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Abst rac t 

A self-organizing model of spiking neurons wi th 
dynamic thresholds and lateral excitatory and 
inhibitory connections is presented and tested 
in the image segmentation task. The model 
integrates two previously separate lines of re­
search in modeling the visual cortex. Laterally 
connected self-organizing maps have been used 
to model how afferent structures and lateral 
connections could self-organize through input-
driven Hebbian adaptation. Spiking neurons 
wi th leaky integrator synapses have been used 
to model image segmentation and binding by 
synchronization and desynchronization of neu­
ronal activity. Although these approaches dif­
fer in how they model the neuron, they have 
the same overall layout of a laterally connected 
two-dimensional network. This paper shows 
how both self-organization and segmentation 
can be achieved in such a network, thus present­
ing a unified model of development and func­
tional dynamics in the primary visual cortex. 

1 In t roduc t i on 
Several models of the visual cortex that take into ac­
count lateral interactions between neurons have recently 
been proposed (see Sirosh et al. [1996b] for an overview). 
In the early stages of the development of the visual cor­
tex, lateral connections are believed to self-organize in 
synergy wi th the afferent connections to form a topo­
logical map of the input space. This process can be 
modeled computationally, showing how structures such 
as ocular dominance and orientation columns and pat­
terned lateral connections between them form based 
on input-driven Hebbian learning process (the Later­
ally Interconnected Synergetically Self-Organizing Map, 
or LISSOM [Miikkulainen et al., 1997; Sirosh, 1995; 
Sirosh and Miikkulainen, 1994; 1996; 1997; Sirosh et al., 
1996a]). 

Lateral connections may also play a central role in 
the function of the visual cortex, by modulating the 
spiking behavior of neuronal groups. They could cause 

synchronization and desynchronization of spiking activ­
ity, thus mediating feature binding and segmentation. 
Such synchronization of neuronal activity emerges in 
the visual cortex of the cat when light bars of vari­
ous orientation are presented [Gray and Singer, 1987; 
Eckhorn et al., 1988; Gray et al, 1989]. Several models 
have been proposed to explain this phenomenon [von der 
Malsburg, 1987; von der Malsburg and Buhmann, 1992; 
Eckhorn et al, 1990; Reitboeck et al, 1993; Wang, 1996]. 
The model of Reitbock et al. [1993] is particularly inter­
esting because of its sophisticated model of the neuron: 
the synapses are leaky integrators that sum incoming 
signals over t ime wi th exponential decay. A network of 
such neurons can segment mult iple objects in a scene by 
synchronizing neuronal activity. Spikes of neurons rep­
resenting the same object are synchronized, and those 
of neurons representing different objects are desynchro-
nized. 

This paper shows how the leaky integrator model 
of the spiking neuron can be integrated wi th the LIS­
SOM model of self-organization. The architecture is 
named Spiking Laterally Interconnected Synergetically 
Self-Organizing Map, or SLISSOM. SLISSOM (1) forms 
a topological map from an ini t ia l ly random network 
through synergetic self-organization and (2) generates 
synchronized and desynchronized neuronal activity that 
can be used for segmenting mult iple objects in the scene. 
The results suggest that lateral connections play a cen­
tral role in both the development and function of the 
visual cortex. 

2 The SL ISSOM Arch i tec tu re 
SLISSOM consists of two layers of interconnected neu­
rons: the "retina" and the "cortex" (figure la ) . The 
overall organization of SLISSOM is based on the LIS­
SOM architecture [Miikkulainen et ai, 1997; Sirosh, 
1995; Sirosh and Miikkulainen, 1994; 1996; 1997; Sirosh 
et ai, 1996a], and the neuron model on the leaky in­
tegrator neurons of Eckhorn el al. [1990] and Reitbock 
et al. [1993]. LISSOM provides a self-organizing princi­
ple and the leaky integrator neuron introduces temporal 
dynamics to the SLISSOM model. 

Each cortical neuron receives afferent connections 
from the input layer and lateral (excitatory and in-
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F igure 1: T h e S L I S S O M A r c h i t e c t u r e , (a) The organization of the SL1SSOM network. The bot tom layer is the retina, 
and the top layer models the cortical neurons. There are short-range lateral excitatory connections and long-range lateral 
inhibi tory connections between cortical neurons. Each of these neurons receives input from all neurons in the retina. A sample 
input (consisting of three 3 x 3 input spots) is shown on the retina, (b) The structure of a single neuron in SLISSOM. Leaky 
integrators at each synapse perform decayed summation of incoming spikes. The spike generator compares the weighted sum 
of the integrator outputs to a dynamic threshold, f ir ing a spike if the sum exceeds the threshold. Each spike increases the 
threshold, w i t h exponential decay. 

