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Abs t rac t 
This paper presents an algorithm for extract­
ing propositions from trained neural networks. 
The algorithm is a decompositional approach 
which can be applied to any neural network 
whose output function is monotone such as sig­
moid function. Therefore, the algorithm can 
be applied to multi-layer neural networks, re­
current neural networks and so on. The algo-
rithm does not depend on training methods. 
The algorithm is polynomial in computational 
complexity. The basic idea is that the units of 
neural networks are approximated by Boolean 
functions. But the computational complexity 
of the approximation is exponential, so a poly­
nomial algorithm is presented. The authors 
have applied the algorithm to several prob-
lems to extract understandable and accurate 
propositions. This paper shows the results for 
votes data and mushroom data. The algorithm 
is extended to the continuous domain, where 
extracted propositions are continuous Boolean 
functions. Roughly speaking, the representa­
tion by continuous Boolean functions means 
the representation using conjunction, disjunc­
t ion, direct proportion and reverse proportion. 
This paper shows the results for iris data. 

1 I n t r oduc t i on 
Extract ing rules or propositions from trained neural net­
works is important[1], [6], Although several algorithms 
have been proposed by Shavlik, Ishikawa and others 
[2],[3], every algorithm is subject to problems in that 
it is applicable only to certain types of networks or to 
certain training methods. 

This paper presents an algorithm for extracting propo-
sitions from trained neural networks. The algorithm is a 
decompositional approach which can be applied to any 
neural network whose output function is monotone such 
as sigmoid function. Therefore, the algorithm can be 
applied to multi-layer neural networks, recurrent neural 
networks and so on. The algorithm does not depend 
on training methods, although some other methods[2], 

[3] do. The algorithm does not modify the training re­
sults, although some other methods [2] do. Extracted 
propositions are Boolean functions. The algorithm is 
polynomial in computational complexity. 

The basic idea is that the units of neural networks are 
approximated by Boolean functions. But the computa­
tional complexity of the approximation is exponential, so 
a polynomial algorithm is presented. The basic idea of 
reducing the computational complexity to a polynomial 
is that only low order terms are generated, that is, high 
order terms are neglected. Because high order terms are 
not informative, the approximation by low order terms 
is accurate[4]. 

In order to obtain accurate propositions, when the 
hidden units of neural networks are approximated to 
Boolean functions, the distances between the units and 
the functions are not measured in the whole domain, but 
in the domain of learning data. In order to obtain simple 
propositions, only the weight parameters whose absolute 
values are big are used. 

The authors have applied the algorithm to several 
problems to extract understandable and accurate propo­
sitions. This paper shows the results for votes data and 
mushroom data. 

The algorithm is extended to the continuous domain, 
where extracted propositions are continuous Boolean 
functions. Roughly speaking, the representation by con­
tinuous Boolean functions means the representation us­
ing conjunction, disjunction, direct proportion and re­
verse proportion. This paper shows the results for iris 
data. 

Section 2 explains the basic method. Section 3 
presents a polynomial algorithm. Section 4 describes the 
experiments. Section 5 extends the algorithm to contin­
uous domains and applies it to iris data. 

The following notations are used. x,y,.. stand for vari­
ables. f,g,.. stand for functions. 

2 The basic me thod 
There are two kinds of domains, that is, discrete domains 
and continuous domains. The discrete domains can be 
reduced to {0 ,1 } domains by dummy variables. So only 
{0,1} domains have to be discussed. Here, the domain 
is {0 ,1 } . Continuous domains wi l l be discussed later. 
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has been obtained. This proposition is Exclusive OR. 
Now we have confirmed that the logical proposition 

of Exclusive OR can be obtained by approximating the 
neural network which has learned Exclusive OR. We un­
derstand the following items. 

1. The learning results of 4 hidden units and an output 
unit. 

2. The output of hidden unit 4, t4, is not included in 
the Boolean function of the output unit , z, so hidden 
unit 4 does not work and can be deleted. 

3. The other three hidden units work, so they are nec­
essary and cannot be deleted. 

A merit of the decompositional approach is that trained 
neural networks can be understood by the unit. 

3 A polynomial algorithm 
Obviously, the computational complexity of the basic 
method is exponential, so the basic method is not re­
alistic. Therefore, the computational complexity should 
be reduced to a polynomial. This section presents the 
polynomial algorithm. The basic idea of reducing the 
computational complexity to a polynomial is that D N F 
formulas consisting of only low order terms are gener­
ated from the lowest order up to a certain order, that 
is, high order terms are neglected. Because high order 
terms are not informative[4j, the approximation by low 
order terms is accurate. 

The brief outline of the algorithm follows. 

