
Abdel- IUah Mouaddib*
CRIL-IUT de Lens-Universite d'Artois

Rue de l'universite, S. P. 16
62307 Lens Cedex France

mouaddib@cril.univ-artois.fr

Abst rac t
Progressive processing is a resource-bounded
reasoning technique that allows a system to in­
crementally construct a solution to a problem
using a hierarchy of processing levels. This pa­
per focuses on the problem of meta-level control
of progressive processing in domains character-
ized by rapid change and high level of duration
uncertainty. We show that progressive process­
ing facilitates efficient run-time monitoring and
meta-level control. Our solution is based on an
incremental scheduler that can handle duration
uncertainty by dynamically revising the sched­
ule during execution time based on run-time
information. We also show that a probabilistic
representation of duration uncertainty reduces
the frequency of schedule revisions and thus im­
proves the performance of the system. Finally,
an experimental evaluation shows the contribu­
tions of this approach and its suitability for a
data transmission application.

1 I n t r oduc t i on
Progressive processing [Mouaddib, 1993] is a problem-
solving technique that allows a system to trade-off so­
lution quality against computational resources. This
technique is suitable in situations where it is not fea­
sible (computationally) or desirable (economically) to
compute the best result. Progressive processing shares
the motivation of such resource-bounded reasoning tech­
niques as flexible computation [Horvitz, 1987], anytime
algorithms [Boddy and Dean, 1994; Zilberstein, 1995;
1996], and design-to-time [Garvey and Lesser, 1993].
The distinctive characteristic of progressive processing
is the use of a multi-level deliberation hierarchy in order
to gradually transform an approximate solution into a

* Support for this author is provided in part by the
Ganymede II project of the contract Plan Etat/Nord-Pas-
De-Calais and by MENESR.

+ Support for this author is provided by the National
Science Foundation under grants IRI-9624992, IRI-9634938,
INT-9612092, and by the U.S. Air Force under grant F30602-
95-1-0012.

Shlomo Zi lberstein+

Computer Science Department
University of Massachusetts

Amherst, MA 01003 U.S.A.
shlomo@cs.umass.edu

precise one. The mapping from the set of inputs (prob­
lem instances) to the set of outputs (solutions) is based
on progressive util ization of data and knowledge. This
incremental process is facilitated by using a hierarchical
structure of input elements defined by the system's de­
signer [Mouaddib and Zilberstein, 1995]. This mapping
is especially suitable for domains where the reasoner uses
abstraction to structure the search space (as in hierar­
chical planning), and for problems that require the result
to be expressed at varying levels of detail (as in model-
based diagnosis).

In systems based on this technique, each time-
constrained component is designed in such a way that
it, can produce a usable approximate solution wi th in the
available run-time. However the use of progressive pro­
cessing as a component of a real-time system introduces a
problem of execution monitoring: determining how long
to run. This kind of scheduling problems are common
in real-time Al applications, such as medical monitoring
[Hayes-Roth, 1990], real-time data transmission [Millan-
Lopez et al, 1994], speech processing [Feng and L iu,
1993], mobile robot navigation [Zilberstein, 1996] and
flexible manufacturing. The real-time data transmission
application that we address in this paper is another ex­
ample. These application require a meta-level control
mechanism that can deal with (1) dynamic environment,
(2) limited amount of time to produce a response, and (3)
uncertainty regarding the duration of problem-solving.

The focus of this work is handling duration uncer­
tainty. Most of the existing approaches to the prob­
lem do not deal with duration uncertainty and their
schedulers work in isolation; the schedule runs for the
predetermined length of time regardless of the situation
[Boddy and Dean, 1994; Liu et al., 1991; Millan-Lopez et
al., 1994]. Hansen and Zilberstein [Hansen and Zilber­
stein, 1996] show that monitoring the progress of prob­
lem solving allows a system to take advantage of the
information gathered during execution time and to im­
prove the overall performance. Garvey and Lesser [Gar­
vey and Lesser, 1993] introduce a design-to-time tech­
nique that represents duration uncertainty and revises
the schedule during execution. We address two l imi­
tations of that approach: (1) its time interval repre-

MOUADDIB & ZILBERSTEIN 1201

Handl ing Durat ion Uncertainty in Meta-Level
Contro l of Progressive Processing

sentation of duration uncertainty is not sufficiently in­
formative when the duration variation is large; and (2)
its scheduler is assumed to always complete its process­
ing. This design-to-time approach is suitable in domains
characterized by low level of uncertainty so that the
scheduler is significantly faster than the evolution of the
controlled process. We suggest that it is beneficial to
design the scheduler itself as an incremental process so
that it can handle rapid change in the environment and
unexpected interruption before completing its execution.

