
Model Min imizat ion, Regression, and
Proposit ional STRIPS Planning

Rober t Givan and Thomas Dean
Department of Computer Science

Brown University, Box 1910, Providence, RI 02912
{rlg,tld}@cs.brown.edu, http://www.cs.brown.edu/people/

Abs t rac t
Propositional STRIPS planning problems can
be viewed as finite state automata (FSAs) rep­
resented in a factored form. Automaton min­
imizat ion is a well-known technique for reduc­
ing the size of an explicit FSA. Recent work
in computer-aided verification on model check­
ing has extended this technique to provide
automaton minimizat ion algorithms for fac­
tored FSAs. In this paper, we consider the
relationship between STRIPS problem-solving
techniques such as regression and the recently
developed automaton minimizat ion techniques
for factored FSAs. We show that regression
computes a part ial and approximate minimized
form of the FSA corresponding to the STRIPS
problem. We then define a systematic form of
regression which computes a partial but exact
minimized form of the associated FSA. We also
relate minimizat ion to methods for perform­
ing reachability analysis to detect irrelevant flu­
ents. Finally, we show that exact computation
of the minimized automaton is NP-complete
under the assumption that this automaton is
polynomial in size.

1 I n t r o d u c t i o n
In this paper, classical planning refers to the proposi­
t ional variant of STRIPS planning [Fikes and Nilsson,
1971]. Classical planning is based on a factored represen­
tat ion for describing planning domains in terms of rules
that specify how the dynamic features of the domain
(called fluents) change over t ime. Classical planning
problems can be viewed as finite state automata where
states correspond to assignments to fluents, the rules
compactly encode the state-transition function, and the
task is to determine if it is possible to reach some state
satisfying the goal f rom the in i t ia l state.

There are well-known algorithms for reducing the size
of expl ici t ly represented FSAs by collapsing groups of
states that are bisimulation equivalent, i.e., states that
behave the same1 under every action sequence [Hopcroft,

1Two states behave the same under an action sequence

1971; Paige, 1987]. These automaton minimization algo­
r i thms rely, however, on the explicit representation of the
FSA being minimized. Recent work on model checking
in the computer-aided verification community [Burch et
a/., 1994] has explored the problem of automaton min i ­
mization for FSAs represented in factored forms.

Given a classical planning problem, FSA minimiza­
tion techniques compute a (possibly) smaller FSA that
captures all the essential information in the problem for­
mulat ion; we call this FSA the minimal model for the
planning problem. The states of the original FSA are
partit ioned into blocks which constitute the (aggregate)
states of the minimal model. This paper explores the rel­
evance for classical planning of the recent model checking
work on automaton minimizat ion for factored FSAs.

FSA minimization is in general much more aggressive
than classical planning solution techniques. In minimiza­
t ion, states are grouped together based on identical be­
havior under all sequences of actions. In contrast, in
classical planning solution techniques, we are interested
primari ly in the goal connectivity and distance to the
goal of different states, and are not generally interested
in differentiating states based on other variations in be-
havior {e.g., two states that differ only on the basis of
action sequences that don't involve goal states may be
equivalent for the purpose of planning).

Nevertheless, the algorithms for minimizing a factored
FSA bear a significant resemblance to the classical plan­
ning technique of goal regression.2 The basic step in each
algorithm is to find the preimage of a set of states under
an action—that is, those states that can reach the given
set in one step under the given action. This similar i ty is
the basis for our comparisons.

To assist in our comparisons, we define the new con­
cepts of partial and approximate minimizat ion. A par­
t ial minimization of an FSA is a part i t ion of the states
of the FSA which is strict ly coarser than the min imal
part i t ion—that is, a part i t ion that can be refined into
the minimized FSA part i t ion. An approximate part ial
minimization is a part ial minization except that in place

if they both reach accept states or both reach reject states
under the sequence.

2 Goal regression is just backward chaining search from a
goal (or subgoal) representing a set of states.

GIVAN & D E A N 1163

of the par t i t ion of the state space there is a set of pos­
sibly overlapping sets which cover the state space. Re­
gression computes an approximate part ial minimizat ion
of the planning problem. We also define a systematic re­
gression which computes an exact part ial minimizat ion
of the planning problem.

