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A b s t r a c t 

Recent work by Kau tz et al. provides tantal iz ing 
evidence tha t large, classical p lanning problems 
may be efficiently solved by t ranslat ing them into 
proposi t ional sat isf iabi l i ty problems, using stochas­
t ic search techniques, and t ranslat ing the result ing 
t r u t h assignments back in to plans for the original 
problems. We explore the space of such transfor­
mat ions, prov id ing a simple framework that gener­
ates eight major encodings (generated by selecting 
one of four act ion representations and one of two 
frame axioms) and a number of subsidiary ones. 
We describe a fu l ly- implemented compiler that can 
generate each of these encodings, and we test the 
compiler on a suite of STRIPS planning problems 
in order to determine which encodings have the 
best propert ies. 

We present an analyt ic framework tha t accounts for 
all previously reported non-causal encodings,1 inc luding 
several novel possibilities. We parameterize the space 
of encodings along two major dimensions, act ion and 
frame representation. For twelve points in th is two-
dimensional space, we l ist the axioms necessary for a 
min imal encoding, and we calculate the asymptot ic en­
coding sizes. 
We describe an automatic compiler tha t generates al l of 
these encodings. Whi le it is di f f icul t for a compiler to 
produce encodings that are as lean as the hand-coded 
versions of [Kautz and Selman, 1996], we describe type-
analysis and factor ing techniques tha t get us close. Ex­
periments demonstrate these methods can reduce the 
number of variables by half and formula size by 80%. 
We run the compiler on a suite of STRIPS-sty le p lanning 
problems, determining tha t the regular and s imply-spl i t 
explanatory encodings are smallest and can be solved 
fastest. 

1 I n t r o d u c t i o n 

Despite the early formulat ion of planning as theorem prov-
ing [Green, 1969], most researchers have long assumed that 
special-purpose p lanning algor i thms are necessary for pract i ­
cal performance. However, recent improvements in the per­
formance of proposi t ional satisf iabi l i ty methods [Cook and 
Mi tche l l , 1997] cast doubt on this conclusion. In i t ia l results 
for compi l ing bounded- length p lanning problems to SAT were 
unremarkable [Kautz and Selman, 1992], but recent experi­
ments [Kautz and Selman, 1996] suggest that compilat ion to 
SAT migh t y ie ld the world 's fastest STRIPS-style planner. 

However, several open questions must be answered before 
concluding t h a t SAT-based planning dominates specialized 
algori thms. The experiments of [Kautz and Selman, 1996] 
used hand-craf ted S A T encodings, and while [Kautz et al, 
1996] describe methods for compi lat ion, no one has reported 
experiments on automat ica l ly compiled problems and no one 
knows which encodings are best. The encodings used by 
[Kautz and Selman, 1996] included domain information that 
is inexpressible in the STRIPS action language (e.g., the flu­
ent On is irref lexive and noncommutat ive) ; to what extent is 
this in fo rmat ion responsible for the speedup they observed? 
This paper addresses these issues: 

*This research was funded in part by Office of Naval Research 
Grant N00014-94-1-0060, by National Science Foundation Grant 
IR1-9303461, by ARPA / Rome Labs grant F30602-95-1-0024, and 
by a gift from Rockwell International Palo Alto Research. 

2 The Space of Encodings 
This section presents a framework tha t describes al l of the 
A T & T encodings (except for the causal encodings) as well 
as some new alternatives. Previous work has described ind i ­
vidual encodings in a variety of ways (e.g., "d i rect , " "state-
based," etc.), bu t we avoid these terms. Instead we present 
a parameterized space w i t h two dimensions: 

• The choice of a regular, s imply spl i t , overloaded spl i t , 
or bitwise action representation specifies the correspon­
dence between proposit ional variables and ground (ful ly-
instantiated) plan actions. These choices represent dif­
ferent points in the tradeoff between the number of vari­
ables and the number of clauses in the formula. 

• The choice of classical or explanatory frame axioms 
varies the way that stat ionary fluents are constrained. 

Our encodings use a standard fluent model in which t ime 
takes nonnegative integer values. State-fluents occur at even-
numbered times and actions at odd t imes. A l l of the encod­
ings use the fol lowing set of universal axioms: 

I N I T The in i t ia l state is completely specified at t ime zero, 
including all properties presumed false by the closed-
world assumption. 

