Extracting Propositions from Trained Neural Networks

Hiroshi

Tsukimoto

Research & Development Center, Toshiba Corporation
70, Yanagi-cho, Saiwai-ku, Kawasaki, 210
Japan

Abstract

This paper presents an algorithm for extract-
ing propositions from trained neural networks.
The algorithm is a decompositional approach
which can be applied to any neural network
whose output function is monotone such as sig-
moid function. Therefore, the algorithm can
be applied to multi-layer neural networks, re-
current neural networks and so on. The algo-
rithm does not depend on training methods.
The algorithm is polynomial in computational
complexity. The basic idea is that the units of
neural networks are approximated by Boolean
functions. But the computational complexity
of the approximation is exponential, so a poly-
nomial algorithm is presented. The authors
have applied the algorithm to several prob-
lems to extract understandable and accurate
propositions. This paper shows the results for
votes data and mushroom data. The algorithm
is extended to the continuous domain, where
extracted propositions are continuous Boolean
functions. Roughly speaking, the representa-
tion by continuous Boolean functions means
the representation using conjunction, disjunc-
tion, direct proportion and reverse proportion.
This paper shows the results for iris data.

1 Introduction

Extracting rules or propositions from trained neural net-
works is important[1], [6], Although several algorithms
have been proposed by Shavlik, Ishikawa and others
[2],[3], every algorithm is subject to problems in that
it is applicable only to certain types of networks or to
certain training methods.

This paper presents an algorithm for extracting propo-
sitions from trained neural networks. The algorithm is a
decompositional approach which can be applied to any
neural network whose output function is monotone such
as sigmoid function. Therefore, the algorithm can be
applied to multi-layer neural networks, recurrent neural
networks and so on. The algorithm does not depend
on training methods, although some other methods[2],

1098 NEURAL NETWORKS

[3] do. The algorithm does not modify the training re-
sults, although some other methods [2] do. Extracted
propositions are Boolean functions. The algorithm is
polynomial in computational complexity.

The basic idea is that the units of neural networks are
approximated by Boolean functions. But the computa-
tional complexity of the approximation is exponential, so
a polynomial algorithm is presented. The basic idea of
reducing the computational complexity to a polynomial
is that only low order terms are generated, that is, high
order terms are neglected. Because high order terms are
not informative, the approximation by low order terms
is accurate[4].

In order to obtain accurate propositions, when the
hidden units of neural networks are approximated to
Boolean functions, the distances between the units and
the functions are not measured in the whole domain, but
in the domain of learning data. In order to obtain simple
propositions, only the weight parameters whose absolute
values are big are used.

The authors have applied the algorithm to several
problems to extract understandable and accurate propo-
sitions. This paper shows the results for votes data and
mushroom data.

The algorithm is extended to the continuous domain,
where extracted propositions are continuous Boolean
functions. Roughly speaking, the representation by con-
tinuous Boolean functions means the representation us-
ing conjunction, disjunction, direct proportion and re-
verse proportion. This paper shows the results for iris
data.

Section 2 explains the basic method. Section 3
presents a polynomial algorithm. Section 4 describes the
experiments. Section 5 extends the algorithm to contin-
uous domains and applies it to iris data.

The following notations are used. x,y,.. stand for vari-
ables. f,g,.. stand for functions.

2 The basic method

There are two kinds of domains, that is, discrete domains
and continuous domains. The discrete domains can be
reduced to {0,1} domains by dummy variables. So only
{0,1} domains have to be discussed. Here, the domain
is {0,1}. Continuous domains will be discussed later.

2.1 The basic method

The basic method is that the units of nenral networks are
approximated by Boolean functions. The output func-
Eion]s are sigmoid functions, so the values of the units are
0,1).

Let {fi) be the values of a unit of a neural network.
Let {g:}(g: = 0 or 1) be the values of Boolean functions,
The basic method is as follows:

_J Yfi z0.8),
= 0(f: < 0.5).

This method minimizes Euclidean distance,

Fig. 1 shows a case of two varizbles, Crosses stand
for the values of a unit of a neural network and circles
stand for the values of & Boolean function. 00,01,10
and }1 stand for the domains, for example, 00 stands for
z=0,y=0.

