
V i s i o n - M o t i o n P lann ing of a M o b i l e Robo t 
consider ing V is ion Uncer ta in t y and P lann ing Cost 

Jun M i u r a and Yoshiaki Shirai 
Dept. of Computer-Controlled Mechanical Systems, Osaka University 

Suita, Osaka 565, Japan 
Email: jun@mech.eng.osaka-u.ac.jp 

URL: http://www-cv.mech.eng.osaka-u.ac.jp/"jun/ 

Abst rac t 
This paper proposes a planning method for 
a vision-guided mobile robot under vision un­
certainty and l imited computational resources. 
The method considers the following two trade­
offs: (1) granularity in approximating a prob­
abilistic distribution vs. plan quality, and (2) 
search depth vs. plan quality. The first trade­
off is managed by predicting the plan quality 
for a granularity using a learned relationship 
between them, and by adaptively selecting the 
best granularity. The second trade-off is man­
aged by formulating the planning process as a 
search in the space of feasible plans, and by ap­
propriately l imit ing the search considering the 
merit of each step of the search. Simulation re­
sults and experiments using a real robot show 
the feasibility of the method. 

1 In t roduc t ion 
There has been an increasing interest in autonomous 
mobile robot which recognizes an environment with v i ­
sion and moves without guidance of human operators. 
A key to realize such a robot is the ability to gener­
ate a plan of vision and motion operations so that a 
robot may efficiently reach the destination. To design 
a planning algorithm for such a robot, we have to con­
sider the following two issues: l imited computational re­
sources and uncertainty in visual data. These two issues 
are closely related; planning based on uncertain data 
usually requires more computation than planning with­
out uncertainty because multiple possible outcomes of 
actions should be considered, and therefore, the l imita­
tion of computational resources tends to be critical. 

One of the useful tools for planning under uncertainty 
is statistical decision theories [Berger, 1985]. Several 
works applied statistical decision theory to vision and/or 
motion planning tasks (e.g., [Hutchinson and Kak, 1989] 
[Cameron and Durrant-Whyte, 1990] [Dean et al., 1990] 
[Miura and Shirai, 1993]). One drawback of these ap­
proaches is that a large branching factor of a search tree, 
which is determined not only by the number of possible 
actions but also that of possible situations that arise due 

to the uncertainty of sensory data, makes a planning pro­
cess computationally expensive. 

Regarding the l imitat ion of computational resources, 
many works have recently been focusing on the concept 
of limited rationality [Russell and Wefald, 1991], in which 
the cost of planning is explicitly considered and the time 
for object-level planning is allocated so that the overall 
ut i l i ty including both plan efficiency and planning cost 
is maximized. Some of examples are: flexible computa-
tion [Horvitz, 1990], decision-theoretic meta-level control 
of (object-level) reasoning [Russell and Wefald, 199l], 
and expectation-driven iterative refinement (EDIR) us­
ing anytime algorithms [Boddy and Dean, 1989]. 

This paper is concerned wi th a vision-motion plan­
ning of a mobile robot considering vision uncertainty and 
planning cost. Fig. 1 shows an example problem. Our 
mobile robot is going to the destination while avoiding 
obstacles. There is a route which passes the narrow space 
(we call it the gate) between the board and the part i t ion; 
however the passability of the gate is init ial ly unknown 
due to the uncertainty of visual data. The detour passing 
through the hallway is known to be passable, although it 
is longer. The robot estimates the gate width with stereo 
vision to determine the passability. The planner deter­
mines a set of observation points which efficiently navi­
gates the robot to the destination. For this problem, we 
propose a planning method combines a decision-theoretic 
approach with consideration of planning cost. 

Figure 1: An example planning problem. 

1194 PLANNING AND SCHEDULING 



F igu re 2: Th ree possible state of the gate. 

2 Basic Planning Strategy 
2.1 Plan Representation 
An ac t ion is composed of a movement to the next obser­
v a t i o n p o i n t and an observat ion at t h a t po in t . A state 
is represented by the cur ren t es t imate of the gate w i d t h 
and the cu r ren t r obo t pos i t i on . Due to the uncer ta in ty 
in observa t ion resul ts , the robo t cannot determine the 
gate w i d t h de te rm in i s t i ca l l y b u t obta ins i ts probabi l is t ic 
d i s t r i b u t i o n . 

