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Abs t rac t 

We study the problem of statistically correct in­
ference in networks whose basic representations 
are population codes. Population codes are 
ubiquitous in the brain, and involve the simul­
taneous act ivi ty of many units coding for some 
low dimensional quantity. A classic example 
are place cells in the rat hippocampus: these 
fire when the animal is at a particular place 
in an environment, so the underlying quantity 
has two dimensions of spatial location. We 
show how to interpret the activi ty as encoding 
whole probabil i ty distributions over the under­
lying variable rather then just single values, and 
propose a method of inductively learning map­
pings between population codes that are com­
putationally tractable and yet offer good ap­
proximations to statistically opt imal inference. 
We simulate the method on some simple exam­
ples to prove its competence. 

In a population code, information about some low-
dimensional quantity (such as the position of a visual fea­
ture) is represented in the activity of a collection of units, 
each responding to a l imited range of st imuli wi th in this 
low-dimensional space. Strong evidence exists for this 
form of coding at the sensory input areas of the brain 
(eg retinotopic and tonotopic maps) as well as at the mo­
tor output level [Georgopoulos et a/., 1986]. Evidence is 
mounting that many other intermediate neural process­
ing areas also use population codes [Tanaka, 1996]. Cer­
ta in important questions about population codes have 
been extensively investigated, including how to extract 
an opt imal underlying value [Salinas and Abbot t , 1994; 
Snippe, 1996] and how to learn such representations [Ko-
honen, 1982]. However, two important issues have been 
almost ignored (wi th the important exception of [Ander­
son, 1994]). One is the treatment of population codes 
as encoding whole probabil i ty density functions (PDFs) 
over the underlying quantities rather than just a single 

1114 NEURAL NETWORKS 

Peter Dayan 
MIT 

Cambridge, MA 02139 USA 
dayan@psyche.mit.edu 

value. PDFs can convey significant addit ional informa­
t ion, such as certainty (eg in the existence in an image 
of the relevant object), as well as the mean and vari­
ance (eg in its position). The other issue is how to per­
form inference in networks whose basic representations 
are population codes. 

Zemel, Dayan, and Pouget [1997] have recently pre­
sented a general framework for the probabilistic inter­
pretation of population codes in terms of PDFs. In 
this paper we apply this framework to all the popu­
lation codes in a processing hierarchy, and suggest an 
inference method that approximates, in a quantifiable 
manner, Bayesian opt imal methods of representing and 
combining the probabil i ty distributions. 

We first discuss how to interpret PDFs from popula­
t ion codes, and then introduce our framework for com­
bining these codes. We il lustrate the techniques wi th an 
example based on a form of cue combination. 

1 An Example 
Consider the case of a hunter attempting to shoot a 
pheasant as it flies out of a tree. We'l l assume that 
the hunter uses two cues, a visual cue concerning mo­
t ion in the tree and an auditory cue based on rustl ing of 
the leaves, to estimate the pheasant's size and velocity. 
Based on this estimate, he selects a t ime and place to 
fire his shotgun. 

The combination problem concerns how the two in­
puts should be combined to produce the output. In the 
simplest version of the combination problem for this ex­
ample, visual motion is confined to one part of the tree, 
and the auditory signal directly corresponds to this v i ­
sual signal. Here these two single-valued inputs (which 
we wi l l term v and a) give rise to a single output, and 
the hunter confidently aims his shotgun (to location s). 

Evidence exists that the two inputs and the output in­
formation in this example are each represented in neural 
population codes in some animals. That is, a fixed col­
lection of neurons fire for each of the three variables of 
interest. The relevant visual input is represented by the 



activi ty of a population of motion detectors: in monkeys, 
a particular cortical area (MT) contains cells that selec­
tively respond to mot ion of a particular velocity wi th in 
a small range of visual locations. Similarly, the relevant 
auditory input is represented in a population of detec­
tors tuned to particular frequencies and spatial locations 
in owl auditory cortex [Knudsen and Konishi, 1978]; the 
frequency may contain important information about the 
bird's size and speed. Directional motor output is also 
represented in a population code in monkey motor cortex 
[Georgopoulos et a/., 1986]. 

Therefore even in the simple version of the problem, 
the brain does not directly represent the values v, a, 
and s, but instead represents each in a separate popu­
lat ion code. The most straightforward way to solve this 
problem is to perform an intermediate step of extracting 
separate single values from the input population codes, 
combine these values, and then encode these into the 
motor output population code. However, this seems not 
to be the strategy actually implemented in the brain, 
where new population codes appear to be generated di­
rectly from old ones. 

Another level of complexity is introduced into the 
problem when we consider that the inputs may be uncer­
tain or ambiguous. For example, if the wind is blowing, 
then leaves may be moving all over the tree giving rise to 
mult iple plausible motion hypotheses, while at the same 
time the auditory cues may be too faint to confidently 
estimate the mot ion. The experienced hunter may then 
be able to narrow down the set of candidate motions 
based on his knowledge of the combinations of auditory 
and visual cues, but he might not be able to confidently 
select a single value. Two additional problems are intro­
duced in this more general case. First we must interpret 
a population code as representing a whole probability 
distr ibut ion over the underlying variable. And then the 
combination method must preserve the probabilistic in­
formation in the inputs. Thus the aim of a combination 
network is to infer a population code for the motor ac­
t ion that preserves the statistical relationship between 
the input and output probabil i ty distributions. 

