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Abst rac t 
Because observing the same actions can warrant dif­
ferent conclusions depending on who executed the ac­
tions, a goal recognizer that works well on one person 
might not work well on another. Two problems that 
arise in providing user-specific recognition are how 
to consider the vast number of possible adaptations 
that might be made to the goal recognizer and how 
to evaluate a particular set of adaptations. For the 
first problem, we evaluate the use of hillclimbing to 
search the space of all combinations of an input set 
of adaptations. For the second problem, we present 
an algorithm that estimates the accuracy and cover­
age of a recognizer on a set of action sequences the 
individual has recently executed. We use these tech­
niques to construct Adapt, a recognizer-independent 
unsupervised-learning algorithm for adapting a rec­
ognizer to a person's idiosyncratic behaviors. Our ex­
periments in two domains show that applying Adapt 
to the BOCE recognizer can improve its performance 
by a factor of two to three. 

1 In t roduc t i on 
Goal recognition (e.g. [Kautz, 1987; Carberry, 1990]) is 
the task of inferring a person's intentions given a partial 
view of their actions. As noted in [Maes and Kozierok, 
1993; Bauer, 1994; Ardissono and Cohen, 1995], goal 
recognition is difficult, in part, because people do not all 
act alike. The same actions can warrant different con­
clusions depending on who executed them. For example, 
when I go to the College Inn Cafe the waitress invariably 
brings me my usual order, scrambled eggs and rye toast, 
without asking me what I want. W i th a few exceptions 
discussed in section 7, previous approaches can provide 
user-specific recognition only by having a human expert 
hand-tune the recognizer for each person. 

*Many thanks to Sandra Carberry, Oren Etzioni, Keith 
Golden, Steve Hanks, Anna Karlin, Nick Kushmerick, Diane 
Litman, Dan Weld, and the reviewers of the submission draft 
of this paper for comments and discussion. This research 
was funded in part by Office of Naval Research grant 92-J-
1946, by ARPA / Rome Labs grant F30602-95-1-0024, by a 
gift from Rockwell International Palo Alto Research, and by 
National Science Foundation grant IRI-9357772. 

We present the Adapt algorithm for automatically 
adapting a recognizer to perform well for an individual, 
given a goal recognizer, a set of adaptations that can 
be made to the recognizer, and a sample of the person's 
recent behavior. 

We treat the person's recent behavior as training data, 
and attempt to find the combination of adaptations wi th 
which the recognizer performs best on the sample behav­
ior. For tract ability, we use hil lcl imbing to search the 
space of all possible combinations of adaptations. The 
primary challenge we address is how to evaluate the per­
formance of the input goal recognizer with a candidate 
set of adaptations on the input sample data. The input 
data is not annotated with the person's actual goals. 

We perform unsupervised learning by treating goals 
as verifiable predictions of future behavior, as opposed 
to mental state [Pollack, 1990] or explanations [Hobbs et 
al, 1988]. For example, if the recognizer indicates that a 
computer user's goal is to delete all her backup files, then 
we view the recognizer's output as predicting that the 
user wil l delete all her backup files. This goal-prediction 
is correct if she does go on to delete her backup files. 

We empirically evaluate Adapt on the BOCE goal rec­
ognizer [Lesh and Etzioni, 1995; 1996]. Our experiments 
in two domains show that applying Adapt to the BOCE 
recognizer can improve its performance by a factor of 
two to three. 

We use two metrics to gauge the quality of recognition: 
accuracy, the probability a recognizer's inferences are 
correct, and coverage, the probabil ity the recognizer wi l l 
draw an inference. We formally prove a tradeoff exists 
between accuracy and coverage in goal recognition. 

Our work makes the following contributions: 

1. We present a framework for formally characterizing 
and comparing the performance of various goal rec­
ognizers. 

2. We present an unsupervised algorithm for training a 
goal recognizer on samples of action sequences that: 

• Learns to filter out spurious actions. 
• Adapts to the particular distr ibution of goals that 

an individual pursues. 
• Learns in the presence of noise, such as if the ob­

served person occasionally abandons tasks. 
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In section 2, we define the adaptive goal recognition 
problem. In section 3, we prove there is a tradeoff be­
tween accuracy and coverage. In section 4, we present 
a function which estimates accuracy and coverage. In 
section 5, we present the Adapt function. In section 6, 
we describe our experiments. In sections 7 and 8, we 
discuss related work, future work, and conclusions. 

2 Formulation 
We now define the adaptive goal recognition problem. 
2.1 Basic def in i t ions 
Let Q be the set of all persons, Q be the set of all possible 
goals, and A* be the set of all action sequences any per­
son might execute. The exec and goal functions describe 
the two relevant relationships among persons, goals, and 
action sequences. Let exec(q, A) hold iff person q is ob­
served to execute action sequence A. Let goal(q,g) hold 
iff person q has goal g. For simplicity, in this paper, we 
assume people have one goal at a time. 

