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Abst rac t 
Progressive processing is a resource-bounded 
reasoning technique that allows a system to in­
crementally construct a solution to a problem 
using a hierarchy of processing levels. This pa­
per focuses on the problem of meta-level control 
of progressive processing in domains character-
ized by rapid change and high level of duration 
uncertainty. We show that progressive process­
ing facilitates efficient run-time monitoring and 
meta-level control. Our solution is based on an 
incremental scheduler that can handle duration 
uncertainty by dynamically revising the sched­
ule during execution time based on run-time 
information. We also show that a probabilistic 
representation of duration uncertainty reduces 
the frequency of schedule revisions and thus im­
proves the performance of the system. Finally, 
an experimental evaluation shows the contribu­
tions of this approach and its suitability for a 
data transmission application. 

1 I n t r oduc t i on 
Progressive processing [Mouaddib, 1993] is a problem-
solving technique that allows a system to trade-off so­
lution quality against computational resources. This 
technique is suitable in situations where it is not fea­
sible (computationally) or desirable (economically) to 
compute the best result. Progressive processing shares 
the motivation of such resource-bounded reasoning tech­
niques as flexible computation [Horvitz, 1987], anytime 
algorithms [Boddy and Dean, 1994; Zilberstein, 1995; 
1996], and design-to-time [Garvey and Lesser, 1993]. 
The distinctive characteristic of progressive processing 
is the use of a multi-level deliberation hierarchy in order 
to gradually transform an approximate solution into a 
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precise one. The mapping from the set of inputs (prob­
lem instances) to the set of outputs (solutions) is based 
on progressive util ization of data and knowledge. This 
incremental process is facilitated by using a hierarchical 
structure of input elements defined by the system's de­
signer [Mouaddib and Zilberstein, 1995]. This mapping 
is especially suitable for domains where the reasoner uses 
abstraction to structure the search space (as in hierar­
chical planning), and for problems that require the result 
to be expressed at varying levels of detail (as in model-
based diagnosis). 

In systems based on this technique, each time-
constrained component is designed in such a way that 
it, can produce a usable approximate solution wi th in the 
available run-time. However the use of progressive pro­
cessing as a component of a real-time system introduces a 
problem of execution monitoring: determining how long 
to run. This kind of scheduling problems are common 
in real-time Al applications, such as medical monitoring 
[Hayes-Roth, 1990], real-time data transmission [Millan-
Lopez et al, 1994], speech processing [Feng and L iu, 
1993], mobile robot navigation [Zilberstein, 1996] and 
flexible manufacturing. The real-time data transmission 
application that we address in this paper is another ex­
ample. These application require a meta-level control 
mechanism that can deal with (1) dynamic environment, 
(2) limited amount of time to produce a response, and (3) 
uncertainty regarding the duration of problem-solving. 

The focus of this work is handling duration uncer­
tainty. Most of the existing approaches to the prob­
lem do not deal with duration uncertainty and their 
schedulers work in isolation; the schedule runs for the 
predetermined length of time regardless of the situation 
[Boddy and Dean, 1994; Liu et al., 1991; Millan-Lopez et 
al., 1994]. Hansen and Zilberstein [Hansen and Zilber­
stein, 1996] show that monitoring the progress of prob­
lem solving allows a system to take advantage of the 
information gathered during execution time and to im­
prove the overall performance. Garvey and Lesser [Gar­
vey and Lesser, 1993] introduce a design-to-time tech­
nique that represents duration uncertainty and revises 
the schedule during execution. We address two l imi­
tations of that approach: (1) its time interval repre-
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sentation of duration uncertainty is not sufficiently in­
formative when the duration variation is large; and (2) 
its scheduler is assumed to always complete its process­
ing. This design-to-time approach is suitable in domains 
characterized by low level of uncertainty so that the 
scheduler is significantly faster than the evolution of the 
controlled process. We suggest that it is beneficial to 
design the scheduler itself as an incremental process so 
that it can handle rapid change in the environment and 
unexpected interruption before completing its execution. 