Both part ial and approximate part ial minimizations
compute part i t ions that are less refined than the true
min imal par t i t ion. The approximate part ial par t i t ion
computed by regression makes only those distinctions
needed in determining whether the searched action se­
quences can solve the planning problem. We say that
such part i t ions "capture solvabi l i ty" for the action se­
quences considered—a concept we formalize later on.
We also discuss variations of minimizat ion that compute
part i t ions which are more refined than the true min imal
par t i t ion. These variations can be useful when the re­
sult ing part i t ion is easier to compute than the min imal
par t i t ion, since any computat ion on the resulting FSA
st i l l mimics the original FSA (the drawback being that
the size reduction achieved by the minimizat ion may be
much smaller than that produced by true minimizat ion).
We show how a simple reachability analysis to determine
which fluents are irrelevant can also be viewed as an vari­
ant of min imizat ion.

Finally, it is of interest to consider the class of clas­
sical planning problems for which the minimized model
is polynomial in the size of the input . In general, the
problem of f inding a solution to a STRIPS planning
problem is PSPACE-complete [Bylander, 1994]. How­
ever, the class of solvable STRIPS planning instances
wi th polynomial-sized models is in NP, as one can sim­
ply guess the polynomial-sized model. We have shown
that f inding the min imal model is NP-complete under
the assumption that it is polynomial in the size of the
original STRIPS description.

1164 PLANNING A N D SCHEDULING

node and action label, there can be only one arc from
that node wi th that action label. Note that such a d i ­
agram describes a deterministic finite state automaton.
We use the term "model" for a state transition diagram
that captures the dynamics of a planning problem:

D e f i n i t i o n 1 We say that a state-transition diagram is
a model for a classical planning problem if

1. the nodes form a partition of the planning state
space, and

2. for any state q, node v1 containing q, node v2, and
action

(a) fa(q) is in v2 if there is an arc from v1 to v2

labelled and
(b) fa(q) is in v2 only if there is an arc from V1 to

v2 labelled

If conditions 1 and 2(a) hold without condition 2(b) we
say that the diagram is a partial model. If condition
1 is additionally relaxed to merely require the nodes to
cover the state space (but perhaps overlap), we say that
the diagram is an approximate partial model (sometimes
abbreviated "approximate model").

Note that there can be more than one model for a given
planning problem, corresponding to different partitions
of the domain, though in general most partitions can­
not be used to define a model. Every mode lo f a prob­
lem contains al l the information in the original problem:
models smaller than the original problem can be viewed
as compact forms of the original problem. It is a theorem
that for every problem there exists a minimal model—a
model w i th a part i t ion P such that every other model
uses a refinement of P. Figure 1 depicts the model for
a particular planning instance wi th a degenerate parti­
tion consisting of singleton blocks, and Figure 2(a) shows
the min imal model for the same problem. Reachability
queries on the min imal model have the same answers as
those on the original model.

We note that every model is associated with a par­
t i t ion of the state space—that part i t ion formed by the
nodes of the model. Similarly, any part i t ion induces at
most one model (some parti t ions cannot be used to form
models). We wi l l be somewhat free in referring to models
as part i t ions. We also use a particular partial order on
part i t ions (and hence on models): we say that a part i ­
t ion P1 is coarser than a part i t ion P2 if P\ can be refined
into P2—and we say that P2 is finer than P\.

A part ia l model is a diagram in which every arc is "cor-
rect" (i.e., corresponds correctly to the planning prob­
lem) but may have missing arcs as well as blocks which
need to be refined. We call a part ial model generic for a
planning problem if it is coarser than the minimal model
for that problem, so that further refinement could gen­
erate the fu l l min imal model. The minimization pro­
cess described below computes a series of generic partial
models leading eventually to the minimal model. An
approximate part ial model is additionally allowed to be
undecided about which block certain states wi l l fall into
(by having blocks overlap). An approximate model can

always be converted into a partial model by disambiguat­
ing the overlaps—i.e., shrinking blocks unt i l they are
disjoint. If an approximate model can be so converted
into a generic part ial model, we also call the approximate
model generic.