A goal recognizer maps an action sequence to either a 
goal g, indicating g is the person's goal, or nil, indicating 
the recognizer can not determine the person's goal given 
the current observations. Formally, a goal recognizer is 
a function from While this definition is 
fairly broad, it does not allow for recognizers that output 
a probability distribution over goals (e.g. [Pynadath and 
Wellman, 1995]). 

Samples of people's behavior are stored as episodes. 
An episode is a pair (A, S) where A is an action sequence 
the person executed and S is the state of the world at 
the time the person began executing those actions. 

2.2 Adap tab le recognizers 
We refer to adjustments that can be made to a goal 
recognizer as adaptations. Notation ally, for any set of 
adaptations T, let RT be recognizer R with adaptations 
T. Different types of adaptations wil l be appropriate 
for different goal recognizers. We now provide a simpli­
fied description of the BOCE goal recognizer [Lesh and 
Etzioni, 1995; 1996] and two adaptations for BOCE. 

BOCE recognizes goals based on an input set of ac­
tion schemas ACT, a set of goal predicates and 
a set of background goals BQ. BOCE composes the ac­
tions in ACT into candidate plans and the predicates in 

into candidate goals based on assumptions about 
what type of plans and goals people have. In particular, 
BOCE assumes (1) the person's goal is a conjunction of 
the input predicates, and (2) every action in the person's 
plan wi l l either enable another action in that plan or en­
able the person's goal. The background goals in BQ arc 
used to filter out actions that are not causally connected 
to the person's goal. For example, if BQ contains the 
goal "have cash" then BOCE will essentially disregard 
observing a person stop at an automatic teller machine 
rather than conclude that getting cash is in service of 
her current goal. 

Two types of adaptations available for BOCE, which 
are discussed in greater detail in section 6, are: 

LESH 1209 



4 Est imat ing accuracy and coverage 
We now present an algorithm which estimates the accu­
racy and coverage of a recognizer on a person given a 
sample of that person's behavior. 

Estimate takes a recognizer R and a set of episodes £ 
and returns two real numbers in the range [0,1] which are 
the estimated accuracy and coverage of R on the person 
whose behavior is described by 

Estimate treats goals as predictions of future behav­
ior. Suppose that after observing six actions in a fifteen 
action sequence the recognizer reports that the person's 
goal is to compress all large files. This predicts the per­
son wi l l compress all large files. This prediction is cor­
rect if the person compresses all large files, i.e. if the 
remaining nine actions serve to complete the goal. 

To implement this idea, we need a means to determine 
if a given action sequence satisfies a given goal. The pro­
cedure Achieves(A,S ,g) returns true iff action sequence 
A satisfies goal g assuming that it was executed from 
init ial state S. Our implementation of Achieves returns 
true iff g does not hold in S but g does hold in state S' 
where S' is the state reached by executing sequence A in 
state S.1 Most planning languages provide a similar def-

1A problem with this Achieves function is that it allows 
up to irrelevant actions to be executed in service 
of achieving a goal, and thus might highly reward a goal 
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init ion for Achieves, such as the Modal Truth Criterion 
[Chapman, 1987] for Strips [Fikes and Nilsson, 1971].2 

We assume the recognizer wi l l be called after each ob­
served action unt i l it infers a goal. For each episode 
(A,S), the recognizer is fed incrementally longer pre­
fixes of A unt i l it produces some goal or outputs nil 
when given A. If the recognizer does produce a goal, 
we then determine if A achieves that goal from state S. 
In the following pseudo code, the Inputs variable counts 
the number of calls to the recognizer and Inferences 
and Correct count the number of inferences and correct 
inferences, respectively, made by the recognizer: 
Estimate(recognizer R, episodes £) 

The Estimate function requires up to calls to 
Achieves and up to calls to recognizer R., where / is 
the average length of action sequences in We further 
discuss complexity and running time in section 5. 

The experiments described in section 6 indicate that 
good estimates can be produced from reasonably small 
samples of behavior. We believe that in many domains 
collecting sample data is relatively cheap and easy. In 
software domains, for example, the commands executed 
by a computer user can be recorded. A key problem 
is task segmentation: how to know when a goal-solving 
episode starts and stops. It may be best that this prob­
lem is handled by the goal recognizer, since it wil l be 
difficult to perform task segmentation without also per­
forming some form of goal recognition. In this case, the 
goal recognizer would be fed a continuous stream of goal 
solving behavior and output a sequence of goals. How­
ever, in our experiments and the current formulation of 
the problem, we assume the person's recent behavior is 
already segmented prior to adaptation. 

recognizer that always returns a goal that is achieved by the 
first action in A. Modifying Achieves to allow no irrelevant 
actions would be problematic in that we are interested in 
adapting goal recognizers to handle spurious, i.e. irrelevant 
actions. Our current solution is to restrict the goal recognizer 
to output only legitimate top-level goals, corresponding to 
End events in Kautz's plan hierarchies [Kautz, 1987). 

2We do not actually need the full power of the Modal 
Truth Criterion since A is a totally ordered set of actions. 

5 An adaptive goal recognizer 
We now present an algorithm that tunes a given recog­
nizer to perform well on a sample of a person's behavior. 

