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Abstract

In the last few years it has been shown that
recurrent neural networks are adequate for
processing general data structures like trees
and graphs, which opens the doors to a number
of new interesting applications previously
unexplored. In this paper, we analyze
the efficiency of learning the membership of
DO AGs (Directed Ordered Acyclic Graphs) in
terms of local minima of the error surface by
relying on the principle that their absence is
a guarantee of efficient learning. We give
sufficient conditions under which the error
surface is local minima free. Specifically, we
define a topological index associated with a
collection of DOAGs that makes it possible
to design the architecture so as to avoid local
minima.

1 Introduction

It is well-known that connectionist models are not only
capable of dealing with static patterns, but also with
sequential inputs. Real world, however, often proposes
structured domains that can hardly be represented
by simple sequences. For instance, there are cases
in which the information can be framed naturally in
graphs of variable size, and one may be interested in
processing these structures as a whole, and not pay
attention specifically to their nodes. The ability to
classify these structured data is fundamental in a number
of different applications such as medical and technical
diagnoses, molecular biology and chemistry, automated
reasoning, software engineering, geometrical and spatial
reasoning, and pattern recognition. Neural networks
for processing data structures have been proposed by
Pollack [1990] and, recently, by Sperduti, Starita &
Goller [1995], and by Sperduti & Starita [1997]. It has
been shown that they can actually be used for classifying
data structures by using an algorithm, referred to
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as BPTS (backpropagation through structure), that
extends naturally the time unfolding carried out by
BPTT, in the case of sequences. It has also been pointed
out that BPTS is significantly better suited for dealing
with long-term dependencies than BPTT, because of its
inherent unfolding through structures instead of simple
lists, the data structure counterpart of sequences. As
for any neural network learning algorithm, however, the
efficiency of BPTS, may be seriously plagued by the
presence of local minima in the associated error function.
In the epilogue of the expanded edition of Perceptron,
Minsky [1988] pointed out that

".. as the field of connectionism becomes
more mature, the quest for a general solution
to all learning problems will evolve into an
understanding of which types of learning
processes are likely to work on which classes of
learning problems. And this means that, past
a certain point, we won't be able to get by with
vacuous generalities about hill-climbing. We
will really need to know a great deal more about
the nature of those surfaces for each specific
realm of problems that we want to solve."

In this paper, we analyze the efficiency of learning
the membership of DOAGs (Directed Ordered Acyclic
Graphs) in terms of local minima of the error surface by
relying on the principle that their absence is a guarantee
of efficient learning. We give a sufficient condition
under which the error surface is local minima free. In
particular, we define a topological index associated with
a collection of DOAGs that make it possible to design the
architecture so as to avoid local minima. The condition
we give holds for any training set composed of graphs
with symbolic nodes and a neural network capable of
learning the assigned data.

2 Recurrent networks for processing of
data structures

In this section, we review briefly the basic idea proposed
in [Sperduti and Starita, 1997] concerning adaptive



processing of data structures. In particular, we focus on
the classification of DOAGs (Directed Ordered Acyclic
Graphs) [Arhib and Given'on, 1968] and show that
their membership can be learned from examples. The
recurrent networks considered in this paper process data
structures beginning from a fixed initial state. Each
experiment £ involving data structures can conveniently
e expressed by means of three entities: a learning
enviroument £, (set of data used for learning), a network
N, and a cost index E.

¢ Learning Environment L,

Instances in the learning domain are structured
pieces of information described by annotated
directed ordered acyclic graphs (DOAGs). Here
for a DOAG we mean a DAG § = {V,E} with
vertex set Voand edge set F, where for each vertex
v € V a total order on the edges leaving from v
is defined. Specifically, let O, = {g: {v,,v;) € E}
and Op = |Op| the outdegree of node v,, then
the cut-port function p(Op,q) returns the position
of the edge (vp,v,) in the total order defined on
the edges leaving from v,.1  Similarly, let I, =
{7: (v ) € E}. and I, = |I,| the indegree of
nade wy, then (I, ¢) is the in-port function which
returns the position of the edge (v, v} in the total
order defined on the edges leaving from ug,