T h e M o d e l M i n i m i z a t i o n A l g o r i t h m . Let B and
C be blocks of part i t ion P and let a be any action. We
define the SPLIT operation as follows

where P' is P wi th C replaced by4 C and C" defined
by

Lee and Yannakakis [1992] describe a model minimiza­
tion algori thm which uses the SPLIT operation to com­
pute the minimal model for an FSA in factored form. In
its application to planning, the algori thm begins wi th an
init ial part i t ion P0 consisting of two blocks, those states
that satisfy the goal and those that don' t . The algori thm
then repeatedly chooses some B, C, and a and computes
a refined part i t ion = S P L I T (# , C, Pi,). When no
additional refinement is possible, the resulting part i t ion
induces the minimal model of the problem. This algo­
r i thm calls SPLIT polynomially many times in the size
(number of blocks) of the final par t i t ion. If we want to
compute the most compact representation of each block
in the part i t i t ion, then SPLIT is NP-hard.

Several variations on model minimizat ion are rele­
vant for this work. First, Lee and Yannakakis de­
scribe a variant we wil l call reachable model minimiza­
tion which computes a model that is min imal for the
states reachable from the in i t ia l state, but arbi trary
for other states—space precludes making this notion
more formal here. Second, it is possible to replace the
SPLIT operation with operations that do more split­
t ing than SPLIT 5 . We call a block-split t ing operation
SPL1T'(#, C\ P,) adequate if it produces a part i t ion
of C that refines SPL IT (B , C, P,). Performing model
minimization wi th an adequate spl i t t ing operation pro­
duces a (possibly reduced) model which is not necessarily
minimal. Figure 2(b) shows a reduced model generated
using an adequate but nonoptimal spl i t t ing operation,
FSPLIT, which we define later.

C o m p l e x i t y o f M i n i m i z a t i o n . There are planning
problems for which the shortest solution is exponentially
long in the length of the problem description [Bylander,
1994]. This fact directly implies that there are problems
with exponentially large minimal models, and therefore
that minimization must take at least exponential t ime.
However, one might hope that in those cases where the
minimal model is "smal l " , minimizat ion could f ind it
quickly. Unfortunately, by a reduction from SAT, we
are able to show that even when the min imal model is
polynomial in size, minimization is NP-hard.

4 If either C or C" is empty, then SPLIT(B, C, P, = P.
6 Such operations may be more efficient, as we discuss be-

low, which is why we would do this.

GIVAN & DEAN 1165

Figure 2: Reduced models for case in which the goal is
A: (a) minimal model for a general representation and
(b) minimal model for fluentwise representation.

T h e o r e m 1 Given a bound and a planning problem
whose minimal model is polynomial in size, the problem
of determining whether there exists a model of size no
more than the bound is NP-complete.

4 Regression
In this section, we argue that classical regression com­
putes an approximate part ial model of the planning
problem. But regression doesn't compute just any par­
t ial model—it computes a part ial model capturing cer­
tain useful informat ion6 . We say that a part ial model
captures solvability for an action sequence if every path
that achieves the goal wi th that action sequence is rep­
resented in the model:

D e f i n i t i o n 2 A partial model captures solvability for
action sequence if every path
such that achieves the goal has a corresponding path

in the model such that each qi is in block

We say that an approximate part ial model captures solv­
abi l i ty for an action sequence if it can be disambiguated
into a part ial model which does. We also refer to cap­
tur ing solvability for a set of action sequences, meaning
capturing solvability for each sequence in the set.

The key to understanding regression as minimization
lies in th inking of the subgoals generated by regression as
representing sets of states (those states that satisfy the
subgoal). Each such set of states shares a simple prop­
erty: it is the set of all states which can reach the goal
under a particular action sequence (the reverse of the
sequence of actions under which the goal was regressed
to get that subgoal). A regression search tries different
action sequences, for each one generating a subgoal cor­
responding to the set of states which achieve the goal
under that sequence. Each new subgoal/set of states
is generated by a regression step f rom a previous sub-
goal/set of states. If a subgoal is ever true of the in i t ia l
state, then the search terminates.

