
A Reactive Planner for 

B r i a n C . W i l l i a m s 
Computational Sciences Division MS 269-2 

NASA Ames Research Center, 
Moffett Field, CA 94035 USA 

E-mail: villiamsttptolemy.arc.nasa.gov 

A b s t r a c t 

A new generation of reactive, model-based executives 
are emerging that make extensive use of component-
based declarative models to analyze anomalous situ­
ations and generate novel sequences for the internal 
control of complex autonomous systems. Burton, a 
generative, model-based planner offers a core element 
that bridges the gap between current and target states 
within the reactive loop. Burton is a sound, complete, 
reactive planner that generates a single control action 
of a valid plan in average case constant time, and com­
pensates for anomalies at every step. Burton will not 
generate irreversible, potentially damaging sequences, 
except to effect repairs. We present model compila­
tion, causal analysis, and online policy construction 
methods that are key to Burton's performance. 

Conventional wisdom has largely pushed deductive 
reasoning out of the reactive control loop for nearly 
a decade. However, recent search for the surprisingly 
elusive, hard satisfiability problem foretells a healthy 
return to deductive methods (Wil l iams & Nayak 1996b; 
Kautz & Selman 1996) based on RISC-like search en­
gines. This paper pushes this perspective down to re­
active time scales, reporting on a model-based plan­
ner, called Burton, that is at the core of a model-
based executive's reactive control loop. By solving the 
NP hard component of deductive problems at compile 
t ime, Bur ton exploits the expressiveness of NP hard 
methods, wi thout assuming the risk of falling off the 
elusive cliff. 

Burton's parent model-based executive is particu­
larly well suited to controll ing the complex internal be­
haviors of large scale autonomous systems, we call im­
mobile robots (Wil l iams & Nayak 1996a). What distin­
guishes this executive is its abil i ty to sense and control 
hidden state variables indirectly, and the use of compo­
nent models to identify these novel interaction paths. 
A marriage between this model-based executive and 
a classical, method-based executive provides a hybrid 
w i th an expressive scripting language and an extensive 
capability to generate novel responses to anomalous 

1178 PLANNING A N D SCHEDULING 

Model-based Executive 

P. Pandurang Nayak 
Recom Technologies 

NASA Ames Research Center, MS 269-2 
Moffett Field, CA 94035 USA 

E-mail: nayakflptolemy. arc. nasa. gov 

situations. Significant parts of this hybrid executive 
wi l l be demonstrated in late 1998 on NASA's Deep 
Space One autonomous spacecraft (Pell et al. 1997). 

The paper begins wi th an example from the space­
craft domain, and then introduces our concurrent t ran­
sition system modeling formalism. Next we introduce 
model-based execution as identifying a current state 
(mode identification), generating an optimal target 
state (mode reconfiguration), and generating a con­
tro l action to move towards the target (model-based 
reactive planning). The rest of the paper presents the 
Burton model-based reactive planner through a series 
of domain restrictions, model compilation, policy con­
struction and online planning algorithms. 

Example: autonomous spacecraft 
First consider the underlying task. Figure 1 shows 
an idealized schematic of the main engine subsystem 
of the Cassini spacecraft and valve driver circuitry. 
It consists of a helium tank, two propellant tanks, 
two main engines, regulators, latch valves, and pyro 
valves. The helium tank pressurizes the propellant 
tanks. When propellant paths to a main engine are 
open, the propellants flow into the engine and produce 
thrust. The pyro valves are used to isolate parts of the 
engine. They can open or close only once. 

Valves are controlled by valve drivers. Commands to 
the driver are sent via a control unit (VDECU). The 
driver and V D E C U can be on or off, and recoverably 
or permanently failed. A recoverably failed component 
can be repaired by resetting i t . A valve's state changes 
as a result of a command only if the corresponding 
driver and V D E C U are on and healthy. 