We  shall require the DOAG to possess a
supersource, i.e. a vertex v, € V such that every
vertex in ¥V can be reached by a direcied path
starting from v»,. The reasons for this requirement
are related to the processing scheme that will be
defined in the following. Note that if a DOAG does
not possess a supersource, it is still possible to define
a convention for adding an extra vertex v, (with
a minimal number of outgoing edges}, such that
v, 18 a supersource for the expanded DOAG. The
graphs we are considering are annotated by labels
vn vertices, where uy; denotes the label attached to
vertex w, of DOAG 4. In the following. depending
on the context, we will use wy, to refer either a vertex
or the label attached to the vertex.

The learning environment is a collection of pairs
composed of DOAGs with their own targets.
Formally, let d~. d* € R be such that [¢~,d*] C
d. 4] and definc:

ﬁci‘{(ahdi)! f:ll_..,L}, (1)

where 1y € Sp is a DOAQ with corresponding
target value d € {d",d*}, and U =

! An exampie of out-port function is simply PASCAL ord
function which returns the position of a given element in an
ordered set. For instance ({3,6,7,11,13},11) — 4.

] C

Figure 1: The encoding network associnted with a given
DOAG. The recurrenl network is wnfolded through the
struciure of the given DOAG.

{(wp,urg): wip,wg € R™}.  The collection of
DOAGs Dy = {Uy, ..., U} will be also useful itsel
for analysis on graph topology. A topological sorting
L [1,...,P] = [1,....R) : k = p; can be
associated with any 4, € Sy such that ¥V Ak :
up, < Uy, = pip < q. Let Py = max B and
Mp,, be the space of ali matrices in R™%, being
! < L. Using this sorting we can associate DOAGs
with matrices as follows

7o : Sy = Mp,, 1 U; = Uy, (2)

where UP = u;, denotes the p-th U)'s column. The
learning environment £, can be partitioned into the
following sets

ct i{H;EC,: d:=d*}, {3)
C-={hel,: dt=d},

which collect the positive and the negative
structures of the learning environment, respectively.

Network N.

The network can be thought of as a triple A/ ~
{W,V,M} of weight matrices. W € R™™+! is the
input-neuron matrix which also incorporates biases.
Note that, m is the nymber of input units, while =
is the number of hidden units. V = {V,,...,Vs}
are the peinter matrices that make it possible to
extend the typical recurrent processing of sequences
to data structures as put forward in the following.
O is the maximum ontdegree of all the nodes of the
graphs belonging to £, and it represents 2 bound
on the maximum number of pointer matrices, that
isvr=1,...0, V, e R™".

For any graph lf; we define the associated encoding
network N (U;) as a feedforward network created as
follows (see Fig. 1):

1. The architecture of A{lf) is the DOAG
inherited by I#y by simple inversion in the graph
AITOWS.
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2. Each vertex v, (p = 1,..., 1) of the graph I4
is associated with a corresponding layer pof n
sigmoidal neurons.

3. The output of the neuron ¢ ir layer p is related
to its activation a;i, as follows

Tilp = f(aifp)! {4)

where f(-} : R — [d,d] is a C? bijection such
that ¥ aiip,  f'(2ap) > 0.

4. The generic layer p of network A'(l) receives
connections from both the input w;, and layers
with index in Op. Specifically, the outputs from
units in layers with index in O, are properly
weighed by matrices V, according to the out-
port function r = p{0p,q), ¢ € 0.

5. The computation carried out at layer p depends
on matrices W and V according to:

By = E vp(o,,q) Xig +W ulbp‘ (5)

q€D,
heing aip = [aitp, ..., Satp) » a0d u?p = [uj,, 1]’
the input, taking into account also an eventual

bias term.

6. When feeding the network with graph i, ihe
output for each vertex v; ia

o = [{atp) = f(M x?p) {6)

where x}, = [x},, 1]', takes into account also an
eventual bias term.