Note that different subgoals could be true of the same
single state— i .e., the sets of states described could over-

6Every planning problem admits the trivial partial model
built from the trivial partition into singleton sets with no
arcs, as well as the trivial partial model built from the
goal/non-goal partition, again with no arcs.

lap. The sets of states corresponding to the subgoals can
be viewed as nodes in an approximate part ial model,
where the regression steps which generated the states
correspond to arcs in the model. Because the subgoals
may overlap, the part ial model is approximate, but each
regression step locally preserves the fact that the dia­
gram being constructed is a generic part ial model which
captures solvability for the action sequences which have
been regressed. The following theorem can be proven by
induction on the number of regression steps taken.

T h e o r e m 2 At any point, the regression graph is a
generic approximate partial model which captures solv­
ability for the action sequences considered by the regres­
sion search to that point.

The model minimizat ion algor i thm described in the
previous section also takes simple local steps (analogous
to regression steps) using the SPLIT operation to con­
struct sets of states which behave uniformly under se­
lected action sequences. At the completion of minimiza­
t ion, the blocks of the resulting part i t ion correspond to
sets of states which behave the same under all action
sequences. But along the way, the part i t ion constructed
at each step forms a part ial model in which states in the
same block behave the same only for selected action se­
quences. Just as regression search involves a search strat­
egy to select which regression to do next, model mini­
mization must also select which SPLIT step to do next—
in each case extending the set of action sequences which
have been explored. Minimizat ion strategies which al­
ways split the block containing the in i t ia l state corre­
spond closely to regression strategies.7

The central distinction between simple regression and
minimizat ion is that minimizat ion constructs a series of
generic part ial models whereas regression constructs a
series of generic approximate part ial models. The regres­
sion subgoals may overlap considerably, whereas mini­
mization at all times maintains a part i t ion. For some
problems, this difference il luminates a potential ineffi­
ciency in regression—the same state can be "regressed"
many times under the aegis of different but overlapping
subgoals. We introduce a variant of regression which we
call systematic regression to eliminate this difference.

In systematic regression, each subgoal must be disjoint
f rom all previous subgoals. In order to achieve this, the
regression search must maintain a boolean formula de­
scribing the set of states which have not yet been covered
by a subgoal8. Each new subgoal must be conjoined wi th
this boolean formula to ensure its disjointness wi th previ­
ous subgoals. Just as in simple regression, a search strat­
egy controls the order of the regression steps taken—

7 The reachable model minimization algorithm referred to
in the previous section does exactly this—in its efforts to
construct a minimized reachable model it will split only the
block containing the initial state.

8 This set of states corresponds to the block containing
the initial state during minimization, and can also be viewed
as the set of states which have not yet been found goal-
connected by regression.

1166 PLANNING A N D SCHEDULING

Figure 3: Two trees of regressed formulas for the prob­
lem shown in Figure 1: (a) computed using systematic
regression and (b) computed using standard regression.

systematic regression differs from simple regression only
in that the individual regression steps are modified to
maintain the disjointness of the subgoals generated. Fig­
ure 3 shows the regression graphs generated by both sys­
tematic and simple regression for the example problem
shown in earlier figures.

T h e o r e m 3 The regression graph generated by system-
atic regression at any point is a generic partial model
which captures solvability for the action sequences con­
sidered by the regression search to that point.

If the boolean formula for a subgoal is unsatisfiable,
systematic regression must stop searching below that,
subgoal—it is this pruning that reduces the number of
subgoals generated compared to simple regression. For
some problems, systematic regression wil l generate ex­
ponentially fewer subgoals than simple regression, due
to the elimination of overlap. For an example of this
phenomenon, consider a planning problem with n stages
where at each stage there are two choices of action se­
quence which result in the same state in the next stage
(via different paths). Minimizat ion wil l construct O(n)
blocks on such a problem, but regression wil l construct
0(2n) subgoals. Unfortunately, systematic regression
depends on an unsatisfiability test at each node which is
NP-hard; in practice the usefulness of systematic regres­
sion wi l l be l imited to those cases where there is sub­
stantial overlap between subgoals (i.e., many different
action sequences have similar effects) and wil l depend
on the crowing efficiency of the best known satisfiability
testers [Selman et al., 1992].

T h e o r e m 4 Unlike simple regression, systematic re­
gression never generates more subgoals than there are
blocks in the minimal model.