A f t e r an observa t ion , the robo t classifies the state of 
t he gate i n t o one of t he three states (see F ig . 2): i f 
the robo t w i d t h i s smal ler t h a n the m i n i m u m value o f 
the p robab i l i s t i c d i s t r i b u t i o n o f the gate w i d t h , the gate 
is passable; i f the robo t w i d t h is larger t h a n the max i ­
m u m value o f the p robab i l i s t i c d i s t r i b u t i o n , the gate is 
impassable; o therwise the passabi l i ty is u n k n o w n . 

Since the ac tua l s ta te after an observat ion depends 
on the observat ion resul t and cannot be determined be­
fo rehand , a subp lan is generated for each possible s tate, 
w h i c h is p red ic ted us ing the uncer ta in ty model o f v is ion. 
F i g . 3 shows an example p lan for the prob lem shown 
in F i g . 1 . Such a p lan is represented by an A N D / O R 
t ree; an OR node corresponds to selection of an ac t ion ; 
an A N D node corresponds to a possible state. T h e qual ­
i t y of a p l an is measured in te rms of its execut ion cost, 
w h i c h is the expectation of t he to ta l execut ion t ime for 
movement and observa t ion . 

T h e leaves of an A N D / O R tree are ei ther terminal 
node or open node. At a t e r m i n a l node, the passabi l i ty 
is decided w i t h o u t unce r ta in t y and , thus , the f ina l ac­
t i o n ( i .e. , passing the gate or t a k i n g the detour ) is also 
dec ided. At an open node, since the passabi l i ty is un ­
k n o w n , the f i na l ac t ion has no t been decided yet . A p lan 
cand ida te is ref ined by expand ing (mak ing subplans for) 
one of i t s open nodes. In expansion of an open node, 
t he possible range of t he gate w i d t h is discret ized w i t h 
some granularity, and a subplan is generated for each 
d iscret ized s ta te . 

F igure 3 : An example p lan . D o t t e d ar rows ind ica te pos­
sible movements after observat ion . Bo ld a r rows ind ica te 
observat ion of the gate. 

2.2 C o m p u t a t i o n a l T r a d e - o f f s t o b e 
C o n s i d e r e d 

T h e p lann ing m e t h o d is designed to deal w i t h the fo l ­
l ow ing t w o compu ta t i ona l t rade-of fs : 

s e a r c h d e p t h v s . p l a n q u a l i t y : T h i s t rade-of f has 
been invest igated by several researchers (e.g. , D T A * by 
Russell and Wefa ld [1991]). We consider th i s t rade-of f 
in generat ing a mu l t i - s tep p l an . 

g r a n u l a r i t y v s . p l a n q u a l i t y : A f iner g ranu la r i t y 
for d iscret izat ion improves p lan qua l i t y , b u t i t increases 
the p lann ing cost. T h i s t rade-of f has l i t t l e been cons id­
ered, a l though i t i s i m p o r t a n t in p l a n n i n g under uncer­
ta in ty . 

T h e f i rst t rade-of f i s managed by f o r m u l a t i n g the p l a n ­
n ing process as an i te ra t i ve re f inement process [ B o d d y 
and Dean, 1989], and by appropr ia te l y l i m i t i n g the i ter ­
a t i on . To cope w i t h t he second t rade-of f , we represent 
the re lat ionship between g ranu la r i t y and the expec ta t i on 
of the reduct ion of a p lan cost (we cal l t h i s expec ta t ion 
a plan improvement) as a performance profile [Dean and 
Boddy , 1988] [Z i lbers te in , 1993], and t hen de te rmine the 
best g ranu la r i t y by examin ing the per fo rmance prof i le 
and the cost o f node expans ion. W i t h cons idera t ion o f 
these trade-offs, the p lanner t r ies to m i n i m i z e the t o t a l 
cost of p lan generat ion and p lan execu t ion . 

3 Formulat ion as I terat ive Refinement 
3.1 Easily-Obtainable Feasible Plan 
In an i te ra t i ve ref inement f r amework , the p lanner 
searches the space of feasible p lans (executable p lans) 
for the f i na l p lan . T h i s f o r m u l a t i o n enta i ls an easily-
obtainable feasible p lan for any open node. The re are t w o 
such feasible plans. One of t h e m is to take the de tou r 
f r om the cur ren t pos i t i on ; th i s feasible p lan is usual ly 
costly. T h u s we use the other feasible p l a n : 

The robot moves from the current position to 
the position just before the gate1. If the gate 

1 At this posit ion, the robot is assumed to be able to 
measure the gate w id th wi thout uncertainty; this posit ion 
is called the zero-uncertainty point, indicated as x*. 
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Figure 4: Expansion of an open node of a plan candidate. 
Ellipses drawn wi th bold lines indicate open nodes. 

is passable, the robot passes it; if not, the robot 
takes the detour from that position. 