GOAL In order to test for a plan of length n, al l desired goal 
properties are asserted to be t rue at t ime 2n. 

*The omitted "state-based" encodings can be obtained by re-
solving away the actions in our encodings [Kautz et al, 1996J. 
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A = > P , E Act ions imp l y thei r precondit ions and effects. For 
each odd t ime t between 1 and 2n — 1 and for each con­
sistent ground act ion, an ax iom asserts tha t execution 
of the act ion at t ime t implies t ha t i ts effects hold at 
t + 1 and i ts precondit ions hold at t - 1. For example, 
suppose tha t the i n i t i a l condit ions specify four blocks 
A, B, C, and D. The S T R I P S operator of Figure 1 is i n ­
consistent when instant ia ted w i t h o = A and s = A, bu t 
w i t h o = A, a = B, and d — C it yields the axioms shown, 
and analogous axioms for precondit ions. 

A T - L E A S T - O N E A d is junct ion of every possible fu l ly-
instant iated act ion ensures t ha t some act ion occurs at 
each odd t ime step. (A no-op act ion is inserted as a pre­
processing step.) Note tha t act ion representat ion has a 
huge effect on the size of these axioms (Figure 3).2 

The result ing plan consists of a tota l ly-ordered sequence of 
actions; indeed it corresponds roughly to a " l inear" encoding 
in [Kautz et al., 1996], except tha t they include exclusion ax­
ioms (see below) to ensure t ha t at most one act ion is active 
at a t ime. However, exclusion axioms are unnecessary be­
cause the classical F R A M E axioms combined w i t h the A = > P , E 
axioms ensure tha t any two actions occurr ing at t ime t lead 
to an ident ical world-state at t ime t + 1. Therefore, i f more 
than one act ion does occur in a t ime step, then either one 
can be selected to fo rm a val id p lan. 

E x p l a n a t o r y f r a m e a x i o m s [Haas, 1987] enumerate the 
set of actions tha t could have occurred in order to account 
for a state change. For example, an explanatory frame ax­
iom would say which actions could have caused D's c learness 
status to change f rom t rue to false. 

As a supplement to the universal axioms, explanatory 
frame axioms must be added for each ground f luent and 
each odd t ime t to produce a reasonable encoding. W i t h 
explanatory frames, a change in a fluent's t r u t h value implies 
tha t some act ion occurs, so (contraposi t ively) i f no act ion oc­
curs at a t ime step, th is w i l l be correct ly t reated as a no-op. 
Therefore, no A T - L E A S T - O N E axioms are required. 

Since explanatory frames do not exp l ic i t ly force the f luents 
not affected by an execut ing act ion to remain unchanged, 

2 AT-LEAST-ONE axioms are not necessary if the bitwise action 
representation is used, because all spare bit patterns can be used 
to refer to actual ground actions. 



Figure 3: The sizes of each axiom schema as a function of action representation. Note that combinations whose entries are identical 
may have different sizes because the value of is itself a function of action representation (see Figure 2) 

they permi t paral lel ism. Specifically, any actions whose pre­
condit ions are satisfied at t ime t and whose effects do not 
contradict each other might be executed in parallel. This 
k ind of paral lel ism is problematic because it can create valid 
plans which have no linear solut ion. For example, suppose 
act ion a has precondi t ion X and effect Y, while action has 
precondi t ion -Y and effect -X. Whi le these actions might be 
executed in paral lel (because their effects are not contradic­
to ry ) there is no legal t o ta l ordering of the two actions, which 
is problemat ic for non-instantaneous real-world actions. 

EXCLUSION Linear izabi l i ty of result ing plans is guaranteed 
by rest r ic t ing which actions may occur simultaneously. 

Two kinds of exclusion enforce different constraints in the 
result ing p lan: 

• C o m p l e t e exclusion: For each odd t ime step, and for all 
d is t inc t , fu l ly - ins tant ia ted action pairs add clauses 
of the fo rm Complete exclusion ensures that 
only one act ion occurs at each t ime step, guaranteeing 
a tota l ly-ordered p lan. 