1

®o

(=]
o »
o

oo 01 10 11

Figure 1: Approximation

In this case, the values of the Boolean function g{x,)
are as follows:
9(0,0) = 1,(0,1) = 1,4{1,0) = 0,4(1,1} = 0.

Generally, let g(z;,...,z,} stand for a Boolean func-
tion, and let g;(i = 1, ..., 2") stand for values of a Boolean
function, then the Boolean function is represented by the
foliowing formula:

‘I\
g2y, Za) = 3 gitis

izl
where ¥ is disjunction, and a; is the atom corresponding
to g;, that is,

a; = [[elz) (i = 1,...,2"),

i=1

y_] Tile; =0),

where

where [] stands for conjunction, ¥ stands for the nega-
tion of x, and e; is the substitution for x;, thatis, e; =0
or 1. The above formula can be easily verified, There-
fore, in the case of Fig. 1, the Boolean function is as
foliows:

o(z, 3} = {0,0)2§ + ¢(0,)2y + ¢(1, 0)xF + g{1, 1)2y,

9(z, ¥} = 15§ + 12y + 0z + Ozy,

gz, v; = Zj + Iy,

glz,¥) =2

2.2 An example

We show that the proposition of Exclusive OR, that is,
TV Zy, can be obtained by approximating a neural net-
work which has learned Exclusive OR using the back-
propagation method. First, we explain the structure of
the network. Second, we snalyze the learning results.
Fig. 2 shows the structure of the neural network.

Figure 2: Neural Network

In Fig. 2, # and y are inputs, z is an output, and ¢;'s
are the outputs of four hidden units. Each output is
represented as follows:

t) = S(wyz + way + by),

ty = S(waz + wey + he),

ts = S{wsz + wey + h3),

ty = S(wrz + wey + hs),

z = S(wpt; + wigls + wiits + wiaty +),
where w,'s stand for weight parameters, S(z) stands for
sigmoid function and h;'s stand for biases.

The learning results with 1000 time repetition are as
follows:

wy = 2.81, wy = ~4.80, wy = ~4,90,

wy = 2.83, w; = —4.43, we = —4.32,

ey = —0-70, g = —0.62, Wy = 5-22,

wp = 5.24, wy) = ~4.88, wyp = (.31,

hy = —0.83, hy = -1.12, hy = (.93,

hy = =0.85, hy = =2.19.
For example,

t; = §(2.51z — 4.80y — 0.83),
and the values of ¢, (0,0),#;(0,1),2,(1,0), and ¢,(1,1} are
as follows:

t(1,1) = 8(2.51 -1~ 4.80-1~0.83) = §{-3.12),

#(1,0) = 5(2.51 -1 — 4.80 - 0 — 0.83) = 5(1.68),

4{0,1) = §(2.51-0—4.80 - 1 ~ 0.83) = §(-5.63),

£,(0,0) = §(2.51 - 0 - 4.80 - 0 — 0.83) = S(-0.83).
5{-3.12) ~ 0, 5(1.68) ~ 1, $(-5.63) =~ 0, and
5{—0.83) = 0, therefore

t) =~ ry.
In a similar manner, the others are approximated by the
following Boolean functions:

tg = ig,
ts = Iy,
ty =0.

The leaming result of : is as follows:
=iz Vijtaty Vi iaty.

TSUKIMOTO 1099

By substituting ¢; = 2%, 2 = %y, and & = 2¥, in the
above formula,
= 2xFV Iy
has been obtained. This proposition is Exclusive OR.
Now we have confirmed that the logical proposition
of Exclusive OR can be obtained by approximating the
neural network which has learned Exclusive OR. We un-
derstand the following items.

1. The learning results of 4 hidden units and an output
unit.

2. The output of hidden unit 4, t,, is not included in
the Boolean function of the output unit, z, so hidden
unit 4 does not work and can be deleted.

3. The other three hidden units work, so they are nec-
essary and cannot be deleted.

A merit of the decompositional approach is that trained
neural networks can be understood by the unit.