h i b i t o r y ) connect ions f r o m other neurons in the cor tex. 
Each connec t ion is a leaky in teg ra to r t h a t per forms de­
cayed s u m m a t i o n o f i n c o m i n g spikes, thereby establ ish­
ing no t on l y spa t ia l s u m m a t i o n , b u t also t e m p o r a l sum­
m a t i o n of a c t i v i t y ( f igure 16). Each new spike is added 
to the s u m of the prev ious ones, and the sum is expo­
nen t i a l l y decayed over t i m e . T h e cur ren t sums are m u l ­
t i p l i e d by the connec t ion we igh t and added together 1 

t o f o r m the net i n p u t t o the neuron . T h e spike gen­
era tor compares the net i n p u t to a th resho ld and de­
cides whether to f i re a spike. T h e thresho ld is a sum 
of t w o fac tors : the base th resho ld 0 and the decayed 
s u m of past spikes, f o r m e d by a s im i l a r leaky integra­
to r as in the i n p u t synapses. A c t i v e sp ik ing therefore 
increases the effect ive th resho ld , m a k i n g fu r the r spik­
i ng less l i ke ly and keeping the ac t i va t i on of the sys­
t e m w i t h i n a reasonable range [Eckhorn et al, 1988; 
1990]. 

T h e overa l l o rgan i za t i on o f the S L I S S O M mode l i s 
shown in f igure l a . T h e cor t i ca l neurons receive i n p u t 
f r o m a l l r e t i na l neurons. T h e exc i t a to ry la tera l cormec-

1This differs f rom Eckhorn et al. [1990] and Reitbock et 
al. [1993] who multiplied the weighted sums from afferent con­
nections and those f rom lateral connections. Mul t ip ly ing ex­
erts better modulat ion on the neuronal activity, but disturbs 
self-organization by rap id fluctuation. In our experiments, 
modulat ion turned out to be possible w i t h additive neurons 
as well. 
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Figure 2: Self-Organizat ion of the SL ISSOM M a p . The nodes in the grid show the centers of gravity of the receptive 
fields of the cortical neurons. Nodes representing immediate neighbors in the network are connected with a line, (a) The 
afferent weights are initially randomized and their centers of gravity are about the same. (6) After 5500 iterations, the 
network forms a well-formed mapping of the input space, comparable to (c), the ideal grid where each node represents a 
gaussian receptive field located directly below the map unit. 

reduced, resulting in fine tuning of the map [Miikkulai-
nen et a/., 1997; Sirosh and Miikkulainen, 1997]. The 
weights are adapted both during self-organization and 
segmentation. 

3 Experiments 
The SLISSOM experiment consists of two parts: (1) 
self-organization, and (2) object segmentation. During 
self-organization, lateral and afferent connection weights 
are adapted to form a topological map of the input 
space. After the network has stabilized, mult iple ob­
jects (3x3 squares) are presented to the retina. The 
weights adapted to the input and the network segments 
the objects by temporally alternating the activity on the 
map. 

The retina and the cortex both consisted of 11 x 11 
units. The afferent weights were initialized to have recep­
tive fields of size 3 x 3 on the retina, centered right below 
each neuron, and then 65% noise was added to their val­
ues (figures 2a and 3a). The lateral connection weights 
were randomly initialized within [0,1] (figure 3c). In­
hibitory connections covered the whole map, and exci­
tatory connections linked to a square area centered at 
each neuron (figure la ) , wi th ini t ial radius of 8, gradu­
ally decreasing to 1 in 3,500 iterations. At the same t ime, 
the lateral inhibitory learning rate gradually increased 
from 0.001 to 0.1. Slow adaptation in the beginning cap­
tures long-term correlations wi th in the inputs, which is 
necessary for self-organization. Fast adaptation towards 

citatory, they can have inhibitory overall effects through in-
terneurons [Grinvald et a/., 1994; Hata et a/., 1993; Hirsch 
and Gilbert, 1991]. The LISSOM model predicts that such 
long-range inhibition is computationally necessary for self-
organization to occur [Sirosh and Miikkulainen, 1997]. 
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Figure 3: Connect ion Weights of the Map Neuron (6,6). (a) Initial afferent weights, (6) final afferent weights, (c) 
initial combined (excitatory — inhibitory) lateral interaction profile, and (d) final combined lateral interaction profile. The 
final weights are shown after 5500 self-organization iterations. The x and y axes in (a) and (6) represent the location on the 
retina, and in (c) and (d), the location on the cortical network. 

the end facilitates quick modulation of the activity nec­
essary for segmentation (section 4). 