• C o n f l i c t exclusion: For each odd t ime step, and for 
all d is t inct , fu l ly - instant ia ted, confl ict ing action pairs-

add clauses of the form In our frame-
work, two actions confl ict if one's precondit ion is incon­
sistent w i t h the other's effect.3 Confl ict exclusion results 
in plans whose actions form a par t ia l order. Any to ta l 
order consistent w i t h the par t ia l order is a valid plan. 

Because we wish to consider the min imal encoding corre­
sponding to each choice of act ion and frame representations, 
we w i l l assume tha t confl ict exclusion is used whenever possi­
ble. Conf l ic t exclusion cannot be exploited when using a split 
act ion representat ion, because spl i t t ing causes there not to be 
a unique variable for each fu l ly- instant iated action. For ex­
ample, w i t h simple sp l i t t ing , i t would be impossible to have 
two instant iat ions of the same operator execute at the same 
t ime, because thei r spl i t f luents would interfere. Overloaded 
sp l i t t ing fur ther disallows two instantiat ions of different op­
erators to execute at the same t ime. 

The bi twise act ion representation requires no action EX­
CLUSION axioms. At any t ime step, only one ful ly-
instant iated action's index can be represented by the bi t sym­
bols, so a to ta l order ing is guaranteed. 

3 Optimizing Axioms w i th Factoring 
Eight base encodings are generated by choosing among the 
regular, simple spl i t , overloaded spl i t , and bitwise act ion 
representations and choosing either classical or explanatory 
frames. Unfor tunately, choices tha t lead to a smal l number 
of variables ( i .e., the sp l i t t ing strategies and bitwise) tend to 
explode the number of clauses or size of each clause. Con­
sider the A T - L E A S T - O N E axiom, which is a d is junct ion of al l 
fu l ly- instant iated actions. Subst i tu t ing a conjunct ion of spl i t 
or bitwise variables for each regular act ion l i tera l produces 
a disjunctive normal form formula which blows up exponen­
t ial ly when converted to conjunctive normal fo rm. W i t h sim­
ple spl i t t ing, this axiom grows4 f rom n clauses of size A to 

clauses of size A (see Figure 3). 
The formula blowup results f rom b l ind ly subst i tu t ing a 

complete conjunct ion of spli t variables for each act ion in the 
A=>P,E, FRAME, AT-LEAST-ONE, and EXCLUSION axioms. Fac-
toring can dramatical ly reduce bo th the number of clauses 
and their sizes for simple and overloaded sp l i t t ing . The idea 
is to use only a subset of the fu l l conjunct ion for an ac­
t ion whenever possible. Such a par t ia l ly - instant ia ted act ion 
represents the set of al l fu l ly- instant iated actions consistent 
w i th i t . The bitwise action representation does not admi t an 
easy method of factor ing because par t ia l conjunct ions of the 
b i t variables are not useful unless a clever act ion number ing 
scheme is created. 

3 . 1 F a c t o r i n g A = > P , E a n d FRAME A x i o m s 
The A = > P , E and F R A M E axioms, which relate a single f luent 
to a single act ion, can make good use of par t ia l act ion in ­
stantiations. For example, Figure 1 shows the Move operator 
and some of the A = > P , E axioms for one possible instant ia t ion 
of the operator. Ord inary simple sp l i t t ing w i l l t ransform the 
first axiom at the bo t t om of Figure 1 in to 

A similar axiom is generated for al l pairs of constants 5 
and d for which Move(s ,B ,d , t ) is a consistent act ion. Since 
two of the argument values are irrelevant for th is ax iom, the 
simpler axiom MoveArg2(B,t) => C l e a r ( B , t + 1 ) can be used 
instead, el iminat ing the need to expl ic i t ly consider a l l |Dom|2 

values for MoveArgl and MoveArg3. 

3 Cont ras t our definition of conflict with that of Graph-
plan [Blum and Furst, 1995) and [Kautz and Selman, 1996]. Unlike 
Kautz and Selman's parallel encoding, but like their linear one, 
our encodings have axioms stating that actions imply their effects; 
their parallel encoding prohibits effect-effect conflicts instead. 

4 The number of logically independent clauses may be substan­
tially smaller than this worst-case bound which results from naive 
conversion: some clauses may contain duplicated literals, and some 
clauses may logically imply others. Our implementation eliminates 
these unnecessary literals and clauses. 
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Figure 4: Composition and worst case size of the encodings. The bitwise action representation yields the smallest number of variables, 
but the most clauses; regular actions are the exact opposite. All encodings INIT, GOAL, A P,E, and FRAME axioms. Any additional 
clauses are noted, and the total size for all clauses is given. The reported numbers are asymptotic numbers of literals (i.e., the product 
of numbers of clauses and clause sizes). 