Given a structure i; and the associated encoding
network A{i;), the corresponding processing is
carried out by the typical forward step of
feedforward networks. Note that, apart from the
architecture, which is inherited by the given DOAG,
weight matrices W,V, and M are independent
of the given graph. Hence, the computation
defired by equations (5) can be carried out by
means of a generelized recurrent network whose
computation takes place in the pseuo-time space
{1,...,max B]. Let T} be the topological sorting of
graph U; defining which node must be processed at
pseudotime p € [1,...,max; ;). The computation
described by equation (5) can be considered as
a recurrent computation at pseudo-time p, once
the computation had already taken place Vg < p.
The computation ends for p = s = B; at that
pseudo-time the supersource layer activations are
computed and, finally, the DOAG’s membership is
given by (6).
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DAG input

Figure 2: The generalized recurrent network architecture
for processing data structures, the processing takes place in
the extended time space dimension, The neuron activations
are recorded in the lower module, which is also responsible
for feeding the layer of neurons, according to the defined
topological sorting.

o Cost index.

Given the pair (N,£,), the output-target data
fitting is measured by means of the cost function

L
Ez) Ei=73 Balon—d*)+ Y B-(on—d)

=1 tec+ rec-
(M

where

{,@+(a}=0 ifa>0
Ba(@) >0 filo)<0 fa<0’

(8)
{ B-(o)

=( lfﬂSU
B_(e)>0

B (a}>0 ifa>0 "’

and “ ¢ 7 stands for differentiation with respect to
2. This threshold-LMS error has been introduced
by Sontag & Sussman [1989]. This cost does not
penalize ontputs “beyond” ithe target values 2.

Let us introduce some more notation for gaining a
compact vectorial of the gradient of the cost.

?1t can be proven that the choice of this type of functions
makes it possible to avoid the spurioss local minima arising
when choosing non-agsymptotical values for the targets, that
when [d=,d*] ¢ [d, 4], that is d~ # £ and (or) d* # d.
This kind of spuricus local minima were shown in [Brady el
al., 1989), while Sontag & Sussman [1989] proved that they
disappear when choosing threshold-LMS functiona. Gori &
Tesi [1992] gm\red that no such spuricus locsl minime arise

when [d™,d7] C [d, d].



= [Uy,---,Ug) € R™F collects the topological
sortmg of all the given daia structures, where P* =
Z; ; Pi- Similarly, for each graph i), the outputs
of the hidder units can be collected in matrix
Xi=[xy,.... %] € R™ and, for all the graphs,
matrix X = {X,...,X.] € R™F" is used for
keeping the hidden output trace.

2. Let us define y, = 8E/day,. For node p of a
given DOAG U, the corresponding delta error Vitp
can be collected in veclor y; = [y“pp..,yn;p]’
and the contributions from all the graph's nodes
can be collected in matrix Yy = [yi1,....¥0.8] €
REPO Finally, Y = [Yy,.... Y] € RP" contains
the delta errors for all the graphs of Lhe learning
envitonment, while the delta error corresponding

with the output unit is denoted by % y, = ”‘f

The gradient of the cost can be calculated by using
Backpropagation in each encoding network (see e.g.
Iig. 1), that is by propagating the error through the
given structure, instead of through time, as typically
happeus for recurrent. networks processing scquences,
‘The gracient of the cost can be written in a compact

forin by using the vectorial notation Gw = [;Lf‘_ €
»R_m.ﬂ aud Vr [ [l,<”,0] : - [30’,"] €
R, Based on these definitions, Gw and Gy, can be

computed as follows

#
Z ny:p = UY"

i1
i [V]r-

L
=3 Gwi
I=1
(9)
L
Gt‘ = ;z G ;ZI Z Xig(p ,.)y,P XYy’
=] =1p=

wlhere £(p,7) is the r-th vertex pointed by vy, Gw:, Gy,

are the gradient contributions corresponding to E, that
is to DOAG I. The gradient coordinates are denoted by
G, .t and Gy, ;1 respectively. The delfa-crror yip
can he computed recursively according to BPTS:

e 'nl'.f'(“t'ls )ﬁﬁ,(ﬂf, - d+ )f,(ﬂfs) i € C+ (10)
Yile = L my f'{aus )8 o1, — d7) ' (@;) 1€C
n
witp = ['{aup) z z VkiotZ, Wi, PES (11)
rel, k=1
Thesé equations represent a vectorial form of

Back-Propagation Through Structyre (BPTS) gradient
colpuiational scheme [Sperdutl and Starita, 1597).