3 A polynomial algorithm

Obviously, the computational complexity of the basic
method is exponential, so the basic method is not re-
alistic. Therefore, the computational complexity should
be reduced to a polynomial. This section presents the
polynomial algorithm. The basic idea of reducing the
computational complexity to a polynomial is that DNF
formulas consisting of only low order terms are gener-
ated from the lowest order up to a certain order, that
is, high order terms are neglected. Because high order
terms are not informative[4j, the approximation by low
order terms is accurate.
The brief outline of the algorithm follows.

1. Check the existences of terms after the approxima-
tion from the lowest order.

2. Connect the terms which exist after the approxima-
tion to make a DNF formula.

3. Execute the above two procedures up to a certain
order.

In this section, first, the condition that a term zj, -
-2, Fi,,, i, exists in the Boolean function after approx-
imation is presented. Second, the generation of DNF
formulas is explained. Third, in order to obtain accu-
rate propositions, the condition is modified in a manner
such that the distance between the hidden unit of a neu-
ral network and a Boolean function is not measured in
the whole domain, but in the domain of the learning
data. Fourth, in order to obtain simple propositions,
the condition is modified in a way such that only the
terms consisting of variables whose weight parameters'
absolute values are big are generated.

3.1 The condition that :c,',_--a:,',@“, -_-E,',
exists in the Boolean function after
approximation

Let a unit of a neural network be

S(Plzl + .. + PnZn +Pn+l)’

1100 NEURAL NETWORKS

where S(-} is an arbitrary function. Let the orthonormal
expansion be

fizi - zn + o1 - Fa + oo+ for T - T,

where “4” and “-" are the sum and the product of ele-
mentary algebra and I is 1 — 2. Boolean functions can
be represented by elementary algebra and the atoms can
be the orthonormal functions. Due to space limitations,
for details, see [10].

Theorem 1 f;’s are as followa:

Hi=8p + ..+ patPusih

fo=S(p1 + o4 Pa-t + Pas1)

Jan-1 = 8(p1 + Pat1)s
f?""-H = S(pg +...4pPn +Pn+1)1

for-1 = S(Pa + Pasi),
fz- = S{Pn-u)-

Proof f| can be obtained by substituting
T == ¢, = 1in the following formula:

S(plz] + ot PnZn +pn+1)
= flxl * 'zl'l+f22] "ﬁ+'--+f2.x_l"ﬁ-

fa» can be obtained by substituting
2y =+ = g, = 0 in the above formula. The other
coefficients can be obtained in a similar manner, O

Theorem 2 The condition that
Tiy TiyFinyy Tig

eziais in the Boolean funclion after approzimation (s as
Jollows:

in
S(Epj + Pn+1 t+ E

i 1€ €n, im0, <0

p_,'} > 0.5,

where S{-) means a monotone increasing function.

Proof Cousider the existence condition of z; in the
Boolean function after approximation. For simplifica-
tion, this condition is called the existence condition. Be-
cause

) =TT Ty V123 - E, V...V T3 - T,

the existence of z; equals the existence of the following
terms:

X1T2* Ty 8182 < Fny ooy Ty Tz ¢ Tne
The existence of the above terms means that all coeffi-
cients of these terms f;, fz, ..., fan~1 are greater than or
equal to 0.5 {See 2.1}, That is, the existence condition
is

min{f;} > 051 <ig2*").

Because fi's (1 <i <2°~}) are
Hr=S(p1+ .+ Pa +Pasi)s
fa= S(Pl + et Pn-1 + Prat)a

e

Janes = S(p1 + Pat1)y

each fi(1 £ i £ 2°7") contains py. If each p; is non-
negative, f2~-1(= S(p1 + Pn41)) is the minimum because
the other f;"s contain other p;’s, and therefore the other
fi's are greater than or equal to fan-1(= §{(ps + pns1)).
Note that the above argument holds, because S(-) is
monotone increasing. Generally, since each p; is not nec-
essarily non-negative, the min{f;} is f; which contains
all negative p;. That is,

min{fi} = S(p1 + pr+1 + E Pik
155 8n,5#1,p5 <0
which necessarily exista in fi{{l1 < i € 2"~!), because
fill<ig 2"'1) i8
8(p1 + pn+1 + (arbitrary sum of p;(2 £ j < n))).

