
E x t r a c t i n g Propos i t ions f r om T ra ined N e u r a l Ne two rks

Hirosh i Tsuk imoto
Research & Development Center, Toshiba Corporation

70, Yanagi-cho, Saiwai-ku, Kawasaki, 210
Japan

Abs t rac t
This paper presents an algorithm for extract­
ing propositions from trained neural networks.
The algorithm is a decompositional approach
which can be applied to any neural network
whose output function is monotone such as sig­
moid function. Therefore, the algorithm can
be applied to multi-layer neural networks, re­
current neural networks and so on. The algo-
rithm does not depend on training methods.
The algorithm is polynomial in computational
complexity. The basic idea is that the units of
neural networks are approximated by Boolean
functions. But the computational complexity
of the approximation is exponential, so a poly­
nomial algorithm is presented. The authors
have applied the algorithm to several prob-
lems to extract understandable and accurate
propositions. This paper shows the results for
votes data and mushroom data. The algorithm
is extended to the continuous domain, where
extracted propositions are continuous Boolean
functions. Roughly speaking, the representa­
tion by continuous Boolean functions means
the representation using conjunction, disjunc­
t ion, direct proportion and reverse proportion.
This paper shows the results for iris data.

1 I n t r oduc t i on
Extract ing rules or propositions from trained neural net­
works is important[1], [6], Although several algorithms
have been proposed by Shavlik, Ishikawa and others
[2],[3], every algorithm is subject to problems in that
it is applicable only to certain types of networks or to
certain training methods.

This paper presents an algorithm for extracting propo-
sitions from trained neural networks. The algorithm is a
decompositional approach which can be applied to any
neural network whose output function is monotone such
as sigmoid function. Therefore, the algorithm can be
applied to multi-layer neural networks, recurrent neural
networks and so on. The algorithm does not depend
on training methods, although some other methods[2],

[3] do. The algorithm does not modify the training re­
sults, although some other methods [2] do. Extracted
propositions are Boolean functions. The algorithm is
polynomial in computational complexity.

The basic idea is that the units of neural networks are
approximated by Boolean functions. But the computa­
tional complexity of the approximation is exponential, so
a polynomial algorithm is presented. The basic idea of
reducing the computational complexity to a polynomial
is that only low order terms are generated, that is, high
order terms are neglected. Because high order terms are
not informative, the approximation by low order terms
is accurate[4].

In order to obtain accurate propositions, when the
hidden units of neural networks are approximated to
Boolean functions, the distances between the units and
the functions are not measured in the whole domain, but
in the domain of learning data. In order to obtain simple
propositions, only the weight parameters whose absolute
values are big are used.

The authors have applied the algorithm to several
problems to extract understandable and accurate propo­
sitions. This paper shows the results for votes data and
mushroom data.

The algorithm is extended to the continuous domain,
where extracted propositions are continuous Boolean
functions. Roughly speaking, the representation by con­
tinuous Boolean functions means the representation us­
ing conjunction, disjunction, direct proportion and re­
verse proportion. This paper shows the results for iris
data.

Section 2 explains the basic method. Section 3
presents a polynomial algorithm. Section 4 describes the
experiments. Section 5 extends the algorithm to contin­
uous domains and applies it to iris data.

The following notations are used. x,y,.. stand for vari­
ables. f,g,.. stand for functions.

2 The basic me thod
There are two kinds of domains, that is, discrete domains
and continuous domains. The discrete domains can be
reduced to {0 ,1 } domains by dummy variables. So only
{0,1} domains have to be discussed. Here, the domain
is {0 ,1 } . Continuous domains wi l l be discussed later.

1098 NEURAL NETWORKS

TSUKIMOTO 1099

has been obtained. This proposition is Exclusive OR.
Now we have confirmed that the logical proposition

of Exclusive OR can be obtained by approximating the
neural network which has learned Exclusive OR. We un­
derstand the following items.

1. The learning results of 4 hidden units and an output
unit.

2. The output of hidden unit 4, t4, is not included in
the Boolean function of the output unit , z, so hidden
unit 4 does not work and can be deleted.