1. Check the existences of terms after the approxima­
tion from the lowest order. 

2. Connect the terms which exist after the approxima­
t ion to make a DNF formula. 

3. Execute the above two procedures up to a certain 
order. 

In this section, first, the condition that a term 
exists in the Boolean function after approx­

imation is presented. Second, the generation of DNF 
formulas is explained. Th i rd , in order to obtain accu­
rate propositions, the condition is modified in a manner 
such that the distance between the hidden unit of a neu­
ral network and a Boolean function is not measured in 
the whole domain, but in the domain of the learning 
data. Fourth, in order to obtain simple propositions, 
the condition is modified in a way such that only the 
terms consisting of variables whose weight parameters' 
absolute values are big are generated. 

3.1 T h e cond i t i on t h a t 
exists i n t he Boo lean f u n c t i o n a f ter 
a p p r o x i m a t i o n 

Let a unit of a neural network be 
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data 
i 
2 
3 

X1 

0 
1 
1 

x2 

0 
0 
1 

x3 

1 
0 
0 

class 
0 
0 
1 

In this case, the domain of the learning data is 
(0,0,0), (1,0,0) and (1,1,0), and a unit of a neural net­
work is 

The existence condition of x1 after the approximation is 
as follows: 

But , the checking range is l imited to the domain of the 
learning data, so the checking range is l imited to the 
domain of the data 2 and data 3 where X1 = 1. Therefore 
the existence condition is as follows: 

Of course, this modified condition is not applied to the 
output units in 3-layer networks, because the inputs of 
the output units come from the hidden units. Therefore, 
(1) is applied to the output units. 

3.4 We igh t parameters 
Let's sort weight parameters pi's as follows: 

When terms are generated, if all weight parameters are 
used, the propositions obtained are complicated. There­
fore unimportant parameters should be neglected. In 
this paper, p i 's whose absolute value is small are re-
garded as the unimportant parameters. We wi l l use p i 's 
up to a certain number, that is, we neglect small p i 's. 

How many weight parameters are used is the next 
problem. Here, the weight parameters p1,...,pk are used, 
where k is determined by a value based on Fourier trans­
form of logical functions[4]. Due to space l imitations, 
the explanation is omitted, which wi l l be presented in 
another paper. 

3.5 C o m p u t a t i o n a l comp lex i t y o f t he 
a l g o r i t h m and e r r o r analysis 

The computational complexity of generating the m t h or­
der terms is a polynomial of nCm, that is, a polynomial 
of n. Therefore, the computational complexity of gen­
erating DNF formulas from neural networks is a poly­
nomial of n. Usual generations wi l l be terminated up 
to a low order, because understandable propositions are 
desired. Therefore, the computational complexity is usu­
ally a polynomial of a low order. 

In the case of the domain {0 ,1 } , Linial showed the 
following formula [4]: 

where / is a Boolean function, 5 is a term, \S\ is the 
order of S, k is any integer, f(S) denotes the Fourier 
transform of / at S and M is the circuit's size of the 
function. The above formula shows the high order terms 
have l i t t le power; that is, low order terms are informa­
tive. Therefore, a good approximation can be obtained 
by generating up to a certain order. 

3.6 Compar isons 
This subsection briefly compares the algorithm with 
other algorithms. Algorithms may be evaluated in 
terms of five aspects: expression form, internal struc­
ture, network type and training method, quality, com­
putational complexity[ l ] . Here, comparisons focus on 
internal structure, training method and network type. 

i n t e r n a l s t r u c t u r e : There are two techniques, 
namely decompositional and pedagogical. The de-
compositional algorithms obtain rules by the unit 
and aggregate them to a rule for the network. The 
pedagogical algorithms generate examples from the 
trained network and obtain rules from the examples. 
Obviously, the decompositional algorithms are bet­
ter than the pedagogical algorithms in understand­
ing the internal structures. Therefore, for example, 
the decompositional algorithms can be also used for 
the training control. 

t r a i n i n g m e t h o d : The algorithm does not depend on 
training methods, although some other methods do. 
For example, [2] and [3] use special training methods 
and their algorithms cannot be applied to networks 
trained by the back-propagation method. The algo­
rithm does not modify the training results, although 
some other methods [2] do. 

n e t w o r k t y p e : The algorithm does not depend on net­
work types, although some other methods do. For 
example, [2] cannot be applied to recurrent neural 
networks. 

4 E x p e r i m e n t s 
The training method is the back-propagation method. 
The repetition is stopped when the error is less than 
0.01. Therefore, the error after the training is less than 
0.01. The data used for the training are also used for the 
prediction. Therefore, the accuracy of the trained neural 
networks is 100%. Usual prediction experiments use data 
different from those used for the training. But , in this 
case, it is desired that the accuracy of neural networks be 
100%, because we want to see how Boolean functions can 
approximate the neural networks. Generating terms of 
propositions are terminated up to second order, because 
simple propositions are desired. 