This paper focuses on the problem of meta-level con­
trol of computational resources in domains characterized
by rapid change and duration uncertainty. We show that
the task structure of progressive processing facilitates ef­
ficient run-time monitoring and meta-level control. The
approach we present is based on an interruptible algo­
r i thm which incrementally builds a schedule and returns
an approximate complete schedule when it is interrupted
unexpectedly. This approach can handle rapid change
and a large deviation from the predicted schedule. The
incremental scheduler that we present allows: (1) to ini­
t ially construct schedule that contains the first reasoning
level for each task and to then refine it progressively by
introducing additional reasoning levels for each task, (2)
to revise the schedule when a significant deviation is de­
tected at run-t ime, and (3) to reduce the frequency of
revision using information on duration uncertainty.

Section 2 presents a data transmission application for
which our approach was implemented. Section 3 presents
a formal definition of the problem and the init ial task
structure. A description of our approach based on an
incremental scheduling and a revision technique is given
in Section 4. Section 5 presents an empirical comparison
of our approach wi th an adaptation of the design-to-time
approach to handle progressive processing. We conclude
wi th a summary of the contributions and future work.

2 Rea l -T ime Da ta Transmission
App l i ca t i on

We examine a data transmission application that pro­
vides real-time communication services. These services
include t ime constraints on the duration of transmission
and a deadline for data delivery. The duration of trans­
mission is the t ime interval between the point at which
the data is generated and the point at which it is deliv­
ered. This duration is uncertain because of the variation
on the behavior of the communication network. Data
misses its deadline whenever the duration of transmis­
sion exceeds the maximum permitted time.

Our approach is designed to manage real-time World-
Wide Web (W W W) services providing information on
staff members of our laboratory. This information may
include textual data, video frames and voice. The sys­
tem must satisfy asynchronous requests of information
by taking their deadlines into account. The implemen­
tat ion consists of eleven (11.) W W W pages, each of which

contains information on one member of the laboratory.
Each page consists of textual data, video frames and
voice. Different requests for information may refer to
the same page. The information system must handle (1)
asynchronous requests (dynamic and rapid change as­
pect of the application); and (2) uncertainty regarding
the behavior of the network (uncertainty on execution
time). To apply the progressive processing technique,
we assume that each W W W page could be transmitted
as three separate packages of information (text, video
frames and voice). The incremental process of satisfy­
ing a request is based on dividing it into a sequence of
information packages. Consequently, the requests could
be satisfied at varying levels of detail. Our experimental
evaluation is based on a simulation of arrival of informa­
tion requests and transmission of information packages.

3 Formal Framework
3.1 Description of the Problem
Our framework relaxes two assumptions that are com­
mon in classical scheduling systems. First, they opt i­
mize performance by satisfying the most important re­
quests and if time permits they satisfy additional re­
quests. These approaches neglect the fact that each re­
quest could be satisfied at varying levels of detail. It has
been demonstrated that requests can be logically decom­
posed into two parts: a mandatory part and an optional
part [Liu et a/., 1991]. This structure facilitates the de­
velopment of more flexible systems that allow to satisfy
the mandatory parts of all the requests and then im­
proving performance by satisfying some of the optional
parts. This approach is applies to problems that could
be solved at varying levels of detail, such as hierarchi­
cal planning [Knoblock, 1994] and incremental diagnosis
[Hayes-Roth, 1990]. Second, classical scheduling systems
ignore the deviation of execution time from the predeter­
mined expected length. In fact, data transmission appli­
cations are characterized by a high level of uncertainty
regarding transmission time that cannot be ignored.

More precisely, the problem we solve consists of a set
P = {P 1 , . . . , Pn] of individual problems such that:
• P is constructed dynamically; a new problem is added
to the set when a new request arrives,
• each problem Pi has a deadline Di to respect,
• each problem Pi could be solved at varying levels of
detail using a hierarchy of processing levels, and
• each processing level has probabilistic information
characterizing its duration and duration uncertainty.

1202 PLANNING A N D SCHEDULING

MOUADDIB & ZILBERSTEIN 1203

a deviation from the predetermined schedule is detected
at run-time. These two properties allow the system to
deal wi th domains characterized wi th rapid change and
a high level of uncertainty.

4.1 Conceptual Description
Wi th the PRU structure and formal framework described
above, scheduling could be seen as the problem of find­
ing an optimal path that visits the maximum number
of levels in the graph G without violating any deadline.
There are different possible paths wi th different quali­
ties. Our strategy consists of finding a minimal schedule
that includes all the PRUs and refining it progressively.
The minimal schedule has the lowest quality since it vis­
its only the first node of each LG (in the example shown
in Figure 1, the minimal envelop is The
path wi th the highest quality is the path that visits all
the nodes (in the example, the maximal envelop is

The scheduler starts
its processing by building the schedule with the lowest
quality (the minimal envelop) and refining it by insert­
ing additional nodes into the graph as long as all the
deadlines are respected. The incremental processing of
the scheduler is guided by the progressive structure of
the PRUs and by the the (easy to construct) fringe.