Factoring A=>P,E axioms relies on this idea: when relating 
an action to a fluent, we need only include the parts of the 
action conjunct pertaining to the arguments that appear in 
the affected fluent. 

The technique extends easily to both classical and ex­
planatory FRAME axioms. Consider the classical frame 
example given in Section 2.2. Instead of naively split­
ting Move(A,B,C,t) into MoveArglA,t) MoveArg2(B,0 
MoveArg3(C,f), we observe that the source and object of the 
Move are irrelevant and generate 

This formula implicitly represents the set of all classical 
frame axioms relating the clearness of D to any Move action 
having C as its destination argument. 

Note that while the factoring optimization is crucial in 
practice (see Section 5.5), it is equivalent to ordinary splitting 
in the worst case. In particular, when the arity of precondi­
tion and effect fluents is equal to the arity of the operator, 
no factoring is possible. 

3.2 F a c t o r i n g EXCLUSION A x i o m s 
Since pairwise exclusion clauses relate actions to other actions 

instead of relating 
actions to fluents, the previous technique cannot be used. 
Instead, we factor these axioms by noting that, rather than 
excluding whole actions from occurring simultaneously, we 
can independently exclude the values of each argument to an 
action. 

For example, factored exclusions of the Move operator look 
like (-MoveArgt(a,t) V -MoveArgi(6,0), ranging over all ar­
guments i and distinct constants a and 6. This ensures that 
at most one fully-instantiated Move action is active at time 
t. By doing this for all operators, we ensure that only one 
instance" of each operator is active at time t. 

To complete the exclusion, we need to ensure that no two 
operators have an active instance at time t. This is accom­
plished by pairwise excluding all possible first arguments of 
each operator with one another. In other words, we add 
clauses for all distinct oper­
ators and and all (not necessarily distinct) constants a 
and 6. Figure 3 shows how factoring reduces the asymptotic 
number and size of clauses as compared with unfactored split 
EXCLUSION axioms. 

3.3 Factoring AT-LEAST-ONE Axioms 
Without factoring, the AT-LEAST-ONE axiom explodes into 
an exponential morass during the conversion to CNF. For­
tunately, it can be factored very easily, yielding the disjunc­
tion of all possible first arguments to all operators, i.e., an 

3.4 P r e v e n t i n g P a r t i a l A c t i o n E x e c u t i o n 
The previous three subsections show how to factor each part 
of the encoding. Al l three parts rely on the ability to refer to 
parts of an action instead of always referring to a complete 
instantiation of an action. However, the underlying assump­
tion is that, whenever any part is instantiated, so is the rest 
of the action. 

For example, we would not want a factored frame clause to 
have any effect unless a full action implied by that frame was 
actually being executed at the current time step. Otherwise, 
the frame could constrain the resulting plan, even though the 
action referred to by the frame is never fully executed. 

NO-PARTIAL We add axioms which state that, whenever any 
part of an operator is instantiated, so is the rest. 

Here are the partial action elimination axioms for the Move 
operator: 

These axioms ensure that whenever any split fluent of Move 
is true, then some complete instantiation of Move is true. 
Figure 3 shows the number and size of the resulting clauses. 

4 The M E D I C Planner 
Following the encodings described above, we have imple­
mented a classical planner which accepts traditional5 inputs 
(initial state, goal formula, and STRIPS action schemata) 
and returns a sequence of actions that will achieve the goal. 
The M E D I C planner operates by compiling the planning prob­
lem into clausal form, solving the SAT problem, and trans­
lating the satisfying truth assignment back into actions. De­
pending on the switch settings, any of the SAT encodings 
described above can be generated. Thus the M E D I C planner 
forms a unique testbed for exploring the properties of the 
different encodings. 