2 Theory 
The basic theory underlying the combination of popula­
t ion codes is extremely simple. Population codes use the 
explicit activities of multiple cells (as in area 
M T ) to code information about the value of an implicit 
underlying variable x (such as the direction and speed of 
motion of the leaves). We are interested in the case that 
the activities r code a whole probabil ity distribution over 
the underlying variable: 

( i ) 

Consider the example of the hunter. Activities 
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Figure 2: The encoding-decoding framework in the ex­
tended Poisson model. Left: Activit ies r may be inter­
preted as encoding a PDF in impl ici t space. Top: The 
output of the encoding process is the explicit activities 
of units, assumed to have been generated by the inde­
pendent application of each cell's tuning function and 
additive noise to the implicit representation {Bottom: an 
implicit distribution Right: Decoding the rates 
into a distribution involves an approximate form 
of maximum likelihood in distributions over x. 

describes the likely shotgun motions based on all infor­
mation available to the hunter, so mult iple peaks corre-
spond to different possible motions and entropy corre­
sponds to uncertainty about these motions. 2). the gen­
erative model The impl ic i t distributions for 
the network inputs are produced by applying 
to In these simulations, we made the simplifying 
assumption that the visual and auditory signals are in­
dependent given s. 3). the encoding model. The inputs 

and are obtained from the input impl ic i t distr i­
butions via appropriate encoding model (Equation 4 for 
KDE; Equation 7 for the extended Poisson method). 4). 
a combination function. The network inputs produce an 
output based on a weighted combination of and 
In these simulations we had both excitatory W and in­
hibitory weights U between each input and output unit , 
and the combination function was: 

(8) 

Note that this is not quite general enough to imple­
ment Equation 5 exactly. 

We evaluate the networks' performances by comparing 

the (s) obtained by decoding the explicit representa-
t ion s in the network to the true impl ic i t distr ibution 
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location. As the target distribution contains more un­
certainty, both methods are able to recover the implicit 
distribution with high fidelity. Note that an error rate 
of 0.7 bits for this target distribution would be obtained 
if (s) has the correct peaks and is off by a factor of 
2 in r (see Equation 9). 

We have also conducted a number of other experi­
ments with this combination method. In one set of ex­
periments, we modeled the task of combining monocular 
and stereo cues to estimate depth in a particular visual i l­
lusion. In the double-nail illusion, the task is to estimate 
the depth of a nail aligned directly behind another nail in 
the observer's line of sight. Here computational vision 
systems based on binocular stereo produce a PDF for 
depth estimates with two peaks, one at the correct value 
and another at the illusory frontoparallel interpretation 
(both nails side-by-side). A PDF based on monocular 
cues will not have the same ambiguity, but it is typically 
a much broader distribution [Yuille and Biilthoff, 1994]. 
These two PDFs must be combined multiplicatively to 
produce the correct peak. 

We simulated this problem by training a combina­
tion network identical to the network described above 
except in the generative model. Here P[b|t] is a mul­
timodal Gaussian l /3N[ t , 1/2] + 2/3N[t + 2,1/2] (with 
a frontoparallel bias) and P[m|t] is a broader unimodal 
Gaussian N[t, 1], where b, m and t are the binocular, 
monocular and true depth estimates, respectively. Af­
ter training on 300 cases in which the target distribution 
was a narrow Gaussian N[t, .01], the network produced 
output distributions on novel inputs that were within .1 
bits of the true distributions. 

Other experiments have examined the combination 
network's ability to recover PDFs in which the certainty 
as to the presence of the output (ie the integral under 
the PDF) is < 1. Good performance on this task sug­
gests that the method can be useful for recognition (eg 
recognizing an instance of an object based on the spatial 
locations of its features). 



4 Discussion 
We have presented a general framework for mapping be­
tween population codes that approximates statistically 
correct inference. The framework applies and extends 
two recent methods for the probabilistic interpretation 
of population codes to the problem of combining these 
codes. This framework has a wide variety of applica­
tions, including any context in which probabilistic in­
formation f rom several sources, each represented in a 
distr ibuted manner, must be combined. The simulation 
results demonstrate that a feedforward network can cap­
ture the appropriate probabilistic relationships between 
some simple population-coded PDFs. Generally, several 
population-coded inputs should be multipl ied (to com­
pute a fu l l jo int PDF) , but we found empirically that 
they can be combined reasonably using a non-linearity. 

A straightforward alternative to the proposed frame­
work would extract single values from the input pop­
ulation codes, combine these values, and then form a 
new population code at the output. Aside from biolog­
ical realism, the computational advantage of construct­
ing direct mappings between population codes without 
requiring an intermediate step of extracting single val­
ues is that information about whole distributions can 
be brought to bear—including the ambiguity and uncer­
tainty in the underlying variables. 

Integral to the framework is an interpretation of a pop­
ulation code as encoding a probabil ity distribution over 
the underlying quantity. The framework can thus be 
seen as a generalization of [Salinas and Abbott , 1995], 
in which a network is trained to map one population code 
to another, where each code is interpreted as represent­
ing a single value. Our method extends this mapping to 
probabilistic interpretations while maintaining the bio­
logically realistic representations. 

There are many open issues, particularly understand­
ing the nature of encoding and decoding. Both op­
erations are only impl ic i t in the system so some free­
dom exists in choosing ones appropriate for particular 
tasks. Based on neurobiological and engineering consid­
erations, one expects a consistent interpretation across 
levels; maintaining this interpretation should lead to a 
simple learning rule. Noise is a second key issue. If 
constructing one population code from others introduces 
substantial extra noise, the system wi l l be unable to con­
vey information accurately. Here the restriction of the 
network to feedforward connections might be relaxed in 
order to allow lateral connections between units within 
a population, which may be useful in cleaning up the 
codes. 
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