This paper focuses on the problem of meta-level con­
trol of computational resources in domains characterized 
by rapid change and duration uncertainty. We show that 
the task structure of progressive processing facilitates ef­
ficient run-time monitoring and meta-level control. The 
approach we present is based on an interruptible algo­
r i thm which incrementally builds a schedule and returns 
an approximate complete schedule when it is interrupted 
unexpectedly. This approach can handle rapid change 
and a large deviation from the predicted schedule. The 
incremental scheduler that we present allows: (1) to ini­
t ially construct schedule that contains the first reasoning 
level for each task and to then refine it progressively by 
introducing additional reasoning levels for each task, (2) 
to revise the schedule when a significant deviation is de­
tected at run-t ime, and (3) to reduce the frequency of 
revision using information on duration uncertainty. 

Section 2 presents a data transmission application for 
which our approach was implemented. Section 3 presents 
a formal definition of the problem and the init ial task 
structure. A description of our approach based on an 
incremental scheduling and a revision technique is given 
in Section 4. Section 5 presents an empirical comparison 
of our approach wi th an adaptation of the design-to-time 
approach to handle progressive processing. We conclude 
wi th a summary of the contributions and future work. 

2 Rea l -T ime Da ta Transmission 
App l i ca t i on 

We examine a data transmission application that pro­
vides real-time communication services. These services 
include t ime constraints on the duration of transmission 
and a deadline for data delivery. The duration of trans­
mission is the t ime interval between the point at which 
the data is generated and the point at which it is deliv­
ered. This duration is uncertain because of the variation 
on the behavior of the communication network. Data 
misses its deadline whenever the duration of transmis­
sion exceeds the maximum permitted time. 

Our approach is designed to manage real-time World-
Wide Web ( W W W ) services providing information on 
staff members of our laboratory. This information may 
include textual data, video frames and voice. The sys­
tem must satisfy asynchronous requests of information 
by taking their deadlines into account. The implemen­
tat ion consists of eleven (11.) W W W pages, each of which 

contains information on one member of the laboratory. 
Each page consists of textual data, video frames and 
voice. Different requests for information may refer to 
the same page. The information system must handle (1) 
asynchronous requests (dynamic and rapid change as­
pect of the application); and (2) uncertainty regarding 
the behavior of the network (uncertainty on execution 
time). To apply the progressive processing technique, 
we assume that each W W W page could be transmitted 
as three separate packages of information (text, video 
frames and voice). The incremental process of satisfy­
ing a request is based on dividing it into a sequence of 
information packages. Consequently, the requests could 
be satisfied at varying levels of detail. Our experimental 
evaluation is based on a simulation of arrival of informa­
tion requests and transmission of information packages. 

3 Formal Framework 
3.1 Description of the Problem 
Our framework relaxes two assumptions that are com­
mon in classical scheduling systems. First, they opt i­
mize performance by satisfying the most important re­
quests and if time permits they satisfy additional re­
quests. These approaches neglect the fact that each re­
quest could be satisfied at varying levels of detail. It has 
been demonstrated that requests can be logically decom­
posed into two parts: a mandatory part and an optional 
part [Liu et a/., 1991]. This structure facilitates the de­
velopment of more flexible systems that allow to satisfy 
the mandatory parts of all the requests and then im­
proving performance by satisfying some of the optional 
parts. This approach is applies to problems that could 
be solved at varying levels of detail, such as hierarchi­
cal planning [Knoblock, 1994] and incremental diagnosis 
[Hayes-Roth, 1990]. Second, classical scheduling systems 
ignore the deviation of execution time from the predeter­
mined expected length. In fact, data transmission appli­
cations are characterized by a high level of uncertainty 
regarding transmission time that cannot be ignored. 