From the above arguments, the existence condition of
z;, min{f;} > 0.5, is az follows:

S(Pl + Payt + E

1€)Sn,j#1,p; <0

pj) 2 0.5.

Since S{piz) + ... + Pnn + Pni1) I8 symmetric for z,,
the above formula holds for other variables; that is, the
existence condition of z; is

Spi+panr+ Y

1£j € 3#4,p; <0

pi) 2 0.5

Similar discussions hold for T;, so0 we have the following

formula:
SPari+ Y. pj) 205

155 S ji,pg <0

Similar discussions hold for higher order terms z;, -
‘ZiyFiyy, * 'Tip» 50 we have the following formuia:

i
S(ZP;’ + Pat1 + >

1€5ER, G311 2 KO

25} 205 (1)

a

Since the output function is monotone increasing, this
theorem cannot be applied to units whose output fune-
tion is a Gaussian function. Moreover, it can be easily
verified that a similar theorem holds when the output
function is monotone decreasing.

3.2 Generation of DNF formulas

The algorithm generates terms using (1} from the low-
eat order up to a certain order. A DNF formuia can be
generated by taking the disjunction of the terms gen-
erated by (1). A term whose existence has beea con-
firmed does not need to be re-checked in higher order
terms. For example, if the existence of z is confirmed,
then it also implies the existence of zy,z2 ,..., because
F=zVazyVzzV..; hence, it is unnecessary to check
the existence of 2y, 22,.... As can be seen from the above
discussion, the generation method of DNF formulas in-
cludes reductions such as zy V zz = z. An example
follows, Let

${(0.65z; + 0.23z4 + 0.1525 + 0.20x(+ 0.02z5 ~ 0.5}

be a unit of a neural network.
For 2;(1=1,2,3,4,5),

S(p +pe) 2 0.5,

and therefore r; exists.
For z;2;(3, 5 = 2,3,4,5),

S(pi + pj + pe) < 0.5,

and therefore no #;z; exists.
For zix;0e(3, j, &k = 2,3, 4,5),

5(p2 +ps + pa + pa) 2 0.5,

and therefore z;x3x, exists.

Because higher order terms cannot be generated from
Z5, the algorithm stops. Therefore, 2; and xp2324 exist
and the DNF formula is the disjunction of these terms,
that is, z; V T3Ta324.

3.3 A modified condition

This subsection discusses the improvement of the accu-
racy of the proposition obtained from a hidden unit. In
the domain outside the domain of the learning data, the
values of a trained neural network are predicted values,
So the values in the domain are not reliable. If we have
a trained network and no learning data, we cannot know
which is the domain of the learning data. Thus only (1) is
available, If we have a trained network and the learning
data, we can use the domain of the learning dats in order
to improve the accuracies of the propositions obtained.
In order to obtain accurate propositions, when the uaits
of nenral networks are approximated to Boolean func-
tions, the distances between the units and the functions
are not measured in the whole domain, but only in the
domain of the learuing data. That is, the left-hand side
of {1), which means the minimum value for 2 term over
the whole domain, is modified to the minimum value for
a term in the domain of the learning data. Theorem 2 is
modified as shown helow.

Theorem 3 Let a unit of o neural network be
S(Plzl + .. + Pnln +pn+1)
then, the existence condition of a term
Tiy TinTipyy " Ty
after the approzimation is as follows:

S(EPJ‘ + Pn+1 + min{ Z:

i Is.iﬁn\j#ih"lil

pjei}) 2 0.5,

where ¢; i3 0 or 1 and §(-) means a monotone increasing
function. The domain used for calculating the minimum
value in the above formula is limited to the domain of
the learning dala.

For example, let three attributes of a learning data be
{21,22,7s) and the attribute values be binary. Assume
that the learning data are in the table below,

TSUKIMOTO 1101

data | X, | x, | x, | Class
i |ojo[1] 0
2 110]0 0
3 1 110 1

In this case, the domain of the learning data is
(0,0,0), (1,0,0) and (1,1,0), and a unit of a neural net-
work is

S(pr21 + p2z2 + pszs + P4

The existence condition of x; after the approximation is
as follows:

S(p1+pe+min{ 3 pie;}) 205
15553,5#1

But, the checking range is limited to the domain of the
learning data, so the checking range is limited to the
domain of the data 2 and data 3 where X; = 1. Therefore
the existence condition is as follows:

S(p1+pc+min{py-0+ps-0,pz- 14 ps-0}) 205

— 8(p1 + ps + min{0,p2}) > 0.5.