3. The other three hidden units work, so they are nec­
essary and cannot be deleted.

A merit of the decompositional approach is that trained
neural networks can be understood by the unit.

3 A polynomial algorithm
Obviously, the computational complexity of the basic
method is exponential, so the basic method is not re­
alistic. Therefore, the computational complexity should
be reduced to a polynomial. This section presents the
polynomial algorithm. The basic idea of reducing the
computational complexity to a polynomial is that D N F
formulas consisting of only low order terms are gener­
ated from the lowest order up to a certain order, that
is, high order terms are neglected. Because high order
terms are not informative[4j, the approximation by low
order terms is accurate.

The brief outline of the algorithm follows.

1. Check the existences of terms after the approxima­
tion from the lowest order.

2. Connect the terms which exist after the approxima­
t ion to make a DNF formula.

3. Execute the above two procedures up to a certain
order.

In this section, first, the condition that a term
exists in the Boolean function after approx­

imation is presented. Second, the generation of DNF
formulas is explained. Th i rd , in order to obtain accu­
rate propositions, the condition is modified in a manner
such that the distance between the hidden unit of a neu­
ral network and a Boolean function is not measured in
the whole domain, but in the domain of the learning
data. Fourth, in order to obtain simple propositions,
the condition is modified in a way such that only the
terms consisting of variables whose weight parameters'
absolute values are big are generated.

3.1 T h e cond i t i on t h a t
exists i n t he Boo lean f u n c t i o n a f ter
a p p r o x i m a t i o n

Let a unit of a neural network be

1100 NEURAL NETWORKS

TSUKIMOTO 1101

data
i
2
3

X1

0
1
1

x2

0
0
1

x3

1
0
0

class
0
0
1

In this case, the domain of the learning data is
(0,0,0), (1,0,0) and (1,1,0), and a unit of a neural net­
work is

The existence condition of x1 after the approximation is
as follows:

But , the checking range is l imited to the domain of the
learning data, so the checking range is l imited to the
domain of the data 2 and data 3 where X1 = 1. Therefore
the existence condition is as follows:

Of course, this modified condition is not applied to the
output units in 3-layer networks, because the inputs of
the output units come from the hidden units. Therefore,
(1) is applied to the output units.

3.4 We igh t parameters
Let's sort weight parameters pi's as follows:

When terms are generated, if all weight parameters are
used, the propositions obtained are complicated. There­
fore unimportant parameters should be neglected. In
this paper, p i 's whose absolute value is small are re-
garded as the unimportant parameters. We wi l l use p i 's
up to a certain number, that is, we neglect small p i 's.

How many weight parameters are used is the next
problem. Here, the weight parameters p1,...,pk are used,
where k is determined by a value based on Fourier trans­
form of logical functions[4]. Due to space l imitations,
the explanation is omitted, which wi l l be presented in
another paper.

3.5 C o m p u t a t i o n a l comp lex i t y o f t he
a l g o r i t h m and e r r o r analysis

The computational complexity of generating the m t h or­
der terms is a polynomial of nCm, that is, a polynomial
of n. Therefore, the computational complexity of gen­
erating DNF formulas from neural networks is a poly­
nomial of n. Usual generations wi l l be terminated up
to a low order, because understandable propositions are
desired. Therefore, the computational complexity is usu­
ally a polynomial of a low order.

In the case of the domain {0 ,1 } , Linial showed the
following formula [4]:

where / is a Boolean function, 5 is a term, \S\ is the
order of S, k is any integer, f(S) denotes the Fourier
transform of / at S and M is the circuit's size of the
function. The above formula shows the high order terms
have l i t t le power; that is, low order terms are informa­
tive. Therefore, a good approximation can be obtained
by generating up to a certain order.