Each plan candidate has the temporary cost, Ctemp, 
which is obtained by temporarily assigning the above fea­
sible subplan to all of its open nodes. 

3.3 Consideration of Meta-Planning Cost 
The above algorithm wil l expand a node as long as 
is less than CFP* even if their difference is very small. 
Expansion in such a case, however, may be useless if the 
meta-planning cost is high. 

Thus, we slightly modify the termination condition. 
That is, if the difference is less than the meta-planning 
cost, the iteration process stops and the best feasible 
plan is returned as the final plan. The cost of meta-
planning is, at present, considered to be constant. 

3.4 Dec id ing O n l y the N e x t A c t i o n 
When the objective of the planner is not to generate 
a whole plan but to select the best next action (in a 
dynamic environment, for example), the algorithm is al­
tered as follows. 

Let CFp*A be the cost of the best feasible plan which 
starts with action A. If the smallest value of of 
plan candidates which start wi th actions other than A is 
larger than CFpA*, the planning process terminates and 
returns A as the best next action. This strategy is similar 
to that of DTA* [Russell and Wefald, 1991]. 

4 Determin ing the Best Granu lar i ty 
We have mentioned that the granularity in discretizing 
the ranges of random variables (the gate width in our 
case) directly affects both the plan improvement and the 
expansion cost. The selection of the best granularity 
is, therefore, crucial to managing the trade-off between 
planning cost and plan efficiency. 

This paper proposes to represent the relationship be­
tween the granularity and the predicted plan improve­
ment as a performance profile, and to calculate the best 
granularity and the merit of expansion simultaneously. 

Currently we equally divide the range of a variable; 
thus, the granularity is specified wi th the number of divi­
sions. Let PI denote the predicted plan improvement 
for granularity 

The best granularity n* is given by 

(3) 

where is the cost of expansion wi th granularity 
n, which is defined as follows: 

(4) 
where Neand is the number of action candidates; Cexam 

is the cost required for examining one action candidate. 
Fig. 5 illustrates the determination of the best granu­
larity. Once the best granularity n* is determined, the 
merit of expansion is calculated as . 

If there is at least one OR node between the root node 
and an open node, the probabil i ty of reaching the open 
node is less than one. In this case, we mult ip ly P I ( n ) , 
which is originally generated for the case that the reach­
ing probabil ity is one, by the current reaching probabil­
ity. 
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Figure 5: Determining the best granularity. This figure 
is based on [Horvitz, 1990]. 

Every t ime an open node is generated (by expansion 
of its parent), the best granularity for the node is de­
termined. We include the cost of determining the best 
granularity in the cost of expanding the parent node. 

5 Der iv ing Performance Profi le 
Derivation of a performance profile (PP) is one of the im­
portant issues in anytime algorithm-based approaches. 
In some cases, PPs may be obtained from the struc­
tural analysis of the problem; in other cases, PPs may 
be obtained from experimental data. It is, however, usu­
ally difficult to obtain PPs for complex problems only 
wi th one of these methods. We, thus, derive a PP 
through structural and experimental analysis of the plan­
ning problem in the following steps: 

1. Analyze the structure of the planning problem and 
extract important problem parameters which can 
reasonably characterize the PP. 

2. Construct a generalized PP using the parameters 
obtained above; a generalized PP has coefficients to 
be estimated. 

3. Calculate actual PPs for an enough number of prob­
lem parameter sets, and adjust the coefficients of the 
generalized PP so that the PP fits well to the actual 
data set. 

5.1 P r o b l e m Analys is 
The plan improvement is the difference of temporary 
costs of a plan candidate before and after expanding one 
of its open nodes. Let us calculate the plan improvement 
using an example situation shown in Fig. 6. 

Suppose that the robot is initially at xo and the next 
observation point is x1. The open node under consider­
ation is the state that the gate's passability is unknown 
after the observation at x1. The feasible plan before ex­
pansion is to go from X1 directly to the zero-uncertainty 
point x * , where the robot can measure the gate width 
without uncertainty. Expansion of this open node, i.e., 
selection of a second observation point x2 for each dis-
cretized state results in a new feasible plan. 

Figure 6: An example situation. 
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Figure 7: An example performance profile and the fitted 
curve. 

Figure 8: Log-scaled plot of data for equation (9). 

simulations for the same problem with different com­
puting powers see equation (4)). Notice that 
the higher the computing power is (the smaller 
is), the more precise and the less costly plan is gener­
ated. The difference of the costs is, however, rather small 
compared with that of the computing powers. This is be­
cause that the ini t ia l feasible plan is already a good plan 
in this case. 