Of course, this modified condition is not applied to the
output units in 3-layer networks, because the inputs of
the output units come from the hidden units. Therefore,
(1) is applied to the output units.

3.4 Weight parameters
Let's sort weight parameters p;s as follows:

p1] 2 [p2] 2 - 2 |pnl.

When terms are generated, if all weight parameters are
used, the propositions obtained are complicated. There-
fore unimportant parameters should be neglected. In
this paper, pi's whose absolute value is small are re-
garded as the unimportant parameters. We will use p;i's
up to a certain number, that is, we neglect small p;i's.

How many weight parameters are used is the next
problem. Here, the weight parameters p4,...,px are used,
where k is determined by a value based on Fourier trans-
form of logical functions[4]. Due to space limitations,
the explanation is omitted, which will be presented in
another paper.

3.5 Computational complexity of the
algorithm and error analysis

The computational complexity of generating the mth or-
der terms is a polynomial of nCm, that is, a polynomial
of n. Therefore, the computational complexity of gen-
erating DNF formulas from neural networks is a poly-
nomial of n. Usual generations will be terminated up
to a low order, because understandable propositions are
desired. Therefore, the computational complexity is usu-
ally a polynomial of a low order.

In the case of the domain {0,1}, Linial showed the
following formula [4]:

Y (8)? < oM m,
15>k

1102 NEURAL NETWORKS

where / is a Boolean function, 5 is a term, \S\ is the
order of S, k is any integer, f(S) denotes the Fourier
transform of / at S and M is the circuit's size of the
function. The above formula shows the high order terms
have little power; that is, low order terms are informa-
tive. Therefore, a good approximation can be obtained
by generating up to a certain order.

3.6 Comparisons

This subsection briefly compares the algorithm with
other algorithms. Algorithms may be evaluated in
terms of five aspects: expression form, internal struc-
ture, network type and training method, quality, com-
putational complexity[l]]. Here, comparisons focus on
internal structure, training method and network type.

internal structure : There are two techniques,
namely decompositional and pedagogical. The de-
compositional algorithms obtain rules by the unit
and aggregate them to a rule for the network. The
pedagogical algorithms generate examples from the
trained network and obtain rules from the examples.
Obviously, the decompositional algorithms are bet-
ter than the pedagogical algorithms in understand-
ing the internal structures. Therefore, for example,
the decompositional algorithms can be also used for
the training control.

training method : The algorithm does not depend on
training methods, although some other methods do.
For example, [2] and [3] use special training methods
and their algorithms cannot be applied to networks
trained by the back-propagation method. The algo-
rithm does not modify the training results, although
some other methods [2] do.

network type : The algorithm does not depend on net-
work types, although some other methods do. For
example, [2] cannot be applied to recurrent neural
networks.

4 Experiments

The training method is the back-propagation method.
The repetition is stopped when the error is less than
0.01. Therefore, the error after the training is less than
0.01. The data used for the training are also used for the
prediction. Therefore, the accuracy of the trained neural
networks is 100%. Usual prediction experiments use data
different from those used for the training. But, in this
case, it is desired that the accuracy of neural networks be
100%, because we want to see how Boolean functions can
approximate the neural networks. Generating terms of
propositions are terminated up to second order, because
simple propositions are desired.

4.1 votes data

This data consists of the voting records of the U.S. House
of Representatives in 1984. There are 16 binary at-
tributes. Classes are Democrat and Republican: The
number of samples used for the experiment is 232. The

accuracies of propositions extracted from the trained
neural networks are shown in the table below. In the
table, i.w.p. stands for initial weight parameter and the
numbers in the column of hidden layer mean the num-
bers of hidden units.

hidden layer | i.w.p.l | iw.p.2 | i.w.p.3
5 0.974 0.974 0.974
3 0.983 0.970 0.978
4 0.978 0.974 0.974

In the case of 3 hidden units and i.w.p.l, the following
propositions have been obtained:

Democrat (physician-fee-freeze:n) V (adoption-of-the-
budget-resolutipnry) (anti-satellite- test-ban:n) (synfuels-
corporation-cutbackry),

Republican: (physician-fee-freeze:y) ((adoption-
of-the-budget-resolution:n)V (anti-satellite-test-ban:y)V
(synfuels-corporation-cutback: n)).