3.6 Compar isons
This subsection briefly compares the algorithm with
other algorithms. Algorithms may be evaluated in
terms of five aspects: expression form, internal struc­
ture, network type and training method, quality, com­
putational complexity[l] . Here, comparisons focus on
internal structure, training method and network type.

i n t e r n a l s t r u c t u r e : There are two techniques,
namely decompositional and pedagogical. The de-
compositional algorithms obtain rules by the unit
and aggregate them to a rule for the network. The
pedagogical algorithms generate examples from the
trained network and obtain rules from the examples.
Obviously, the decompositional algorithms are bet­
ter than the pedagogical algorithms in understand­
ing the internal structures. Therefore, for example,
the decompositional algorithms can be also used for
the training control.

t r a i n i n g m e t h o d : The algorithm does not depend on
training methods, although some other methods do.
For example, [2] and [3] use special training methods
and their algorithms cannot be applied to networks
trained by the back-propagation method. The algo­
rithm does not modify the training results, although
some other methods [2] do.

n e t w o r k t y p e : The algorithm does not depend on net­
work types, although some other methods do. For
example, [2] cannot be applied to recurrent neural
networks.

4 E x p e r i m e n t s
The training method is the back-propagation method.
The repetition is stopped when the error is less than
0.01. Therefore, the error after the training is less than
0.01. The data used for the training are also used for the
prediction. Therefore, the accuracy of the trained neural
networks is 100%. Usual prediction experiments use data
different from those used for the training. But , in this
case, it is desired that the accuracy of neural networks be
100%, because we want to see how Boolean functions can
approximate the neural networks. Generating terms of
propositions are terminated up to second order, because
simple propositions are desired.

4 . 1 votes d a t a
This data consists of the voting records of the U.S. House
of Representatives in 1984. There are 16 binary at­
tributes. Classes are Democrat and Republican: The
number of samples used for the experiment is 232. The

1102 NEURAL NETWORKS

accuracies of propositions extracted from the trained
neural networks are shown in the table below. In the
table, i.w.p. stands for ini t ial weight parameter and the
numbers in the column of hidden layer mean the num­
bers of hidden units.

hidden layer I i .w.p.l | i.w.p.2 | i.w.p.3
5 0.974 0.974 0.974
3 0.983 0.970 0.978
4 0.978 0.974 0.974

In the case of 3 hidden units and i .w.p. l , the following
propositions have been obtained:

Democrat (physician-fee-freeze:n) V (adoption-of-the-
budget-resolutipnry) (anti-satellite- test-ban:n) (synfuels-
corporation-cutbackry),

Republican: (physician-fee-freeze: y) ((adoption-
of-the-budget-resolution:n)V (anti-satellite-test-ban:y)V
(synfuels-corporation-cut back: n)).

In the other cases, similar results have been obtained.
The results for votes data by C4.5[5], which is a typical
algorithm for machine learning, are as follows:

(physician-fee-freeze:n) V (adoption-of-the-
budget-resolution:y) (synfuels-corporation-cut back:y) —►
Democrat,

(adoption-of-the-budget-resolution:n)(physician-fee-
freeze:y) V (physician-fee-freeze:y)(synfuels-corporation-
cutback:n) —► Republican.

The accuracy of the result of C4.5 is 97.0%, so the propo­
sitions extracted from trained neural networks by the al­
gorithm are a l i t t le better than the results of C4.5 in
accuracy and almost the same as the results of C4.5 in
understandability.

4 .2 mushroom d a t a

There are 22 discrete attributes concerning mushrooms
such as the cap-shapes. Classes are edible or poisonous.
The number of samples is 4062. The accuracies of propo-
sitions extracted from the trained neural networks are
shown in the table below.

hidden layer
0
3
4

i.w.p.l
0.930
0.956
0.961

i.w.p.2
0.973
0.983
0.952

i.w.p.3
0.985
0.959 j
0.985

In the case of 3 hidden units and i .w.p. l , the following
propositions have been obtained:

edible:(gill-size:broad)((odor:almond)V(odor:anise)V
(odonnone)),

poisonous:(gill-size:narrow)V-»(odor:almond)
-(odor:anise) -(odor:none).

In the other cases, similar results have been obtained.
The results for mushroom data by C4.5 are as follows:

(odonnone) V (odonalmond) V (odonanise) —► edible,

(odonfoul) V (odonspicy) V (odonfishy) V
(odor:pungent) V (odorxreosote) —► poisonous.

The accuracy of the result of C4.5 is 98.7%, so the propo­
sitions extracted from trained neural networks by the
algorithm are a l i t t le worse than the results of C4.5 in
accuracy and almost the same as the results of C4.5 in
understandability.