4 . 1 votes d a t a 
This data consists of the voting records of the U.S. House 
of Representatives in 1984. There are 16 binary at­
tributes. Classes are Democrat and Republican: The 
number of samples used for the experiment is 232. The 
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accuracies of propositions extracted from the trained 
neural networks are shown in the table below. In the 
table, i.w.p. stands for ini t ial weight parameter and the 
numbers in the column of hidden layer mean the num­
bers of hidden units. 

hidden layer I i .w.p.l | i.w.p.2 | i.w.p.3 
5 0.974 0.974 0.974 
3 0.983 0.970 0.978 
4 0.978 0.974 0.974 

In the case of 3 hidden units and i .w.p. l , the following 
propositions have been obtained: 

Democrat (physician-fee-freeze:n) V (adoption-of-the-
budget-resolutipnry) (anti-satellite- test-ban:n) (synfuels-
corporation-cutbackry), 

Republican: (physician-fee-freeze: y) ((adoption-
of-the-budget-resolution:n)V (anti-satellite-test-ban:y)V 
(synfuels-corporation-cut back: n)). 

In the other cases, similar results have been obtained. 
The results for votes data by C4.5[5], which is a typical 
algorithm for machine learning, are as follows: 

(physician-fee-freeze:n) V (adoption-of-the-
budget-resolution:y) (synfuels-corporation-cut back:y) —► 
Democrat, 

(adoption-of-the-budget-resolution:n)(physician-fee-
freeze:y) V (physician-fee-freeze:y)(synfuels-corporation-
cutback:n) —► Republican. 

The accuracy of the result of C4.5 is 97.0%, so the propo­
sitions extracted from trained neural networks by the al­
gorithm are a l i t t le better than the results of C4.5 in 
accuracy and almost the same as the results of C4.5 in 
understandability. 

4 .2 mushroom d a t a 

There are 22 discrete attributes concerning mushrooms 
such as the cap-shapes. Classes are edible or poisonous. 
The number of samples is 4062. The accuracies of propo-
sitions extracted from the trained neural networks are 
shown in the table below. 

hidden layer 
0 
3 
4 

i.w.p.l 
0.930 
0.956 
0.961 

i.w.p.2 
0.973 
0.983 
0.952 

i.w.p.3 
0.985 
0.959 j 
0.985 

In the case of 3 hidden units and i .w.p. l , the following 
propositions have been obtained: 

edible:(gill-size:broad)((odor:almond)V(odor:anise)V 
(odonnone)), 

poisonous:(gill-size:narrow)V-»(odor:almond) 
-(odor:anise) -(odor:none). 

In the other cases, similar results have been obtained. 
The results for mushroom data by C4.5 are as follows: 

(odonnone) V (odonalmond) V (odonanise) —► edible, 

(odonfoul) V (odonspicy) V (odonfishy) V 
(odor:pungent) V (odorxreosote) —► poisonous. 

The accuracy of the result of C4.5 is 98.7%, so the propo­
sitions extracted from trained neural networks by the 
algorithm are a l i t t le worse than the results of C4.5 in 
accuracy and almost the same as the results of C4.5 in 
understandability. 

5 Extension to the continuous domain 

5.1 The basic idea 
In this section, the algorithm is extended to continu­
ous domains. Continuous domains can be normalized to 
[0,1] domains by some normalization method. So only 
[0,1] domains have to be discussed. First, we have to 
present a system of qualitative expressions correspond­
ing to Boolean functions, in the [0,1] domain. The au­
thor presents the expression system generated by direct 
proportion, reverse proportion, conjunction and disjunc­
tion. Fig.3 shows the direct proportion and the inverse 
proportion. The inverse proportion (y = 1 - x)is a l i t t le 
different from the conventional one (y = - x ) , because 
y = 1 - x is the natural extension of the negation in 
Boolean functions. The conjunction and disjunction wi l l 
be also obtained by a natural extension. The functions 
generated by direct proportion, reverse proportion, con­
junction and disjunction are called continuous Boolean 
functions, because they satisfy the axioms of Boolean 
algebra. 

Figure 3: Direct Proportion and Reverse Proportion 

Since it is desired that a qualitative expression be ob­
tained, some quantitative values should be ignored. For 
example, two functions "A " and "B" in Fig. 4 are differ­
ent from direct proportion x but the two functions are 
proportions. So the three functions should be identified 
as the same one in the qualitative expression. That is, in 
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The accuracy of the results of C4.5 is 97.3%, so the 
propositions extracted from trained neural networks are 
a l i t t le worse than the result of C4.5 in accuracy. 

6 Conclusions 
This paper has presented an algorithm for extracting 
propositions from trained neural networks. The algo­
r i thm does not depend on structures of networks and 
training methods. The algorithm is polynomial in com-
putational complexity. The algorithm has been extended 
to the continuous domain. This paper has shown the ex­
perimental results for votes data, mushroom data and iris 
data. The algorithm has been compared wi th C4.5, but 
when classes are continuous, decision tree learning algo­
rithms such as C4.5 cannot work. Therefore, extracting 
propositions from trained neural networks is an impor­
tant technique. The algorithm has been implemented as 
a module NNE(Neural Networks wi th Explanation) in 
the data mining system K INO (Knowledge INference by 
Observation). 
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