In the other cases, similar results have been obtained.
The results for votes data by C4.5[5], which is a typical
algorithm for machine learning, are as follows:

(physician-fee-freeze:n)V (adoption-of-the-
budget-resolution:y) (synfuels-corporation-cutback:y) —»
Democrat,

(adoption-of-the-budget-resolution:n)(physician-fee-
freeze:y) V (physician-fee-freeze:y)(synfuels-corporation-
cutback:n) —» Republican.

The accuracy of the result of C4.5 is 97.0%, so the propo-
sitions extracted from trained neural networks by the al-
gorithm are a little better than the results of C4.5 in
accuracy and almost the same as the results of C4.5 in
understandability.

4.2 mushroom data

There are 22 discrete attributes concerning mushrooms
such as the cap-shapes. Classes are edible or poisonous.
The number of samples is 4062. The accuracies of propo-
sitions extracted from the trained neural networks are
shown in the table below.

hidden layer | i.w.p.l | iw.p.2 | iw.p.3
0 0.930 | 0973 | 0.985
3 0956 | 0.983 | 0.959 j
4 0.961 0952 | 0.985

In the case of 3 hidden units and i .w.p.l, the following
propositions have been obtained:

edible:(gill-size:broad)((odor:almond)V(odor:anise)V
(odonnone)),

poisonous:(gill-size:narrow)V-»(odor:almond)
-(odor:anise) -(odor:none).

In the other cases, similar results have been obtained.
The results for mushroom data by C4.5 are as follows:

(odonnone) V (odonalmond) V (odonanise) —» edible,

(odonfoul) \% (odonspicy) \% (odonfishy) \%
(odor:pungent) V (odorxreosote) —» poisonous.

The accuracy of the result of C4.5 is 98.7%, so the propo-
sitions extracted from trained neural networks by the
algorithm are a little worse than the results of C4.5 in
accuracy and almost the same as the results of C4.5 in
understandability.

5 Extension to the continuous domain
5.1 The basic idea

In this section, the algorithm is extended to continu-
ous domains. Continuous domains can be normalized to
[0,1] domains by some normalization method. So only
[0,1] domains have to be discussed. First, we have to
present a system of qualitative expressions correspond-
ing to Boolean functions, in the [0,1] domain. The au-
thor presents the expression system generated by direct
proportion, reverse proportion, conjunction and disjunc-
tion. Fig.3 shows the direct proportion and the inverse
proportion. The inverse proportion (y = 1 - x)is a little
different from the conventional one (y = -x), because
y = 1 - x is the natural extension of the negation in
Boolean functions. The conjunction and disjunction will
be also obtained by a natural extension. The functions
generated by direct proportion, reverse proportion, con-
junction and disjunction are called continuous Boolean
functions, because they satisfy the axioms of Boolean
algebra.

Figure 3: Direct Proportion and Reverse Proportion

Since it is desired that a qualitative expression be ob-
tained, some quantitative values should be ignored. For
example, two functions "A" and "B" in Fig. 4 are differ-
ent from direct proportion x but the two functions are
proportions. So the three functions should be identified
as the same one in the qualitative expression. That is, in

TSUK1MOTO 1103

{1,1)

0
0 1

Figure 4: A Qualitative Norm

[0,1], z*(k > 2) should be identified with z in the qual-
itative expression. Mathematically, a norm is necessary,
by which the distance among the three functions is 0.
The qualitative norm can be introduced.

In {0,1}, a unit of a neural network is a function f :
{0,1} = R. In {0,1}, * = z, because 0* = 0 and
1% == 1, where k > 2. Therefore, these functions do not
contain any terms such as

zi"z:’ . -zf,",

where k; > 2. These functions are called multilinear
functions. Therefore, units of neural networks are mul-
tilinear functions. The space of multilinear functions is
Euclidean space. See 2.1. So the unit can be approxi-
mated to a Boolean function by Euclidean norm. In [0,1],
similar facts hold, that is, a unit of a neural network is a
multilinear function in the qualitative expression, that is,
the qualitative norm, and the space of multilinear func-
tions is Euclidean space in the qualitative norm. Thus
the unit can be approximated to a continuous Boolean
function by Euclidean norm.