In planning an orbit insertion maneuver, a high-level 
deliberative planner, e.g., (Muscettola 1994), gener­
ates a sequence of behavior goals, such as producing 
thrust. The reactive executive achieves this goal using 
its component models to generate control sequences 
that open the relevant set of valves leading to a main 
engine. Valves are commanded open indirectly, and the 



Figure 1: Schematics of engine and valve control cir­
cuitry. Valves are closed only when solid black. 

executive must ensure that the control unit and driver 
leading to the valve are on and healthy prior to com­
manding the valve. Generating sequences to handle a 
breadth of novel situations requires extensive reason­
ing about physical processes as well as state changing 
actions. Doing this reactively is the focus of this paper. 

WILLIAMS & NAYAK 1179 



A model-based executive, uses a specification of a 
transit ion system to determine the desired control se­
quence in three stages—mode identification (MI ) , mode 
reconfiguration (MR) and model-based reactive plan­
ning (MRP) . MI and MR set up the planning prob­
lem, identifying in i t ia l and target states, while MRP 
reactively generates a plan solution. More specifically, 
MI incrementally generates the set of most likely plant 
trajectories consistent w i th the plant transit ion model 
and the sequence of observations and control actions. 
This is maintained as a set of most likely current states. 
MR uses a plant transit ion model and the most likely 
current state generated by MI to determine a reachable 
target state that satisfies the goal configuration. MRP 
then generates the first action in a control sequence for 
moving f rom the most likely current state to the target 
state. After that action is performed MI confirms that 
the intended next state is achieved. MI and MR are 
discussed in (Wil l iams & Nayak 1996b). This paper 
focuses on MRP. 

A key decision underlying our model-based executive 
is the focus on the most likely trajectory generated by 
M I . The difficulty w i th the more conservative strategy 
of considering a single control sequence that covers a 
set of likely states (Will iams & Nayak 1996b) is that 
the different states wi l l frequently require different con­
t ro l sequences. While ut i l i ty theory can be used to 
select between different control sequences for one that 
maximizes success (Friedrich & Nejdl 1992), the cost of 
generating multiple states and control sequences works 
against our goal of building a fast reactive executive. 

The greedy approach introduces risk: the control ac­
t ion appropriate for the most likely trajectory may be 
inappropriate, or worse sti l l damaging, if the actual 
state were otherwise. Furthermore, the reactive focus 
of the MRP precludes extensive deliberation on the 
long-term consequences of actions, thus leaving open 
the possibility that control actions, while not outright 
harmful, may degrade the system's capabilities. For 
example, firing a pyro valve is an irreversible action 
that forever cuts off access to parts of the propulsion 
system. Such actions should be taken after due delib­
eration by the high-level planner or human operators. 
Hence, fundamental to the reliabil i ty of our approach 
is the following requirement: 

R e q u i r e m e n t 1 MRP considers only reversible con­
trol actions, unless the only effect is to repair failures.1 

Model-based react ive p lann ing 
The definition of MRP (Burton) follows from Defini­
t ion 1 and the functions of MI and MR: 

1180 PLANNING A N D SCHEDULING 

Given the similarity of transitions and STRIPS op­
erators, Burton's problem appears similar to STRIPS 
planning (Weld 1994). However, the crit ical differ­
ence is the distinction between classical planning and 
machine control. The pr imit ive control action in a 
STRIPS plan is to invoke a plan operator, which di­
rectly modifies the state. Model-based planners, on 
the other hand, exert control by establishing values 
for control variables, which interact w i th internal state 

1 While repairing a failure is irreversible, it is important 
to allow a reactive executive to repair failures. 



WILLIAMS & NAYAK 1181 

The correspondence to a STRIPS operator is 
straightforward: state conditions, including antecedent 
yi, form preconditions; the add (delete) list contains 
the next (previous) value of yi. The transit ion is in­
voked by asserting all control conditions. 

E x p l o i t i n g p r o p e r t i e s o f d e s i g n e d s y s t e m s 

Albeit simpler than the original specification, these 
compiled transitions have a complication not found in 
STRIPS. STRIPS operators are explicitly invoked, one 
at a time. In the above, a control action can invoke 
more than one transition. Furthermore, a transition 
can occur spontaneously, and cannot be prevented, if 
its antecedent contains no control variables. 

While arbitrary transition systems can manifest 
these properties, physical hardware is typically de­
signed to behave like STRIPS operators. It is usually 
the case that each state variable is separately com­
manded and state variables maintain their values in 
the absence of explicit commands. The following re-
quirement prevents spontaneous state change: 

Requ i remen t 2 Each control variable has an idling 
assignment, and no idling assignment appears in any 
transition. The antecedent of every transit ion includes 
a (non-idling) control condition. 

