGs (Directed Ordered Acyclic 
Graphs) in terms of local minima of the error surface by 
relying on the principle that their absence is a guarantee 
of efficient learning. We give a sufficient condition 
under which the error surface is local minima free. In 
particular, we define a topological index associated wi th 
a collection of DOAGs that make it possible to design the 
architecture so as to avoid local minima. The condition 
we give holds for any training set composed of graphs 
wi th symbolic nodes and a neural network capable of 
learning the assigned data. 

2 Recurrent networks for processing of 
data s t ructures 

In this section, we review briefly the basic idea proposed 
in [Sperduti and Starita, 1997] concerning adaptive 
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Figure 5: The problem of learning perfect binary trees. The 
associated error function has no local minima, provided that 
one uses 8 hidden units. 

Hence, which means that can surely get rid of 
local minima when using neural networks wi th 9 hidden 
units. 

E x a m p l e 3 Consider the problem of learning the 
concept of perfect binary tree from the examples shown 
in Fig. 5. It can easily be proven that the given learning 
environment is a Chinese box and, therefore, according 
to Corollary 1, a network wi th 8 hidden units ensures 
that there are no local minima. 

4 Conclusions 
In this paper we have proven that if we use as many 
hidden units as the pointer power of the given collection 
of DOAGs, any problem of learning their classification 
can be solved wi th a unimodal error function. Moreover, 
in the special case of Chinese boxes, the pointer power 
reduces to the cardinality of the given training set. The 
given bound on the number of hidden units that are 
needed to avoid local minima, however, is not necessarily 
useful for the network design, since our condition is 
not related to generalization issues. The given bound, 
however, seems to be very interesting from a theoretical 
point of view, especially when compared wi th related 
results given for multilayer networks [Poston et al., 1991; 
Yu, 1992]. 

4 The basic idea of the proof is somewhat related to Poston 
et. al's [Poston et a/., 199l] and Yu's [Yu, 1992], for the case 
of multilayer perceptrons. L. Harney [Harney, 1994] pointed 
out that Poston et al. proof was not complete and that Yu's 
proof contained a flaw. Yu and Chen [Yu and Chen,.1995], 
however, have recently proven that the flaw pointed out by 
Harney can be fixed up and that the claimed result holds. 
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5 Using related arguments we can prove that the 
assumptions that the pointer matrices be full rank and mi ≠ 
0 can easily be removed. 
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