During self-organization, single 3 x 3 square objects 
were presented to the network. The retinal neurons rep­
resenting objects were spiking at each time step, and the 
settling consisted of 15 cycles of cortical activity update 
(equation 1). After settl ing, connection weights were 
modified according to equation 2, based on the average 
firing rate over the last 10 cycles. Each such presenta­
tion was counted as an iteration. After 5500 iterations, 
both the afferent and the lateral weights stabilized into 
smooth profiles. Afferent weights formed smooth gaus-
sian receptive fields most sensitive to input from the reti­
nal neuron right below the map neuron, as shown in 
figure 36. Lateral weights formed smooth Mexican-hat 
profiles, as shown in figure 3d. Figure 2 shows the global 
organization of the map during the process. The final 
map (figure 26) closely resembles the ideal map of the 
input space (figure 2c). 

Once the SLISSOM network had formed smooth and 
concentrated receptive fields and lateral interaction pro­
files, segmentation experiments were conducted on it. 
Several input spots (again, 3 x 3 squares) were presented 
to the retina at the same t ime. The spots constantly 
spiked on the retina for 500 t ime steps. For each spot, a 
separate 5 x 5 area on the map responded and the other 
areas remained silent. The lateral connection weights 
were adapted at each t ime step according to equation 2, 
wi th based on the average firing rate over the 
last 10 steps. 

Segmentation is evident in the total number of spikes 

generated within each area per t ime step (i.e. the mul t i -
unit activity, or MUA; figure 4). A high MUA value im­
plies that most neurons in the area are firing together, 
and a zero value implies that the area is silent. In i ­
tially, the three areas corresponding to the three input 
spots are equally active, but as time goes on, they start 
to alternate. The spikes within the same area become 
synchronized (the neurons turn on and off together), 
and the spikes across the different areas become desyn-
chronized (while one area is active, the other two are 
silent). Such synchronized and alternating activity indi­
cates that there are three separate objects in the input; 
in other words, it constitutes a mechanism for binding 
and segmentation. This result is very robust and works 
repeatedly for different locations on the retina and for 
different numbers of objects, as long as the input spots 
are spatially separate (see section 4). 

4 D iscuss ion 
Several studies have shown that fast adaptation of 
synaptic efficacy is necessary for feature binding through 
temporal coding [von der Malsburg, 1987; Wang, 1996]. 
Similarly in the experiments with SLISSOM, rapid adap­
tation of lateral weights was found necessary for oscil­
latory behavior. On the other hand, self-organization 
requires slow adaptation so that long-term correlations 
can be learned. If the weights are init ial ly random and 
change rapidly, they wi l l fluctuate a lot and an ill-formed 
map wil l result. There are two possible solutions to this 
problem. One way is to have two sets of lateral con­
nections, one for fast adaptation and the other for slow 
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Figure 4: The M u l t i - U n i t Ac t iv i t ies of Areas Responding to Three Different Objects. The total number of spikes 
per time step in each of the three 5 x 5 areas are plotted over 500 time steps. Although initially there is simultaneous activity 
in all areas, they quickly desynchronize and activation rotates from one area to another. 

adaptation [Wang, 1996]. The other is to vary the learn­
ing rate of the synapse. It is unknown which approach 
is more biologically plausible; this question has yet to 
be settled physiologically. In this work, the learning 
process starts out w i th a slow learning rate and grad­
ually the synapses become more plastic. This scheme 
does not disturb the self-organization since the activity 
on the map becomes more consistent and predictable as 
the training goes on, and the need for keeping track of 
the long-term correlations disappears. The two solutions 
are mathematically equivalent and there is no sufficient 
neurobiological evidence to distinguish between them at 
this point. The second one is simpler and was therefore 
chosen for this paper. 

The MUAs show some overlap even when the input 
is successfully segmented (figure 4). This is due to the 
slightly overlapping receptive fields in the model. Gray 
et al. [1989] observed that in the cat visual cortex, strong 
phase-locking occurred when the receptive fields were 
clearly separate. Apparently when they overlap slightly, 
phase locking becomes less well defined at the edges. The 
overlap is unavoidable in the current small SLISSOM 
network, but could be reduced in larger-scale simula­
tions. Such simulations wi th a large number and variety 
of objects constitute the most immediate direction of 
future research. Segmentation in a more detailed self-
organized model of the visual cortex, w i th orientation 

columns and patterned lateral connections wi l l also be 
studied, and it may be possible to account for phenom­
ena such as Gestalt effects based on the patterned lateral 
connections. 

5 Conclusion 
In this paper, the SLISSOM model of dynamic spiking 
in a synergetically self-organizing map was presented. 
Adapting lateral connections were shown to play an es­
sential role in both self-organization and image segmen­
tat ion, showing how the development and function of the 
visual cortex could be accounted for by a single unified 
architecture. 
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