For example, drcmdin1 has idling value none, and the 
prime implicant of Odr1 = on mentioned above con­
tains the non-idling drcmdini = reset. Exploit ing 
this restriction, all state changes can be prevented by 
assigning every control variable its idling assignment. 
The following additional restriction guarantees that 
transitions can be individually invoked: 

Requ i remen t 3 No set of control conditions of one 
transition is a proper subset of the control conditions 
of a different transition. 

A single transition is invoked by asserting its control 
conditions, and assigning all other control variables 
their idle assignment. Jointly these two requirements 
reduce MRP to STRIPS planning. 

Online component of reactive p lanning 
Given a compiled transition system S", Burton quickly 
generates the first control action of a valid plan, given 



an in i t ia l state assignment 0 and a set of goal assign-
ments y2 Bur ton meets five desiderata. First, it only 
generates non-destructive actions, i.e., an action wi l l 
never undo the effects of previous actions that are sti l l 
needed to achieve top-level goals. Second, Burton wi l l 
not propose actions that lead to deadend plans, i.e., it 
w i l l not propose an action to achieve a subgoal when 
one of the sibling subgoals is unachievable. Th i rd , Bur­
ton is complete, i.e., if a planning problem that satisfies 
Requirements 1-4 is solvable, then Burton wil l generate 
a plan. However, Bur ton is not guaranteed to gener­
ate all valid plans. Fourth, Burton ensures progress 
to a goal, except when execution anomalies interfere, 
i.e., the nominal trajectory traversed by Burton for a 
fixed target is loop free. F i f th , Burton operates at re­
active time scales—its average runtime complexity is 
constant. This speed is essential to providing a model-
based executive w i th response times comparable to tra­
dit ional executives (Firby 1987; Simmons 1994). 

Bur ton avoids runtime search, requires no algo­
r i thms for threat detection, and expends no effort de­
termining future actions or planning for subgoals that 
are not supported by the first action. Tradit ional plan­
ners need such mechanisms to avoid destructive actions 
and deadend plans (Weld 1994). Burton accomplishes 
this speedup by exploit ing the requirement, stated ear­
lier, that al l actions except repairs be reversible, and 
by exploit ing certain topological properties of compo­
nent connectivity that frequently occur in designed sys­
tems. The development of Burton's basic sequencing 
algorithm is the topic of the next three subsections, 
w i th the introduction of repair actions introduced in 
the fourth subsection. Finally, to achieve average case 
constant t ime Burton precompiles plans into reactive 
policies, wi thout requiring enormous amounts of stor­
age. This is the topic of the fifth subsection. 

E x p l o i t i n g causal i ty 

A major leverage point comes from exploiting the 
topological properties of component connectivity. The 
input /ou tpu t connections of the compiled plant fre­
quently do not contain feedback loops. When they do 
occur they are typical ly local and can easily be elimi­
nated through careful modeling. To be precise: 

D e f i n i t i o n 3 A causal graph G for (compiled) transi­
t ion system 5 is a directed graph whose vertices are the 
state variables of S. G contains an edge from v1 to v2 
i f vl occurs in the antecedent of one of v2's transitions. 

R e q u i r e m e n t 4 The causal graph must be acyclic. 

Here on, each goal is a target variable assignment gen­
erated by MR, not the configuration goal input to MR. 

Line 1 tests whether or not a conjunction of top-level 
goals can be achieved, as explained in the subsection 
after next. This involves a simple table lookup to see 
if each goal is labeled Revers ib le . Bur ton only intro­
duces subgoals that can be achieved, hence the test is 
needed at the top level only. Line 2 works upstream 
along the causal graph of variables selecting the next 
unsatisfied (sub)goal assignment to be achieved. This 
upstream progression is achieved by exploit ing a topo­
logical ordering, as explained in the next subsection. 