5.2 Multilinear functions

Definition 4 Muyltilinear functions of n variables arc aa

Jollows:
z.
E 8,z
i=1
where a; is real, T; is varigble, and ¢;; is 0 or L.

. .z:"'l’

For example, multilinear functions of 2 variables are as
follows:

ary + bs + cy +4d.
In other words, multilinear functions are functions which
are linear when ouly one variable is considered and the
other variables are regarded as parameters.

Multilinear functions of the domain [0,1] are consid-
ered. In the domain [0,1], & qualitative norm hae to be
introduced. First, T is defined, which is necessary for the
definition of the qualitative norm.

Definition 5 Lei f(z) be a real polynomial function.
Conaider the following formula:
f(z) = plz)(z - 2*) + ¢(=),

where g(z) = 6z + b, where a and b are real, thot is, q(z)
ia the remainder. 7, is defined as follows:

1104 NEURAL NETWORKS

e : f(z) — 9(z).
The above definition implies the following property:
To(z*) =z,
where k > 2. In the case of n varighies, 7 is defined as

Jollowa:
r =] e
i=1
For example, r(z2y + y+ 1) =2y + 3y + 1.
Definition 6 An irnner product is defined gz follows:

1
< fg>=12"] (fq)dz,
]

where { and g are multilinear functions. The above def-
inition can satisfy the properties of inner product[7].
Definitlon 7 Norm |f| és defined as follows:

lfl =< i f »1/2,

The above norm is the qualitative norm. 7t is neces
sary for the qualitative norm, because identifying several
functions with a typical function, for example, z" with
z, can be realized by 7.

Theorem 8 The space of multilineor functions of {0, 1}
domain can be ¢ Buclidean space{10]. The space of multi-
linear functions in the domain [0,1] is a6 Buclidean space
with the above inner product: Proof can be found in [7].

5.3 Continuous Boolean functions

This subsection briefly describes continuous Boolean
functions [8], [9].

Theorem 8 The functions odtained from Boolean func-
tions by extending the domain from {0,1} io [0,1] can
satisfy oll azioms of Boolean algebra with the logical op-
erations defined below. Proof can be found in [9T

AND : 7(fg),

OR : T(f-l-g— fg)r
NOT : r(1-f).
Therefore, the functions obtained from Boolean func-
tions by extending the domain from {0, 1} to [0,1] are
called continuous Boolean functions. For example,zy
and 1 — y(= §) are Boolean functions, where z,y €
[0,1). We show a simple example for logical operation.
(XVYIA(XVY)=X VY is calculated as follows:
((z+y-zy)(z+y-2y)
r(a? + y* + 2% + 2ay - 227y - 229°)
T+ y+zy+ 22y — 22y — 2ay
= z+y-zY

In the continuous domain, fuzzy rules can be ob-
tained from trained neural networks by some algorithins
[1}. The expression by continuous Boolean functions is
more understandable than fuzzy rules, whereas continu-
ous Boolean functions are worse than fuzzy rules in ac-

curacy. The extension of continuous Boolean functions
will be included in future work. -

5.4 On the approximation

The unite of neural networks are not multilinear func-
tions when the domain is [0,1). Thus the units of neural
networks should be approximated to multilinear func-
tions using ™ = z. Note that the distance between a
vnit (f) and the nearest cortinuous Boolean function
(g) equals the distance between the multilinear function
(f') obtained by the approximation £™ = z from the unit
and the nearest continuous Boolean function (g). That
is, |f — gl = |V — gl, where |f| means the qualitative
norm. Thus, the approximation of the unit by a mul-
tilinear function does not degrade the approximation of
the unit by a continucus Boolean function.

In the domain of {0,1}, we have Linial's theorem for
error analysis, while, in the domain of {0,1], we do net
have a similar theorem. A theoretical analysis of the
error in the case of the [0,1) domain will be included in
future work.