The architecture of the planner is shown in Figure 5. Ac­
tion schemata are parsed using the preprocessor from the 

5 By contrast, the implementation of [Kautz and Selman, 1996] 
accepts "direct" encodings in a logical constraint language, rather 
than STRIPS actions. 
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U C P O P planner [Penberthy and Weld, 1992] and type opt i ­
mizat ion (see below) is performed. Next , guided by the choice 
of act ion and frame representations (Figure 4), the compiler 
creates a master ax iom schema representing all action pos­
sibil i t ies for one t ime step. The periodic axiom schema is 
instant ia ted mu l t ip le t imes, based on the plan length cur­
rent ly being considered. The ou tpu t of this dupl icat ion mod­
ule, combined w i t h the in i t ia l state and goal specification, 
is s impl i f ied by pure l i tera l e l iminat ion, uni t clause propa­
gat ion, and dupl icate l i tera l e l iminat ion using a fast (linear 
t ime) procedure [Van Gelder and Tsu j i , 1996]. The result­
ing clauses are solved using Walksat [Selman et a/., 1996] or 
Tableau [Crawford and A u t o n , 1993]. 

4 . 1 O p t i m i z a t i o n s 

P lann ing v ia reduct ion to proposit ional satisfiabil ity is im­
pract ical w i t hou t a number of opt imizat ions which determine 
the t r u t h values of f luents or l im i t the ground instantiations 
of actions. Foremost among these are type optimizations. A 
type is a fluent which no action affects. 

Types can constrain operator instant iat ion by rul ing out 
impossible ground versions. For instance, if A and B are the 
only blocks, we can prune any instant iat ion of the Move op­
erator (Figure 1) which does not assign o to either A or B. 
W h e n such precondit ions are reflected in the operator instan­
t ia t ions, the types themselves need not appear in the f inal 
encoding; for instance, the B lock precondit ion would be re­
moved from Move. Th is mechanism is a generalization of the 
obvious one for handl ing equal i ty and inequality constraints, 
which are special cases of types. 

Because of the usefulness of type informat ion, we have ex­
plored methods of in ferr ing types of arguments when oper­
ators do not specify them. Suppose that B lock (o ) did not 
appear in the Move def in i t ion in Figure 1, but that when­
ever C l e a r ( o ) appears in an action's effect (for any variable 
o), t ha t action's precondi t ion contains the f luent B lock (o ) . 
Then no constant can become Clear w i thout being a Block. 
I f every constant wh ich is C lear in the in i t ia l conditions is 
also a B lock , we can deduce tha t every Clear constant must 
be a B lock and add B l o c k ( o ) to the Move precondit ion. 

Simi lar ly, inequal i ty constraints can be inferred if a fluent 
appears b o t h posit ively and negatively in an operator, since 
the two bindings cannot be identical. Since the Move operator 
o f F igure 1 has effects and On(o,d) , the s d 
constraint wou ld be inferred if i t were not already present. 

An operator 's instant iat ions can be further pruned by el im­
ina t ing symmetr ic operator instantiat ions. For instance, i f an 
operator a takes two arguments which are used identically, 
then there is no sense considering bo th of the bindings 
and we arb i t ra r i l y select one of the possibilities. This 
analysis cuts the number of ground instantiations by about 
an order of magni tude for the refrigerator domain. 

The M E D I C planner fur ther reduces bindings and infers 
invar iant fluents by enforcing a form of consistency. An ap-
prox imat ion to the set of f luents tha t can be true (and also to 

those that can be false) is computed by an iterative dataflow 
analysis. The first approximation is the initial condition; at 
each step any fluents in the effects of actions that can fire, 
given the current approximations, are added to the sets. This 
process is guaranteed to terminate and is not tantamount to 
solving the planning problem since time is ignored, thereby 
permitting impossible situations, like the presence of a fluent 
and its negation. 

The CNF simplification step is also quite important, since 
it is fast and can reduce the formula size enormously. Though 
CNF simplification operates without knowledge of the struc­
ture of the problem, its effects are similar to some of the 
optimizations listed above. For instance, it can do much of 
the type elimination described above. However, performing 
these steps earlier can reduce encoding time by a factor of 
four or more due to generation of smaller formulae. Further, 
these optimizations can often allow the simplifier to reduce a 
formula more than it otherwise could. 