1182 PLANNING A N D SCHEDULING 



Line 3 takes the first step towards achieving the se­
lected goal. Given an ini t ial assignment y = e, and 
a component transit ion system for y, a goal assign­
ment y = ef is achieved by traversing a path along 
transitions of y f rom e i to ef. Respecting Restriction 
1, Bur ton only traverses transitions wi th reversible ef­
fects or that perform a repair. As explained in the next 
section, the transitions that satisfy this restriction are 
those labeled A l l o w e d . Line 3 identifies the first tran­
sition along this path from e i to ef. Line 4 subgoals 
on the state conditions of this first transition, which 
results in Burton moving further upstream. If one or 
more state conditions is unsatisfied then a next control 
action is computed in Line 4, and returned. If all state 
conditions are satisfied, then the transition is ready to 
be traversed and Line 4 returns the transition's control 
conditions as the next control action. 

A v o i d i n g d e s t r u c t i v e a c t i o n s 

Burton avoids generating destructive control actions 
(desiderata 1) by exploiting the acyclic nature of the 
causal graph. The only variables needed to achieve 
an assignment y = e are y's ancestors in the graph. 
For example, turning on the driver requires use of the 
VDECU but not the valve. In addition, requirements 
2 and 3 guarantee that invoking transitions for y and 
its ancestors, when performed one at a time, wil l not 
affect any other state variables. 

This suggests that Burton can achieve a conjunction 
of goal assignments in an order that moves along the 
causal graph from descendants to ancestors, i.e., a goal 
conjunct is achieved only after conjuncts that are its 
descendants. For example, open is 
achieved by working on = open then dr\ — off. 
The same ordering holds for conjunctive subgoals, that 
is, state conditions of required transitions. 

Destructive subgoal interaction may occur when a 
variable appears upstream as a subgoal to two con­
juncts. To avoid this danger subgoals are achieved in 
depth first order, achieving one conjunct before start­
ing on a second. For example, 
is achieved by turning on the driver, opening the valve, 
and finally turn ing the driver off. Achieving subgoals 
in depth first order also ensures that Burton always 
makes progress towards the goal (desiderata 4). 

Depth first goal progression, together with the 
goal ordering constraint, is sufficient to ensure non­
destructive actions. Depth first progression is imposed 
by Line 4 of NextAct ion. Line 2 imposes the order­
ing constraint wi thout runtime cost through topologi-
cal numbering. At compile time each state variable is 
given a topological number (tn), by performing a depth 
first search of the graph and numbering variables on 

the way out. For example, 

Topological numbering imposes a total ordering that 
satisfies the constraint whenever A is 
a strict descendant of B in the causal graph. Hence 
the proper order of goal achievement for all conjunc­
tive subgoals is determined at compile t ime by sorting 
the conditions of each transition by increasing topolog­
ical number. Burton respects an upstream progression 
in line 2, simply by working successively through the 
sorted list of conditions. 

A v o i d i n g d e a d e n d s t h r o u g h r e v e r s i b i l i t y 

Requirement 1 stated that Burton only perform re­
versible transitions, desiderata 2 stated that Burton 
avoid deadend plans, that is plans wi th unachievable 
subgoals, and desiderata 3 specified completeness. To 
be reactive Burton must achieve these without search. 
Each hinges on the following lemma: 

L e m m a 1 is reachable from by reversible 
transitions exactly when A and B are separately reach-
able from by reversible transitions. 

Proof: Assume without loss of generality that 
tn(B). We previously showed that if A is achieved first, 
it won't be disturbed while achieving B. The transi­
tions used to achieve A are reversible, hence if nothing 
else each variable other than A can be restored to its 
value in 0 and then B can be achieved. □ 

Suppose Burton has labeled as Revers ib le every 
assignment that is reachable from ini t ia l state 6 using 
Revers ib le transitions. By Lemma 1 a conjunction of 
goal assignments is achievable exactly when each con­
junct is marked Revers ib le . Hence Burton can deter­
mine plan achievement at runtime simply by using one 
table lookup per top-level goal (line 1, Next Act ion). 