INote the difference between yi, and ¥us. W_hlle Y € 'Rﬂ
is the delta ertor associated with the output unit, ¥y, € R
i the delta error corresponding to the supersource layer.

Figure 3: The problem of classifying DOAGs depending the
their cutdegree. Positive DOAGs are those with outdegree
less than three. Since P {t = 8, a network with § hidden
units can be used in order to avoid local minima. Note that
the leiters attached to the nodes are only used as pointers.

The analysis proposed in this paper is based on the
implicit assumption there exists at least one sel of
weights for which £ = 0, that is we assume that all
the DOAGS of the learning environment can be classified
correctly.

3 A bound on the hidden units for
efficient learning

In this section we study the role of graph topology
regardless of the information aitached 1o the nodes. This
is harder than studying the case which there are also
significant labels attached to the nodes, which are likely
to simplify the learning process.

Definition 1 Given POAGs collection Dy, let Uy =
{up: p=1,....F; I= 1,...,L} be the corresponding
sel of nodes obtained when using a topological sorting T,
We define relation sa C Uy x Uy as follows:

gt 00 U <> DOAG(un) = DOAG(um), (12)

where DOAG(u) denotes the DOAG having node u a5 a
SupeTSOurCe.

Definition 2 Given DOAGs collection Dy, consider
quotiend set Up Sy, The number Pp ft = | Ur/pa | is
referred to as the power pointer of Dp.

Theorem 1 Given £ ~ {L,N,E(-)}, essume that
there exisis al least a soluifon with E = 0. Then,
Junction E(-) has no local minima different from E = 0,
provided thal Dy ff € n.

Proof: see the Appendix A. O Note that Ty, f#+ € n
forces to use neural metworks with at least as many

hidden units as DOAGs to learn, since D ff > L. A
special interesting case is that in which Dy ft > L. This
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Figure 4. The problem of classifying DOAGe depending the
presence of 2 common sub-graph. Positive DOAGs are those
containing subgraph {{X Y} (Y, 2).(X, Z}}. Since P f =
. a network with 9 hidden units can be used in order to aveid

locs! munima. Note that the letters attached to the nodes are
only used as pointers,

holds for all those DOAGs with structure indicated in
the following definition.

Definition 3 A set of DOAGs Dy is a Chinese box
provided that ¥ Uy € Sy, 3w ly,... .U U =
LS VIR T RO 41 P T 7 O / /3 3

Corollary 1 Let Dp be a Chinese boz, with associated
learning environment £,. and A a generalized recurrent
network such that there exists at least a solution with
E=0 If n >| £, |= L then error function E{(-) has no
local minima different from £ = 0.

Proof: Trivial, since for Chinese boxes Dy ft = L.

Example 1 Consider the problem of classifying
DOAGs depending the their outdegree. Positive DOAGs
ate those with outdegree less than three (see Fig 3). It
can can easily be checked that

Ulfoa = [(C-1,D-1,C-2,B~3,C-3,E -4,
C-4D-4C-5D-5E-5B-6C-6D-6),
(B~1,A-3),(B~5A=6),(B=-258-4),

(4 =1),(A=2}(A-4),(4-3))

C

I
4

Heunce, Pr t = 8. Because of Theorem 1, we conclude
that when using a neural network with n = 8 hidden
1nnits, the given training set gives rise to an error function
with no local minima.

Example 2 Consider problem of classifying DOAGs
depending the presence of a common sub-graph and
assune, in partican, that positive DOAGs are
those containing subgraph {(A4, B}, (B, C), (4, C)} (see
Fig. 4). It can can easily be checked that

UL/sa = (P-1,D~2,E~2,C~3C~4,D~50C-5,
P=6),(C~1,C~2,B-3B-4,C-35),
(B-~1,B-2A-3)(A-1),(4~2),
(A—4,8-5),(A-5),(B~-6){A-6)].
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Figure 5: The problem of learning perfect binary trees. The
associated error function has no local minima, provided that
one uses 8 hidden units.