We then compared, in terms of the total of planning 
cost and execution cost, the proposed method wi th the 
fixed method, which uses a fixed granularity and a fixed 
search depth. Fig. 10 shows a comparison result. The 
proposed method gives the best performance. 

We conducted this comparison for about forty differ­
ent problems; in about two-thirds cases, the proposed 
method outperformed others. In other cases, the dif­
ference between the best result and the result by the 
proposed method was less than one percent of the best 
result. Note that in order to obtain the best result 
wi th the fixed method, we had to adjust the granularity 
and search depth for each problem, while the proposed 
method always performed well without any such adjust­
ments. 

7 Exper iments using Real Robot 
This section describes preliminary results for a real plan­
ning problem shown in Fig. 1. The gate width is esti­
mated by the two vertical segments on both sides; its 
probabilistic distribution is calculated using an uncer­
tainty model of stereo vision [Miura and Shirai, 1993]. 
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Figure 9: Simulation results: circles indicate observation points; solid arrows indicate the path to the next observation 
point; dotted arrows indicate possible paths after observations, n* is the granularity used for discretizing the open 
node at the next observation point. In case of (c), the initial feasible plan is used. 

limited computational resources. We managed granular­
ity vs. plan quality and search depth vs. plan quality 
trade-offs by: (1) considering the relationship between 
granularity and plan improvement which is represented 
as a performance profile, and (2) formulating the process 
of generating a multi-step plan as an iterative refinement 
process. The proposed method is always comparable 
with the best of the methods which uses fixed granu­
larity and fixed search depth. We have also described 
a method to derive a performance profile through struc­
tural and experimental analysis of the planning problem. 

In the performance profile (PP)-based planning, the 
quality of PP has the largest importance. If the parame­
ters (e.g., configuration of obstacles) of the current prob­
lem are largely different from those of problems used in 
derivation of PPs, the predicted plan improvement may 
not be accurate enough. In this paper, in order to in­
crease the accuracy, we divided into the problem space 
into several regions and obtained a PP for each region. 
Such a strategy might be practical if a PP which is ap­
plicable to a wide problem space is hard to find. 

This paper has treated a relatively simple vision-
motion planning problem (a single-gate problem). A 
future work is to apply the proposed method to large 
planning problems which have many gates to observe. 
To solve such a large problem, it is necessary to decom­
pose the problem into a set of single-gate problems. We 
are now developing an efficient decomposition method. 

Acknowledgments 
This work is supported in part by Grant-in-Aid for Sci­
entific Research from Ministry of Education, Science, 
Sports, and Culture, Japanese Government and by the 
Okawa Foundation for Information and Telecommunica­
tions, Tokyo, Japan. 

A Derivat ion of Plan Improvement 
Only the subplan for the open node at X1 changes by 
expansion. The cost C1 of the subplan before expansion 

Figure 10: Comparison of the proposed method 
wi th fixed-granularity and fixed-search depth methods. 
Change of the total cost according to the change of the 
search depth is indicated for each granularity. 

In the experiment, the planner decides only the next 
action (see Section 3.4). Then the robot moves to the 
planned observation point and observes the gate. The 
planning and action operations are iteratively performed 
unt i l the passability of the gate is determined. 

Fig. 11 shows the result of a tr ial . From the init ial im­
age (at lower-right in the figure), the robot estimated the 
probabilistic distribution of the gate width; the probabil­
i ty of the gate being passable was 0.53. Then the planner 
determined the next observation point as shown in the 
map. The robot moved to the next observation point 
(lower-left) and obtained the new image (upper-right). 
After this observation, the gate was determined to be 
passable; thus the robot moved forward and passed the 
gate (upper-left). 

8 Conclusions and Discussion 
We have proposed a planning method for a vision-motion 
planning of a mobile robot under vision uncertainty and 
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F igu re 1 1 : An expe r imen ta l resu l t : [center] the p lanned observa t ion p o i n t and the t r a j e c t o r y t aken by the r o b o t ; 
[ lower - r igh t ] the r i g h t image ob ta ined a t the i n i t i a l pos i t i on ; [ upper - r i gh t ] t he r i g h t image ob ta i ned a t the nex t 
observat ion p o i n t ; [ lower- lef t ] the movement f r o m the i n i t i a l pos i t i on to the nex t observa t ion p o i n t ; [upper- le f t ] t he 
movement f r o m t h e nex t observa t ion p o i n t i n t o the gate. 
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