Deadend plans, hence search, are eliminated by re­
moving the possibility of unachievable subgoals. As­
sume Burton labels a transition A l l o w e d only if its 
state conditions are each labeled Revers ib le . Then 
sequences of A l l o w e d transitions between Revers ib le 
assignments contain no unachievable subgoals. These 
are the transitions generated by line 3 of Next Act ion. 
By lemma 1 all other sequences lead to deadends or in­
volve irreversible transitions, hence Burton generates 
some plan if one exists (desiderata 3). Of course Bur­
ton can't generate all plans since subgoal interleaving 
isn't allowed. Finally, since depth first progression gen­
erates the control sequence in order, Burton generates 
the first control action without wasting work on the 
rest of the plan, hence achieving reactivity. 

The labeling of assignments and transitions is pre-
computed for compiled transition system S' w i th ini t ial 
state by LabelSystem, and is linear in the size of S'. 

WILLIAMS & NAYAK 1183 



LabelSystem starts at the roots of the causal graph, 
using topological numbering to move to a descendant 
only after its ancestors have been processed. Line 1 
simply executes the definition of Allowed. Note when 
l/i is a root, none of its transitions contain state condi­
tions, and hence are trivially Allowed. Lines 2 and 
3 identify Reversible assignments. An assignment 
y = e* can be reversibly achieved if there exists a path 
along Al lowed transitions from initial value ei to ek 

and back. Equivalently, the set of y's reversible assign­
ments is the strongly connected component (SCC) of 
y's Al lowed transition that contains ei. 

For example, starting with initial value off, the SCC 
for the VDECU, hence its Reversible assignment set, 
is {off, on}, with both resettable and failed excluded. 
Next, the driver has Al lowed transitions between on 
and off due to the VDECU's SCC. With initial value 
on, the SCC for the driver is {off,on}. 

Finally, note that LabelSystem is called infrequently. 
Actions generated by Burton only move within the 
SCCs of Reversible assignments, leaving the labeling 
unchanged. A relabeling is needed only if an exoge­
nous action or failure moves to an assignment that 
was not labeled Reversible. 

Fa i lu re states and repa i r 

To dramatically expand Burton's utility we incorpo­
rate repair actions. The occurrence of failures are out­
side Burton's control, since there are no nominal tran­
sitions that lead to failure. Hence a repair sequence is 
irreversible, albeit essential, and thus not covered by 
the development thus far. We extend Burton to permit 
repair sequences if they minimize irreversible effects. 
Burton never uses a failure to achieve a goal assign­
ment if the failure is repairable. However, if it is not 
repairable, then Burton is allowed to exploit the com­
ponent's faulty state. For example, suppose a switch is 
needed to be open, and it is permanently stuck open. 
Since stuck-open is irrepairable but has the desired ef­
fect, Burton exploits the failure mode. 

Relaxing the reversibility constraint, if a state vari­
able y is assigned a failure ef, then Burton is permitted 
to traverse a sequence of allowed transitions from ef 

to a nominal assignment, when such a path exists. If 
only one path exists, then y's reversible assignments 
are defined to be those in the SCC of the first nominal 
assignment reached along the path. For example if the 
driver is initially at resettable then it may transition 
to on using reset, and the SCC is {off, on}. If no path 
exists to a nominal assignment, then the reversible as­
signments are those in the SCC that contains ef. For 
example, if the driver is at failed, then the SCC is 
simply {failed}. Although not discussed here, Burton 
also handles the case where multiple paths to different 
SCCs exist. 

Although Burton can now traverse irreversible tran­
sitions to effect repair, none of the assignments along 
this trajectory, up to the selected SCC can be used 
to satisfy a state condition or goal assignment. Hence 
this extension does not endanger Burton's previously 
discussed properties. 

1184 PLANNING A N D SCHEDULING 



Burton's feasible policies are analogous to optimal 
policies in control theory. An important difference is 
that Burton constructs a set of concurrent policies, 
rather than a single policy for the complete state space. 
The latter grows exponential in the number of state 
variables, and is infeasible for models like the space­
craft, which contain over 80 state variables and well 
over 28 0 states. In contrast, the concurrent policies 
grow only linearly in the number of state variables. 

For a fixed target and no intervening failures, Bur­
ton generates successive control actions as a depth 
first traversal through the policy tables. This traversal 
maps out a subgoal tree, and Burton maintains an in­
dex into this tree during successive calls. To generate a 
sequence Bur ton traverses each tree edge exactly twice 
and generates one control action per vertex. Since the 
number of edges in a tree is bounded by the number of 
vertices, the amortized average case complexity of gen­
erating each control action is a constant. Desiderata 
5, reactivity, is achieved. 