5 Extension to the continuous domain

5.1 The basic idea
In this section, the algorithm is extended to continu­
ous domains. Continuous domains can be normalized to
[0,1] domains by some normalization method. So only
[0,1] domains have to be discussed. First, we have to
present a system of qualitative expressions correspond­
ing to Boolean functions, in the [0,1] domain. The au­
thor presents the expression system generated by direct
proportion, reverse proportion, conjunction and disjunc­
tion. Fig.3 shows the direct proportion and the inverse
proportion. The inverse proportion (y = 1 - x)is a l i t t le
different from the conventional one (y = - x) , because
y = 1 - x is the natural extension of the negation in
Boolean functions. The conjunction and disjunction wi l l
be also obtained by a natural extension. The functions
generated by direct proportion, reverse proportion, con­
junction and disjunction are called continuous Boolean
functions, because they satisfy the axioms of Boolean
algebra.

Figure 3: Direct Proportion and Reverse Proportion

Since it is desired that a qualitative expression be ob­
tained, some quantitative values should be ignored. For
example, two functions "A " and "B" in Fig. 4 are differ­
ent from direct proportion x but the two functions are
proportions. So the three functions should be identified
as the same one in the qualitative expression. That is, in

TSUK1MOTO 1103

1104 NEURAL NETWORKS

The accuracy of the results of C4.5 is 97.3%, so the
propositions extracted from trained neural networks are
a l i t t le worse than the result of C4.5 in accuracy.

6 Conclusions
This paper has presented an algorithm for extracting
propositions from trained neural networks. The algo­
r i thm does not depend on structures of networks and
training methods. The algorithm is polynomial in com-
putational complexity. The algorithm has been extended
to the continuous domain. This paper has shown the ex­
perimental results for votes data, mushroom data and iris
data. The algorithm has been compared wi th C4.5, but
when classes are continuous, decision tree learning algo­
rithms such as C4.5 cannot work. Therefore, extracting
propositions from trained neural networks is an impor­
tant technique. The algorithm has been implemented as
a module NNE(Neural Networks wi th Explanation) in
the data mining system K INO (Knowledge INference by
Observation).

References
[l] R. Andrews, J. Diederich and A.B. Tickle: Survey

and critique of techniques for extracting rules from
trained artificial neural networks, Knowledge-Based
Systems, Vol.8, No. 6, pp.373-189, 1995.

[2] M.W. Craven and J.W. Shavlik: Learning symbolic
rules using artificial neural networks, Proceedings of
the Tenth International Machine Learning Confer-
ence, pp.73-80,1993.

[3] M. Ishikawa: Structural Learning wi th Forgetting,
NEURAL NETWORKS, Vol.9, No.3, pp.509-521,
1996.

[4] N. Linial, Y. Mansour and N. Nisan: Constant
Depth Circuits, Fourier Transform, and Learnabil-
ity, Journal of the ACM, Vol.40, No.3, pp.607-620,
1993.

[5] J.R. Qumlan: C4-5: Programs for machine learn-
ing, Morgan Kaufmann Pub., 1993.

[6] J.W. Shavlik: Combining Symbolic and Neural
Learning, Machine Learning, 14, pp.321-331, 1994.

[7] H. Tsukimoto and C. Mori ta: The discovery of
propositions in noisy data, Machine Intelligence 13,
pp. 143-167, Oxford University Press, 1994 .

[8] H. Tsukimoto: The discovery of logical propositions
in numerical data, AAAI'94 Workshop on Knowl­
edge Discovery in Databases, pp.205-216, 1994.

[9] H. Tsukimoto: On continuously valued logical func­
tions satisfying all axioms of classical logic, Systems
and Computers in Japan,Vol.25, No. 12, pp.33-41,
SCRIPTA TECHNICA, INC., 1994.

[10] H. Tsukimoto and C. Mori ta: Efficient algorithms
for inductive learning-An application of multi-linear
functions to inductive learning, Machine Intelli­
gence 14, pp.427-449, Oxford University Press,
1995.

TSUKIMOTO 1105