Hence, Pr, fr= 9, which means that can surely get rid of
local minima when using neural networks with 9 hidden
units.

Example 3 Consider the problem of learning the
concept of perfect binary tree from the examples shown
in Fig. 5. It can easily be proven that the given learning
environment is a Chinese box and, therefore, according
to Corollary 1, a network with 8 hidden units ensures
that there are no local minima.

4 Conclusions

In this paper we have proven that if we use as many
hidden units as the pointer power of the given collection
of DOAGs, any problem of learning their classification
can be solved with a unimodal error function. Moreover,
in the special case of Chinese boxes, the pointer power
reduces to the cardinality of the given training set. The
given bound on the number of hidden units that are
needed to avoid local minima, however, is not necessarily
useful for the network design, since our condition is
not related to generalization issues. The given bound,
however, seems to be very interesting from a theoretical
point of view, especially when compared with related
results given for multilayer networks [Poston et al., 1991;
Yu, 1992].

Appendix

Proof: Sketch ! - Theorem 1

According to the hypothesis, when using e<, we can
reduce D to Pr/.a and, because of the defined
computation scheme, all DOAG(u) 1wy € wm(p) €

* The basic idea of the proof is somewhat related to Poston
et. al's [Poston et a/., 1991] and Yu's [Yu, 1992], for the case
of multilayer perceptrons. L. Harney [Harney, 1994] pointed
out that Poston et al. proof was not complete and that Yu's
proof contained a flaw. Yu and Chen [Yu and Chen,.1995],
however, have recently proven that the flaw pointed out by
Harney can be fixed up and that the claimed result holds.



DL/ give rise to_the same pointers on the network
hidden layer. Let X = [Xy,...,%Xp,q] € R* Dt be the
matrix of different pointers and D, = {/ : wy € uw(p)}.
Equation (9) for the gradient w.r.i a generic matrix V,
can be re-organized to & sum with Py 1t different terms
only, that is

Gv. = XY' =XV, (13)
where
ypp = Z ¥ips (14)
€D,

and ¥ = [§1,...,¥p.0] € R*P:0 Since n > Dr 4,
matrix X is full rank with P = 1. Now, the proof can be
given separately in the cases in which rank X = Dy
and rank X < Dp 1.

1. rank X = Dy 1.
Under this condition, because of (13), the condition
for critical points Gy, = 0 yields ¥ = 0. Now we
have two different cases for graphs in D

(8) U : un € usa(p) and | up{p) |= 1.
In this case ¥, = 0 = wyi, = 0, which,
because of BPTS equations (10) yields £, =0,
in the case of m; # 0 (if m; # 0, see the singuiar
case (2)).
(b) U;: up, € uw{p) and § uealp) [> 1.

Also in this case, we can prove that y;, = 0.
Consider the gemeric condition that can be
derived from (13), thatis ¥,p = Y 1cp, ¥1p = 0.
We can remove all terms yy, in (14), for which
¥i: = 0 were already proven in (la) and, for
the correspondent graphs we have y;, = 0,
which, in turn, yields Bt = 0. Let Dr be
the set of graphs whose terms in (14) were
removed. All other graphs in Dy \ Dr are
necessarily subgraphs of elements in Dp. For
any Ui € Dy \ Dr consider the corresponding
encoding network of a graph I, such that 4
is a subgraph of Uy € Dr. According to the
analysis carried in (1a) we derive that ya, = 0.
Since L4 is a subgraph of i, we can always
find a node up_ DOAG(us,,.) = U
According to the BPTS equations (11), when
following a path connecting s to pm we derive
that ya,, = 0. If matrices ¥, are full rank,
then yi, = 0 and, finaily, £} = 0.

2. rankX < DLt
Under this assumption, there is the possibility that
¥r Gy, =0 <= Y # 0. Now we prove that
the corresponding configuration cannot be a local
minimum for E(-). Assume, by contradiction, that
configuration {W,,V,,M,} is a local minimum.
Since X = » holds with P = 1, there would be
infinite global minima {(E = 0) in the neighborhood

of {W,,V,, M.}, which is not consistent with the
agsumption that E(.) is a continuous function 5.
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