Related work and conclusions 
Burton combines causal models used in model-based 
reasoning wi th state transitions used in planning. 
Other researchers have combined model-based diagno­
sis wi th planning, primari ly to generate repair plans 
(Priedrich k Nejdl 1992; Sun k Weld 1993). The 
main difference is that these systems include a STRIPS 
(rather than model-based) planning component with 
uti l i ty-theoretic measures for selecting amongst alter­
nate plans. Their computational complexity make 
them inapplicable for on-board reactive execution. 

Bur ton differs from tradit ional STRIPS planners 
(Weld 1994) in that plan operators (transitions) are 
generated by a compilation process from an underlying 
causal model of the system that includes both within 
and across state constraints respec­
t ively). Furthermore, the compiled transition system 
is a specialized version of the general planning problem 
that Bur ton solves by a worst-case linear time, aver­
age case constant t ime algorithm. In contrast, general 
planning is PSPACE-complete. Korf (1987) defines a 
set of subgoals to be serializable if they can be solved 
in order wi thout ever violating a subgoal solved earlier 
in the order. The requirement that the causal graph is 
acyclic ensures that Burton is only presented serializ-

able sets of subgoals. 
Finally, traditional reactive executives (Firby 1987; 

Simmons 1994) differ from Burton's model-based ex­
ecutive in that the former use explicitly scripted pro­
cedures to provide reactive execution, while the lat­
ter uses deductive reasoning from a causal model that 
combines an off-line compilation phase wi th an on-line 
policy generation phase. Other differences include the 
fact that traditional executives provide a richer set 
of control structures such as parallel execution, while 
Burton's executive provides a more sophisticated diag­
nosis and monitoring capability embodied in M I . 

In summary, Burton is a sound and complete gen­
erative planner that uses expressive transition system 
models to provide the reactive sequencing capability 
of a model-based executive. It exploits off-line model 
compilation and the topological properties of compo­
nent connectivity to incrementally generate control ac­
tions in average case constant time. These control ac­
tions are guaranteed to be non-destructive, while en­
suring progress towards the goal and avoiding deadend 
plans. 
Acknowledgements : We would like to thank Jim 
Kurien and Dan Weld for helpful comments on the 
paper. 

References 
Firby, R. 1987. An investigation into reactive planning in 
complex domains. In Procs. of AAAI-87, 202-206. 
Priedrich, G., and Nejdl, W. 1992. Choosing observations 
and actions in model-based diagnosis/repair systems. In 
Procs. of KR-92, 489-498. 
Kautz, H., and Selman, B. 1996. Pushing the envelope: 
Planning, propositional logic, and stochastic search. In 
Procs. of AAAI-96, 1194-1201. 
Korf, R. 1987. Planning as search: A quantitative ap­
proach. Artificial Intelligence 33(1):65 88. 
Muscettola, N. 1994. HSTS: Integrating planning and 
scheduling. In Fox, M., and Zweben, M., eds., Intelligent 
Scheduling. Morgan Kaufmann. 
Pell, B.; Bernard, D.; Chien, S.; Gat, E.; Muscettola, 
N.; Nayak, P.; Wagner, M.; and Williams, B. 1997. An 
autonomous spacecraft agent prototype. In Procs. of the 
First Int. Conf. on Autonomous Agents. 
Simmons, R. 1994. Structured control for autonomous 
robots. IEEE Trans. on Robotics and Automation 10(1). 
Sun, Y., and Weld, D. 1993. A framework for model-based 
repair. In Procs. of AAAI-98, 182-187. 
Weld, D. 1994. An introduction to least commitment 
planning. AI Magazine 15(4):27-61. 
Williams, B., and Nayak, P. 1996a. Immobile robots: AI 
in the new millennium. AI Magazine 17(3):16-35. 
Williams, B., and Nayak, P. 1996b. A model-based ap­
proach to reactive self-configuring systems. In Procs. of 
AAAI-96, 971 978. 

WILLIAMS & NAYAK 1185 