Opt imizat ion and Factor ing 
Factored action representations reduce the benefit of these 
type optimizations. When performing factored simple split­
ting, only unary types can be eliminated, since their effect is 
restricted to (and fully reflected by) just one of the newly-
introduced action predicate symbols. Binary types such as 

cannot be eliminated: consider a binary operator a which 
takes two non-equal arguments. Given two objects A and B, 
only two instantiations are possible, but 
since the new action fluents can each take 
either A or B as an argument, it is necessary to leave the ax­
iom in the encoding to prevent 
the illegal argument combinations. 

Overloaded action representations do not admit elimina­
tion of even unary types, since a single action fluent rep­
resents the nth argument to many different operators with 
different constraints. 

4.2 Search ing for t h e M i n i m a l P l a n 
So far we have assumed that one is trying to find a plan of 
known length, but in general the plan length is not known in 
advance. The M E D I C planner is capable of both linear and 
binary search on plan lengths.6 Our encodings support the 
linear search strategy without any modification. To imple­
ment binary search for the minimal plan length, we include an 
explicit no-op (maintain) action when using classical frame 
axioms. This allows plans longer than the minimal length to 
succeed. 

Because Walksat is stochastic, finding a minimal length 
plan requires a systematic solver such as Tableau instead of 
(or in addition to) Walksat. For even moderately-sized prob-
lems, however, Tableau can take an unreasonably long time 
to verify that no solution exists. (Such verification is moot 

6 Because SAT solving time is potentially exponential in encod­
ing size, we conjecture that linear search strategy is better, but we 
haven't performed serious tests. 
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Figure 6: Numbers of variables, clauses, and literals in simplified CNF formulas resulting from each of eight encodings, plus the Satplan 
hand-encoding (sans domain-specific axioms). Values reported as 10 are actually 0: that is, the CNF simplifier solved the problem. Times 
less than one tenth second are reported as one tenth. 

when trying to find any satisfying plan rather than the short­
est one.) 

5 Experiments 
To test the various encodings, we encoded a suite of planning 
problems using each of the eight encodings. Factoring was 
applied when split action representations were used. Figure 6 
plots the number of variables, clauses, and literals in the final 
simplified CNF formulae. 

Figure 6 also reports Walksat solution7 times (averaged 
over five runs), but note that timing data is hard to interpret. 
Walksat is not always the fastest solution method. We used 
the suggested Walksat flag settings from the Satplan planner, 
but these flags might favor some encodings over others. The 
timings reported in [Kautz and Selman, 1996] are each min­
ima over many Walksat runs with varying parameter values. 
It is believed that solution time correlates with CNF size, 

7We do not report encoding or simplification times, which for 
medium and large problems are dominated by solution time. 

but automatically determining which solver flags are best for 
a particular problem is an open problem [Selman et a/., 1997), 
though progress has been made recently [McAllester et a/., 
1997]. 

From the asymptotic size bounds of Figure 4 one would 
expect the bitwise encodings to have the smallest number 
of variables and the regular encodings to have the largest 
number of variables. Surprisingly, neither expectation was 
fulfilled. 

5.1 T h e Smal les t E n c o d i n g s 
The two smallest encodings are the regular and simply split 
explanatory encodings, and these encodings had quick solve 
times as well. These successes bring to light several interest­
ing points about the relative merits of the encodings. 

First, it is clear that explanatory frame clauses are superior 
to classical frame clauses. Explanatory frames are smaller 
because they only state what changes, rather than what does 
not change, when an action occurs. In general, we expect 
each action to affect relatively few fluents. 
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Parallel ism is also a big advantage (as shown by the success 
of the regular explanatory encoding). Since parallel plans 
have shorter length, the formula contains fewer copies of the 
periodic axioms. Addi t ional ly , conflict exclusion axioms are 
a subset of complete exclusions, which prohibi t al l pairs of 
actions. Conf l ict exclusion only excludes pairs of actions that 
would not be otherwise excluded but should be in order to 
guarantee the existence of a l inearization of the part ial order 
p lan returned. 

It is qui te surprising tha t the regular explanatory encod­
ing has so few variables. [Kautz and Selman, 1996] dismiss 
this encoding as impract ica l . Whi le its size can blow up pro­
h ib i t ive ly in the worst case (see Figure 4), in practice the 
encoding maintains excellent variable and clause sizes. And 
it remains compet i t ive even as problems increase in size (e.g., 
problem sequence log0, l o g l , . . . , logA). We suspect the com­
piler's type opt imizat ions (which are handicapped by factored 
spl i t t ing) deserve the credit. 