More precisely, the problem we solve consists of a set 
P = {P 1 , . . . , Pn] of individual problems such that: 
• P is constructed dynamically; a new problem is added 
to the set when a new request arrives, 
• each problem Pi has a deadline Di to respect, 
• each problem Pi could be solved at varying levels of 
detail using a hierarchy of processing levels, and 
• each processing level has probabilistic information 
characterizing its duration and duration uncertainty. 
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a deviation from the predetermined schedule is detected 
at run-time. These two properties allow the system to 
deal wi th domains characterized wi th rapid change and 
a high level of uncertainty. 

4.1 Conceptual Description 
Wi th the PRU structure and formal framework described 
above, scheduling could be seen as the problem of find­
ing an optimal path that visits the maximum number 
of levels in the graph G without violating any deadline. 
There are different possible paths wi th different quali­
ties. Our strategy consists of finding a minimal schedule 
that includes all the PRUs and refining it progressively. 
The minimal schedule has the lowest quality since it vis­
its only the first node of each LG (in the example shown 
in Figure 1, the minimal envelop is The 
path wi th the highest quality is the path that visits all 
the nodes (in the example, the maximal envelop is 

The scheduler starts 
its processing by building the schedule with the lowest 
quality (the minimal envelop) and refining it by insert­
ing additional nodes into the graph as long as all the 
deadlines are respected. The incremental processing of 
the scheduler is guided by the progressive structure of 
the PRUs and by the the (easy to construct) fringe. 

4.2 Uti l i ty-Based Scheduling Algor i thm 
The construction of the schedule is based on a series 
of cycles of expansion of the current envelop. This ex­
pansion consists of inserting levels of the fringe into the 
envelop. This process is repeated unti l a maximal en­
velop is reached (i.e., any further expansion leads to a 
violation of a deadline) or unti l an external even causes 
the interruption of scheduling. At each cycle, a schedule 
is available and its quality is improved from one cycle to 
another. The algorithm consists of the following steps: 
• Ini t ia l izat ion step: 

(4) 
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4.4 Properties 
To summarize, here are the main properties of our ap­
proach: 
• Its scheduler could be interrupted at any time and it re-
turns an approximate global schedule (global means that 
all the PRUs are included). As a result, this approach 
can deal wi th applications characterized by rapid change 
and a high level of uncertainty. 
• The probabilistic representation of duration uncer­
tainty reduces the deviation from the predetermined 
schedule during execution. It also helps reducing the 
frequency of revising the schedule and thus limits the 
effect of revision time on the performance of the system. 

5 Exper imenta l Evaluat ion 
To evaluate our scheduling and monitoring technique, 
we compare its performance to the design-to-time tech­
nique. The comparison examines two fundamental ques­
tions: (1) the abil ity of each approach to handle duration 
uncertainty that is typical in such applications as real-
time data transmission; and (2) the advantage of using 
a resource-bounded scheduler in domains characterized 
by rapid change and high level of uncertainty. Before 
assessing both approaches, let us give a brief overview 
of design-to-time. This approach assumes the existence 
of multiple methods for each subtask with each method 
having different duration and quality. The problem is 
to design a solution to a problem that uses all the avail­
able time to maximize solution quality, design-to-time 
tolerates uncertainty in its prediction if monitoring can 
be performed quickly and each method performs as ex­
pected or wi th in a small variation. The experimental 
results confirm these characteristics. 

5 .1 E x p e r i m e n t D e s i g n 

We describe first how we have transformed the PRU 
structure to multiple methods used by design-to-time. 
The linear precedence-constraint graph of each PRU is 
mapped to a set of methods designed as follows: the 
first method M1 consists of the first level (the first node 
in LG) while the method M i consists of the sub­
graph of the LG containing the first levels [Mouaddib, 
1996]. W i t h this adaptation, we can evaluate both ap­
proaches for different problem instances generated based 
on a given set of size and time parameters. 