4.2 Uti l i ty-Based Scheduling Algor i thm
The construction of the schedule is based on a series
of cycles of expansion of the current envelop. This ex­
pansion consists of inserting levels of the fringe into the
envelop. This process is repeated unti l a maximal en­
velop is reached (i.e., any further expansion leads to a
violation of a deadline) or unti l an external even causes
the interruption of scheduling. At each cycle, a schedule
is available and its quality is improved from one cycle to
another. The algorithm consists of the following steps:
• Ini t ia l izat ion step:

(4)

1204 PLANNING AND SCHEDULING

4.4 Properties
To summarize, here are the main properties of our ap­
proach:
• Its scheduler could be interrupted at any time and it re-
turns an approximate global schedule (global means that
all the PRUs are included). As a result, this approach
can deal wi th applications characterized by rapid change
and a high level of uncertainty.
• The probabilistic representation of duration uncer­
tainty reduces the deviation from the predetermined
schedule during execution. It also helps reducing the
frequency of revising the schedule and thus limits the
effect of revision time on the performance of the system.

5 Exper imenta l Evaluat ion
To evaluate our scheduling and monitoring technique,
we compare its performance to the design-to-time tech­
nique. The comparison examines two fundamental ques­
tions: (1) the abil ity of each approach to handle duration
uncertainty that is typical in such applications as real-
time data transmission; and (2) the advantage of using
a resource-bounded scheduler in domains characterized
by rapid change and high level of uncertainty. Before
assessing both approaches, let us give a brief overview
of design-to-time. This approach assumes the existence
of multiple methods for each subtask with each method
having different duration and quality. The problem is
to design a solution to a problem that uses all the avail­
able time to maximize solution quality, design-to-time
tolerates uncertainty in its prediction if monitoring can
be performed quickly and each method performs as ex­
pected or wi th in a small variation. The experimental
results confirm these characteristics.

5 .1 E x p e r i m e n t D e s i g n

We describe first how we have transformed the PRU
structure to multiple methods used by design-to-time.
The linear precedence-constraint graph of each PRU is
mapped to a set of methods designed as follows: the
first method M1 consists of the first level (the first node
in LG) while the method M i consists of the sub­
graph of the LG containing the first levels [Mouaddib,
1996]. W i t h this adaptation, we can evaluate both ap­
proaches for different problem instances generated based
on a given set of size and time parameters.

Since the W W W data transmission application is un­
der development right now, we tested the scheduler with
synthetic data simulating this application. The initial
problem is specified in a PRU'-language allowing us to
create PRUs for the specific application. We have col­
lected data on the scheduling and the execution phase for
both the incremental scheduler and the design-to-time
technique. The data for each problem instance includes
intrinsic-utility, total cpu consumed and the frequency of
revision. Finally, we compare the results based on the
notion of global utility, GU, and the notion of revision

frequency, Freq. The global-utility is computed as fol­
lows:

(12)

Where is the intrinsic ut i l i ty of an executed process­
ing level. We compare Freq and GU for different problem
sizes and time.

H a n d l i n g d u r a t i o n unce r ta i n t y

The frequency of revision reflects the degree to which an
approach is suitable for handling duration uncertainty.
We measured the frequency and global ut i l i ty as a func­
tion of the size of the application. Problem instances
were generated with execution time variation of 20%
(this figure is quite conservative for data transmission
applications). The table (Figure 2) summarizes the fre­
quency of revision of our approach (IS) and design-to-
time (DTT) : Figure 3 shows the evolution of the global

Figure 2: Revision frequency according to size

uti l i ty over size in both approaches.

Figure 3: Global ut i l i ty according to size

Resource-bounded schedu l ing

This experiment measures the performance of both ap­
proaches when the scheduling algorithm operates under
time constraints (Figure 4). The experiment tests the
degree to which an approach is suitable for dynamic en­
vironments in which the scheduler may not have enough
time to complete its processing. For this experiment, we
use a size of 10 and a variable allocation of time to the
scheduler of both approaches. We measured the intr in­
sic ut i l i ty that allows to compute QU. Design-to-time
requires to finish its processing before delivering a com­
plete schedule for all tasks. In this experiment, we mea­
sure the intrinsic ut i l i ty of the current available schedule
that is not complete for all tasks but only for the earlier
ones.