5.2 T h e Larges t Encod ings 

The two worst encodings are the regular and bitwise classi­
cal encodings. We have already mentioned the superiority 
of explanatory to classical frames. Regular classical is out­
performed by the two split classical encodings. Worst-case 
sp l i t t ing clause sizes can be much bigger than the regular 
encoding, bu t in practice factoring seems to keep the sizes 
compet i t ive. Sp l i t t ing also may provide the simplifier w i th 
more f lexibi l i ty , al lowing it to deduce more, because it can 
reason about parts of actions instead of only about fully-
instant iated actions w i thou t hope of generalizing. Finally, 
these encodings are also aided by the great decrease in the 
number of variables as compared w i th the regular encoding. 

On the other hand, the bitwise encoding, which has the 
smallest number of variables before simplif ication, is the 
worst encoding of al l . Simpl i f icat ion is relatively ineffective 
on th is encoding, as other encodings have fewer variables af­
ter the simpl i f icat ion phase. This may be related to the fact 
tha t bitwise uses one set of variables to encode all possible 
actions in the domain, thereby making it next to impossible 
for the simplif ier to reason about the t r u th values of these 
variables. Final ly, the graph of number of literals points to 
the obvious blow-up that bitwise incurs in exchange for the 
small variable size. 

5.3 C o m p a r i s o n w i t h Sa tp lan 
Al though our encodings cannot be expected to be as compact 
as the hand-made Satplan encodings, our best encodings are 
surprisingly compet i t ive. The first seven problems of Fig­
ure 6 include a rank ing for the Satplan direct encoding of the 
problem, f rom which domain-specific axioms (see Section 5.6) 
have been removed for purposes of comparison. Our best en­
codings actual ly outper form the Satplan encodings on two of 
the smaller problems, as the simplif ication process is able to 
satisfy our formulas completely. As the problems get larger, 
the Satplan encodings begin to dominate. However, our best 
automat ic encoding appears to be always wi th in a factor of 
two of the Satplan size. 

5.4 T y p e O p t i m i z a t i o n s 
Type opt imizat ions can substantial ly reduce formula size: 
Figure 7 compares formula sizes w i t h and wi thout these op­
t imizat ions. These numbers understate the benefits of the 
opt imizat ions, because they do not include data for prob­
lems tha t were too large to solve wi thout type optimizations 

Classical 
Explanatory 

Regular 
.31 

1.00 

Simple-

.39 

.98 

Overloaded Bitwise 
.40 
.67 

.32 

.76 

Figure 7: Ratio of simplified formula size with type optimizations 
to simplified formula size without. The numbers reported are av­
erages over seven problems of the ratios for variables, clauses, and 
literals, which are always within .15 of the average and usually 

closer. 

Variables 
Clauses 
Literals 

C 
Simple 

.81 

.50 

.34 

assical 
Overloaded 

.99 

.69 

.50 

Explanatory 
Simple 

.46 

.30 

.20 

Overloaded 
.69 
.50 
.38 

Figure 8: Ratio of simplified formula size wi th factoring to sim­
plified formula size without. 

but could be solved w i t h them. The opt imizat ions are c r i t i ­
cal for the classical encodings, cu t t ing their size by about two 
thirds. However, these optimizations are much less effective 
on explanatory encodings. In fact, the opt imizat ions appear 
to be superfluous for the regular explanatory encoding: the 
CNF simplifier obtains al l of the type opt imizat ion benefits 
wi thout considering the structure of the problem, using only 
the resulting formula. 

These contrasts may be at t r ibutable to the way in which 
the simplifier interacts w i t h the various encodings. Classi­
cal encodings are much more constraining than explanatory 
encodings, because they expl ici t ly enforce al l t r u t h values at 
t ime t -f 1 when an action occurs at t ime t. Th is r ig id i ty may 
make it hard for the simplifier to reduce the encoding size, 
thereby relying more heavily on the type opt imizat ions to 
make deductions about the encoding. The regular explana­
tory encoding, which uses conflict exclusion, is the most flex­
ible of all of the encodings. Therefore, it seems tha t any 
static optimizations tha t we make are easily teased out of 
the encoding by the simplifier. 