5 Reachabi l i ty Analysis
Comput ing the min imal model for a planning problem
relies crit ically on the SPLIT operation, which we've in­
dicated can have exponential cost. One way around this
problem is to compute instead a refinement of the min­
imal model by using a variant of SPLIT which is less
expensive and does at least as much block splitt ing.

Such a refined model has many of the same advantages
of the minimal model: reachability in the refined model
sti l l captures reachability in the original problem, for in­
stance. The disadvantage to computing an overly refined
model is that the model may have many more states
than the truly minimal model, giving up the advantage
of reduced size that was originally sought. Neverthe­
less, there are problems for which a significant problem
size reduction can be gained using an adequate but non-
optimal split operation.

To guarantee that the resulting model is a refinement
of the minimal model, the spl i t t ing operation used must
be adequate: it must do at least as much spl i t t ing as
SPLIT would have done. The option to do extra split­
t ing allows us to consider using a representation for par­
titions which cannot represent every part i t ion: if a split
is called for which we cannot represent, we can always
perform additional spl i t t ing to get a representable part i ­
t ion (the representation must have at least this property,
though). One such part i t ion representation is what we
call a fluentwise part i t ion representation. Given a set
of fluents X1, consider the part i t ion of the state space
where two states are in the same block exactly when
they agree on the values of the variables in X\. We call
any part i t ion which can be represented in this manner
a fluentwise part i t ion. Note that most partit ions of the
state space are not fluentwise partit ions.

We now define an adequate split operation FSPLIT
for manipulating fluentwise partit ions. Given fluentwise
partit ion P, blocks B and C f rom P, and action a,
we define FSPLIT(B, C, P, to be the coarsest fluen­
twise refinement of SPLIT(P , C, P, . FSPLIT is easily
computed in time linear in the size of its inputs. Using
FSPLIT in place of SPLIT, the model minimizat ion algo­
r i thm can find a (possibly) reduced model which refines
the minimal model in t ime polynomial in the original
problem size.10 The model found may of course have
exponentially more states the minimal model. A model
found by FSPLIT minimization is given in Figure 2(b).

FSPLIT minimization is a minimization-oriented de­
scription of a familiar and simple reachability analysis
which can be used to simplify propositional planning
problems. Specifically, a simple transitive closure can de­
termine the set of fluents relevant to the problem, which
is the least set P of fluents containing every fluent which
appears in the goal description and every fluent which
appears in the precondition for some action rule whose
postcondition contains a fluent in P. The set of rele­
vant fluents can easily be computed in polynomial t ime.
Once this set is computed, the problem can be reduced
by removing the irrelevant fluents along wi th any actions
whose rules mention them. The resulting state space
is exactly the blocks of the part i t ion found by FSPLIT

9 Allowing excess splitting can be cheaper because it re­
lieves the splitting operation of the task of deciding whether

to split—the most trivial variant of SPLIT would just split
fully into a partition of singleton sets.

10 Note that the fluentwise partition representation is an
implicit representation; the final partition can have exponen­
tially many blocks but can still be constructed in polynomial
time.

GIVAN & DEAN 1167

minimizat ion,

6 Related W o r k
Burch et al. [1994] is the standard reference on sym­
bolic model checking for computer-aided design. Our
algorithms and analyses were pr imari ly motivated by
the work of Lee and Yannakakis [1992] and Bouajjani et
al. [1992]. Backstrom and Klein [1991], Bylander [1994],
and Gupta and Nan [l991] provide basic results con­
cerning the complexity of STRIPS planning and special
cases. Etzioni [1993] describes a particular algori thm
for reachability analysis and provides a survey of related
techniques.

In [Dean and Givan, 1997] we show how model min­
imization can be used to solve impl ic i t (or factored)
Markov decision processes (MDPs) wi th very large state
spaces, and prove that our model minimizat ion based al­
gorithms are asymptotically equivalent to existing meth­
ods (e.g., [Boutil ier et a/., 1995]) that operate on impl ic i t
MDPs. In [Dean et a/., 1997] we show how model reduc­
tion techniques can be used to trade t ime for space in
computing approximately opt imal solutions to Markov
decision processes. Finally, in the longer version of this
paper, we show how the methods of this paper can be
used to understand the advantages of the explanation-
based reinforcement learning algori thm developed by D i ­
etterich and Flann [1995].