MOUADDIB & ZILBERSTE1N 1205

Figure 4: Global ut i l i ty according to time

5.2 Summary of results
• H a n d l i n g d u r a t i o n u n c e r t a i n t y : our approach is
more efficient than design-to-time in handling duration
uncertainty. The main reason is the time interval repre­
sentation of duration uncertainty used by design-to-time
which is not sufficiently informative and leads to more
schedule revisions. The higher frequency of revision has
a negative effect on the overall performance of the ap­
proach as shown in the Figure 3.
• Resou rce -bounded schedu l ing : design-to-time
schedules tasks one by one by selecting for each task
the appropriate method to optimally trade solution qual­
i ty against computational resources. If the scheduling is
interrupted before completing its processing, the latest
tasks are not scheduled. This situation arises in appli­
cations that must respond to frequent and rapid state
change. In contrast, our incremental scheduler, wi th its
incremental processing, is able to be interrupted at any
time and to return a solution. We show in Figure 4 that
our approach is more suitable to these applications than
design-to-time.

6 Conclusion and Future work
We describe in this paper an approach to scheduling
progressive processing units in domains characterized by
rapid change and duration uncertainty such as in data
transmission applications. Our approach is based on
a uti l i ty-directed greedy scheduling algorithm that pro­
duces a minimal schedule of all the tasks and refines
it when t ime permits. This is a local optimization ap­
proach to a scheduling problem that is hard to optimize
globally. The incremental structure of the scheduler, its
interruptibi l i ty, and its abil i ty to dynamically revise the
schedule during execution t ime make it an attractive
resource-bounded scheduling technique. Experimental
evaluation shows that for the type of progressive pro-
cessing tasks that we are interested in , the incremental
scheduler has advantages over the design-to-time tech­
nique. Future work is concerned wi th alternative repre­
sentations and propagation of duration uncertainty by
mapping the graph G to a Bayesian network [Mouad­
dib, 1996]. Another future direction is concerned wi th

applying this model to non-linear structure of PRUs.

References
[Boddy and Dean, 1994] M. Boddy and T. Dean. De­

liberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence,
67:245-285, 1994.

[Feng and L iu , 1993] W. Feng and J.W.S L iu . An
extended imprecise computation model for t ime-
constrained speech processing and generation. In
IEEE Workshop on Real-Time Applications, pages
76-80,1993.

[Garvey and Lesser, 1993] A. Garvey and V. Lesser.
Design-to-time real-time scheduling. IEEE Transac-
tions on systems, Man, and Cybernetics, 23(6), 1993.

[Hansen and Zilberstein, 1996] Hansen and Zilberstein.
Monitoring the progress of anytime problem-solving.
AAAI-96, 1996.

[Hayes-Roth, 1990] B. Hayes-Roth. Architectural foun­
dation for real-time performance in intelligent agents.
Journal of Real-Time Systems, 2(1), 1990.

[Horvitz, 1987] E.J. Horvitz. Reasoning about beliefs
and actions under computational resource constraints.
In Workshop UAI-87, 1987.

[Knoblock, 1994] C.A. Knoblock. Autmatical ly generat­
ing abstractions for planning. Artificial Intelligence,
68:243-302, 1994.

[Liu et al, 1991] J. L iu , K. L in , W. Shih, A. Yu,
J. Chung, and W. Zao. Algorithms for scheduling
imprecise computations. IEEE Transactions on Com­
puter, 24(5):58-68, May 1991.

[Millan-Lopez et al, 1994] V. Millan-Lopez, W. Feng,
and J.W.S Liu. Using the imprecise-computation
technique for congestion control on a real-time traf­
fic switching element. In International Conference on
Parallel and Distributed Systems, 1994.

[Mouaddib and Zilberstein, 1995] A.- I Mouaddib and
S. Zilberstein. Knowledge-based anytime computa­
t ion. In IJCAI, pages 775-781, 1995.

[Mouaddib, 1993] A. - I Mouaddib. Contribution au
raisonnement progressif et temps reel dans un univers
multi-agents. PhD, University of Nancy I, (in
French), 1993.

[Mouaddib, 1996] A. - I Mouaddib. Progressive reason­
ing in intelligent systems. In AAAI Fall Symposium
on Flexible Computation, Research Summary Report,
pages 183-185, 1996.

[Zilberstein, 1995] S. Zilberstein. Optimizing decision
quality wi th contract algorithms. In IJCAI-95, pages
1576-1582,1995.

[Zilberstein, 1996] S. Zilberstein. Using anytime algo­
rithms in intelligent systems. Al Magazine, 17(3):73-
83, 1996.

1206 PLANNING A N D SCHEDULING

PLANNING A N D SCHEDULING

Planning 4: Reasoning about Plans