5.5 Fac to r ing 
Figure 8 shows that factoring makes a big difference com­

pared w i th unfactored spl i t t ing. Whi le factor ing does not 
reduce variable size at all in the base encoding, it does lead 
to small drops in variable size after simpl i f icat ion. Factoring's 
big effects, however, are in clause and (especially) l i teral size. 
This is important , because this reduction is precisely the rea­
son that we introduced the idea of factoring. A l though in the 
worst case, factoring has no effect, it is clear tha t factor ing 
is crit ical in practice. 

5.6 D o m a i n Specif ic A x i o m s 
The "direct" encodings of [Kautz and Selman, 1996] pro­

vide hand-coded, domain-specific in format ion which is i m ­
possible to specify in terms of STRIPS actions bu t is natura l 
when wr i t ing general logical axioms. For example, in their 
blocks world problems Kautz et al. state tha t the relat ion 
On is both non-commutative and irreflexive, only one block 
may be on another at any t ime, every block is on exactly one 
other object, blocks can't be bo th clear and have something 
on them, and the Table is never on anything. To determine 
how much (if at all) this addi t ional informat ion affected the 
planning problem, we removed these domain-specific axioms 
from the A T & T encodings and compared the size and speed 
of the resulting SAT problems. As Figure 9 shows, el iminat­
ing the axioms decreased the number of clauses, bu t increased 
the number of variables (presumably because unit-clause and 
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Figure 9: AT&T's hand-coded domain-specific axioms led to more clauses, fewer variables (after simplification), and substantial speedup. 
Each problem was run five times on an SGI Indy with Walksat settings: tries 20, noise 30 100, and cutoff set to the number of variables 
squared. Solve-time standard deviations are reported as a. 

pure- l i teral s impl i f icat ion was less effective). W i t h o u t the 
domain-dependent axioms, the planning problems took sub­
stant ia l ly longer. These results suggest i t wou ld be useful to 
investigate whether a compiler could deduce some of these 
axioms automatical ly. We believe our type opt imizat ions to 
be a good star t at achieving this goal. 

6 Conclus ions 
This paper makes several contr ibut ions: 

• We develop a simple framework tha t generates eight ma­
jo r encodings, which account for al l of the non-causal 
A T & T encodings as well as several novel ones. In par­
t icular , the in t roduc t ion of overloaded sp l i t t ing and the 
bitwise representat ion, combined w i t h the regular and 
simply-spl i t encodings, creates a spectrum of choices 
h ighl ight ing the tradeoff between variable and clause 
sizes. 

• We describe an automat ic compiler t ha t takes classical 
STRIPS p lanning problems and generates SAT prob­
lems using al l of the above encodings. Our compiler 
includes many interest ing features, inc luding a type i n ­
ference and opt imizat ion mechanism. 

• We use the compiler to per form an empir ical analysis 
of tradeoffs in the space of encodings. We show tha t 
explanatory frames and confl ict exclusion are dominant , 
and regular acton representation is surprisingly effective. 

Many exci t ing problems remain. Clearly we need to bet­
ter investigate the solve-time characteristics of the encod­
ings. Automat ica l l y generating domain-specific axioms, such 
as those in Section 5.6, is a promising direct ion. We also hope 
to investigate addi t ional type inference methods. There are 
also many hyb r id encodings which would be interesting to 
explore. A l low ing inter-operator paral lel ism in the simply-
spl i t explanatory encoding could take advantage of bo th of 
the best encodings. (As mentioned earlier, simple sp l i t t ing 
prevents the possibi l i ty of paral lel instant iat ions of the same 
operator, as their spl i t variables w i l l interfere.) Another hy­
b r id opt ion is the addi t ion of "ac t ion" variables, similar to 
those of overloaded sp l i t t ing , to the simple sp l i t t ing encod­
ing. These ex t ra variables can greatly compact many parts of 
a factored spl i t encoding. A t h i r d hybr id would use bitwise 
representations for the spl i t f luents of simple or overloaded 
spl i t actions, avoiding the disadvantages of the bitwise ac­
t ion representation whi le reducing the number of variables. 
One can also imagine compi l ing par t of a domain theory w i t h 
one encoding and using a different encoding for other parts. 
Final ly, i t would be interest ing to automate the A T & T state-
based encodings and to integrate their causal encodings in to 
our framework. 
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