Since the W W W data transmission application is un­
der development right now, we tested the scheduler with 
synthetic data simulating this application. The initial 
problem is specified in a PRU'-language allowing us to 
create PRUs for the specific application. We have col­
lected data on the scheduling and the execution phase for 
both the incremental scheduler and the design-to-time 
technique. The data for each problem instance includes 
intrinsic-utility, total cpu consumed and the frequency of 
revision. Finally, we compare the results based on the 
notion of global utility, GU, and the notion of revision 

frequency, Freq. The global-utility is computed as fol­
lows: 

(12) 

Where is the intrinsic ut i l i ty of an executed process­
ing level. We compare Freq and GU for different problem 
sizes and time. 

H a n d l i n g d u r a t i o n unce r ta i n t y 

The frequency of revision reflects the degree to which an 
approach is suitable for handling duration uncertainty. 
We measured the frequency and global ut i l i ty as a func­
tion of the size of the application. Problem instances 
were generated with execution time variation of 20% 
(this figure is quite conservative for data transmission 
applications). The table (Figure 2) summarizes the fre­
quency of revision of our approach (IS) and design-to-
time (DTT) : Figure 3 shows the evolution of the global 

Figure 2: Revision frequency according to size 

uti l i ty over size in both approaches. 

Figure 3: Global ut i l i ty according to size 

Resource-bounded schedu l ing 

This experiment measures the performance of both ap­
proaches when the scheduling algorithm operates under 
time constraints (Figure 4). The experiment tests the 
degree to which an approach is suitable for dynamic en­
vironments in which the scheduler may not have enough 
time to complete its processing. For this experiment, we 
use a size of 10 and a variable allocation of time to the 
scheduler of both approaches. We measured the intr in­
sic ut i l i ty that allows to compute QU. Design-to-time 
requires to finish its processing before delivering a com­
plete schedule for all tasks. In this experiment, we mea­
sure the intrinsic ut i l i ty of the current available schedule 
that is not complete for all tasks but only for the earlier 
ones. 
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Figure 4: Global ut i l i ty according to time 

5.2 Summary of results 
• H a n d l i n g d u r a t i o n u n c e r t a i n t y : our approach is 
more efficient than design-to-time in handling duration 
uncertainty. The main reason is the time interval repre­
sentation of duration uncertainty used by design-to-time 
which is not sufficiently informative and leads to more 
schedule revisions. The higher frequency of revision has 
a negative effect on the overall performance of the ap­
proach as shown in the Figure 3. 
• Resou rce -bounded schedu l ing : design-to-time 
schedules tasks one by one by selecting for each task 
the appropriate method to optimally trade solution qual­
i ty against computational resources. If the scheduling is 
interrupted before completing its processing, the latest 
tasks are not scheduled. This situation arises in appli­
cations that must respond to frequent and rapid state 
change. In contrast, our incremental scheduler, wi th its 
incremental processing, is able to be interrupted at any 
time and to return a solution. We show in Figure 4 that 
our approach is more suitable to these applications than 
design-to-time. 

6 Conclusion and Future work 
We describe in this paper an approach to scheduling 
progressive processing units in domains characterized by 
rapid change and duration uncertainty such as in data 
transmission applications. Our approach is based on 
a uti l i ty-directed greedy scheduling algorithm that pro­
duces a minimal schedule of all the tasks and refines 
it when t ime permits. This is a local optimization ap­
proach to a scheduling problem that is hard to optimize 
globally. The incremental structure of the scheduler, its 
interruptibi l i ty, and its abil i ty to dynamically revise the 
schedule during execution t ime make it an attractive 
resource-bounded scheduling technique. Experimental 
evaluation shows that for the type of progressive pro-
cessing tasks that we are interested in , the incremental 
scheduler has advantages over the design-to-time tech­
nique. Future work is concerned wi th alternative repre­
sentations and propagation of duration uncertainty by 
mapping the graph G to a Bayesian network [Mouad­
dib, 1996]. Another future direction is concerned wi th 

applying this model to non-linear structure of PRUs. 
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