5.5 iris data

iris data consists of four continuous atttibutes, sepal
length{=a), sepal width(=b), petal length{=c) and petal
width{=d), and three classes, setosa, versicolour and vir-
ginica. Continuous inputs are normalized to [0,1) with
maximum data and minimum data. The number of sam-
ples ig 150, The experimental conditions are the same
as in Section 4. Accuracy is calculated in a way such
that a class whose contipuous Boolean function’s value
is the biggest is chosen. The accuracies of propositions
extracted from the trained neural networks are shown in
the table below.

hidden layer [i.w.p.1 | i.w.p.2 | L.w.p.3
2 0.947 | 0.947 | 0.947
3 0.947 0.953 | 0.947

In the case of 3 hidden units and i.w.p 1, the following
propositions have been obtained:

setosa: af;peta.l length is small and petal width is small,

versicolour: cd V éd; (petal length is big and petal width
is small) or {petal length is small and petal width is big),

virginica: od; petal length is big and petal width is big,
Note that the above propositions are continuous Boolean
functions. For exampie, &d has been obtained for sctoaa,
&d means {1—c)(1~d). In the other cases, similar results
have been obtained. The learning results of C4.5 are as
fallows:

{petal length < 1.9) — setosa,

(petal length > 1.9)(petal length < 5.3)(petal width <
1.7) =+ versicolour,

(petal widek > 1.7)V (petal length > 4.9} — virginica.

The accuracy of the results of C4.5 is 97.3%, so the
propositions extracted from trained neural networks are
a little worse than the result of C4.5 in accuracy.

6 Conclusions

This paper has presented an algorithm for extracting
propositions from trained neural networks. The algo-
rithm does not depend on structures of networks and
training methods. The algorithm is polynomial in com-
putational complexity. The algorithm has been extended
to the continuous domain. This paper has shown the ex-
perimental results for votes data, mushroom data and iris
data. The algorithm has been compared with C4.5, but
when classes are continuous, decision tree learning algo-
rithms such as C4.5 cannot work. Therefore, extracting
propositions from trained neural networks is an impor-
tant technique. The algorithm has been implemented as
a module NNE(Neural Networks with Explanation) in
the data mining system KINO (Knowledge INference by
Observation).

References

[Il R. Andrews, J. Diederich and A.B. Tickle: Survey
and critique of techniques for extracting rules from
trained artificial neural networks, Knowledge-Based
Systems, Vol.8, No. 6, pp.373-189, 1995.

[2] M.W. Craven and J.W. Shavlik: Learning symbolic
rules using artificial neural networks, Proceedings of
the Tenth International Machine Learning Confer-
ence, pp.73-80,1993.

[3] M. Ishikawa: Structural Learning with Forgetting,
NEURAL NETWORKS, Vol.9, No.3, pp.509-521,
1996.

[4] N. Linial, Y. Mansour and N. Nisan: Constant
Depth Circuits, Fourier Transform, and Learnabil-
ity, Journal of the ACM, Vol.40, No.3, pp.607-620,
1993.

[6] J.R. Qumlan: C4-5: Programs for machine learn-
ing, Morgan Kaufmann Pub., 1993.

[6] J.W. Shavlik: Combining Symbolic and Neural
Learning, Machine Learning, 14, pp.321-331, 1994.

[71 H. Tsukimoto and C. Morita: The discovery of
propositions in noisy data, Machine Intelligence 13,
pp. 143-167, Oxford University Press, 1994 .

[8] H. Tsukimoto: The discovery of logical propositions
in numerical data, AAAI'94 Workshop on Knowl-
edge Discovery in Databases, pp.205-216, 1994.

[9] H. Tsukimoto: On continuously valued logical func-
tions satisfying all axioms of classical logic, Systems
and Computers in Japan,Vol.25, No.12, pp.33-41,
SCRIPTA TECHNICA, INC., 1994.

[10] H. Tsukimoto and C. Morita: Efficient algorithms
for inductive learning-An application of multi-linear
functions to inductive learning, Machine Intelli-
gence 14, pp.427-449, Oxford University Press,
1995.

TSUKIMOTO 1105