7 Conclusions
In this paper, we demonstrate how tradit ional meth­
ods for solving propositional STRIPS planning prob­
lems can be viewed in terms of finite automata (model)
minimizat ion. Given a finite automaton whose state-
transition function is defined by a set of STRIPS rules,
we show how regression search and simple reachability
analysis can be viewed as methods for constructing a
finite automaton of reduced size. We also show how
existing model minimizat ion methods can be applied
to solve propositional planning problems and determine
that solving such problems in the case in which the min­
imal model is polynomial in the size of the input is NP-
complete.

It should be noted that there are potential pitfalls in
extrapolating from recent success in computer aided ver­
ification using model minimizat ion techniques to possi­
ble gains in tackling STRIPS problems. The verification
problems were rendered easier in part due to symme­
tries in hardware and software that result in significant
aggregation in the state space. Similar sorts of symme­
try may exist in some factory domains but whether or
not the resulting reductions are enough to render the
problems tractable remains to be seen.

References
[Backstrom and Klein, 1991] Backstrom, C. and Klein, I.

1991. Parallel non-binary planning in polynomial time.
In Proceedings fJCAI 12. IJCAII . 268-273.

[Bouajjani et al., 1992] Bouajjani, A.; Fernandez, J . -C;
Halbwachs, N.; Raymond, P.; and Ratel, C. 1992. Minimal
state graph generation. Science of Computer Programming
18:247-269.

[Boutilier et al., 1995] Boutilier, Craig; Dearden, Richard;
and Goldszmidt, Moises 1995. Exploiting structure in pol­
icy construction. In Proceedings IJCAJ 14- IJCAII . 1104-
1111.

[Burch et a/., 1994] Burch, Jerry; Clarke, Edmund M.; Long,
David; McMillan, Kenneth L.; and Dill, David L. 1994.
Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer Aided Design 13(4):401
424.

[Bylander, 1994] Bylander, Tom 1994. The computational
complexity of propositional STRIPS planning. Artificial
Intelligence 69:165-204.

[Dean and Givan, 1997] Dean, Thomas and Givan, Robert
1997. Model minimization in Markov decision processes.
In Proceedings A A Al- 91. AAAI .

[Dean et al, 1997] Dean, Thomas; Givan, Robert; and
Leach, Sonia 1997. Model reduction techniques for com­
puting approximately optimal solutions for Markov deci­
sion processes. In Thirteenth Conference on Uncertainty
in Artificial Intelligence.

[Dietterich and Flann, 1995] Dietterich, Thomas G. and
Flann, Nicholas S. 1995. Explanation-based learning and
reinforcement learning: A unified view. In Proceedings
Twelfth International Conference on Machine Learning.
176-184.

[Etzioni, 1993] Etzioni, Oren 1993. Acquiring search-control
knowledge via static analysis. Artificial Intelligence
62:255-302.

[Fikes and Nilsson, 1971] Fikes, Richard and Nilsson, Nils J.
1971. STRIPS: A new approach to the application of the­
orem proving to problem solving. Artificial Intelligence
2:189-208.

[Gupta and Nau, 1991] Gupta, Naresh and Nau, Dana S.
1991. Complexity results for blocks-world planning. In
Proceedings AAAI-91. AAAI . 629-633.

[Hopcroft, 1971] Hopcroft, J. E. 1971. An n log n algorithm
for minimizing states in a finite automaton. In Kohavi, Z.
and Paz, A., editors 1971, Theory of Machines and Com­
putations. Academic Press, New York, San Francisco, Cal­
ifornia. 189-196.

[Lee and Yannakakis, 1992] Lee, David and Yannakakis, Mi-
halis 1992. Online minimization of transition systems. In
Proceedings of 24th Annual ACM Symposium on the The­
ory of Computing.

[Paige, 1987] Paige, R. R. and Tarjan 1987. Three partition
refinement algorithms. SIAM J. on Computing 16:973-989.

[Selman et a/., 1992] Selman, Bart; Levesque, Hector; and
Mitchell, David 1992. A new method for solving hard
satisfiability problems. In Proceedings AAAI-92. AAAI .
440-446.

1168 PLANNING A N D SCHEDULING