Let T be the set of all possible adaptations. Adapt 
uses steepest ascent hil l climbing to search the space 
of possible combinations of adaptations in set T. The 
starting point for the search is a recognizer without any 
adaptations. The neighbors of a recognizer are those rec­
ognizers with exactly one more, or one less, adaptation. 
In each iteration, we use Estimate to evaluate the accu­
racy and coverage of the current best recognizer and all 
its neighbors. We then reset the current search point to 
the recognizer with the best combination of accuracy and 
coverage, as determined by the input score function. We 
repeat the process until we encounter a recognizer with a 
higher score than all its neighbors, and then return this 
recognizer's adaptations. The pseudo code is: 

The Adapt algorithm requires \T\ x k calls to Esti­
mate where k is the number of iterations unt i l a local 
maximum is found. Although Adapt is computationally 
intensive, our notion is that it would be allowed to run 
overnight, perhaps once a month, to adapt to changes 
in a person's behavior. Furthermore, Adapt can be in­
terrupted at any time; set BEST wi l l always be a set of 
adaptations with a higher estimated value than any set 
of adaptations previously considered. We believe that a 
small number of adaptations wil l often significantly im­
prove recognition. Finally, the Adapt algorithm is highly 
amenable to parallelization. In any iteration, all the calls 
to Estimate can be processed in parallel, and the Esti­
mate function itself is easily parallelizable. 

6 Exper imenta l val idat ion 
In this section, we describe experiments that measure 
how much our adaptive techniques improve recognition. 

We apply Adapt to data that contain different idiosyn­
cratic behaviors. For example, one person might spuri­
ously execute the Unix command date while another 
might spuriously execute the pwd command. Our hy­
pothesis is that adapting the recognizer to each individ­
ual behavior wil l outperform applying any recognizer to 
all behaviors. We measure: 

• I m p a c t : What percentage of someone's work can be 
done by offering to complete the goal that the recog­
nizer outputs? 

• E r r o r : How often does the recognizer produce an in-
correct goal? 
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In all of our experiments, we use separate data for train­
ing and testing Adapt. 

6 .1 S p u r i o u s a c t i o n s 

We ran the first set of experiments on action sequences 
generated by Toast [Agre and Horswil l, 1992], a reactive 
agent that solves goals such as making omelets, cleaning 
dirty dishes, or setting the table. To generate "noisy" 
behavior, we randomly insert actions into Toast's be­
havior, such as causing Toast to randomly add butter to 
a pan on the stove, or periodically wash its spatula. 

The BOCE goal recognizer identifies Toast's goal by 
ruling out all but one of the goals Toast might have. 
BOCE rejects a goal if an observed action is not part of 
any plan to achieve the goal. For example, BOCE would 
reject the goal "make poached eggs" if Toast adds butter 
to a pan. Spurious actions can cause BOCE to reject 
Toast's actual goal which can, in turn, cause BOCE to 
either fail to infer any goal or infer the wrong goal. 

Adding background goals can reduce the confusion 
caused by spurious actions. For example, adding a back­
ground goal "have butter in pans" wi l l essentially cause 
BOCE to disregard any observations of Toast adding 
butter to pans. BOCE must, however, add background 
goals judiciously because ignoring relevant actions can 
delay or even prevent BOCE from identifying Toast's 
goal. In the extreme, if all possible background goals 
are added then BOCE wi l l never output a goal. 

We vary two parameters: the frequency of spurious 
actions and the number of distinct spurious actions. For 
example, if 10% of Toast's actions are either a spuri­
ous washing of the spatula or a spurious adding of but­
ter, then the frequency is 0.1 and there are 2 distinct 
spurious actions. In each t r ia l , we train BOCE on 100 
episodes and test BOCE on another set of 100 episodes. 
The numbers reflect averages from 500 trials. We use a 
score function that weights accuracy 20 times as much 
as coverage. 

In any given episode, BOCE outputs at most one goal. 
In our testing phase, we record the number of times 
BOCE makes no inference, correctly identifies Toast's 
goal, and incorrectly identifies Toast's goal. We also 
measure plan length, defined as the number of actions 
Toast executes per goal. Toast halts execution if BOCE 
correctly identifies, and presumably completes, its goal. 

As shown in figure 2, the adapted recognizer performs 
significantly better than the unadapted recognizer when 
Toast has 3 distinct spurious actions. As the frequency 
of spurious actions increases, the unadapted recognizer's 
performance degrades rapidly. In contrast, the adapted 
recognizer never mistakenly attributes a goal to Toast. 

As shown in figure 3, the performance of the adapted 
recognizer degrades as the number of distinct spurious 
actions increases. This happens because Adapt must add 
more and more background goals, which interfere with 
BOCE's abil ity to identify Toast's goals. Note that the 
adapted case is sti l l far superior to the unadapted case 
in that it does not make any incorrect inferences. 

The table in figure 4 shows that as the frequency of 

Figure 2: Learning to filter spurious actions. In each trial, 
there were 3 distinct spurious actions. 

Figure 3: Learning to filter spurious actions. In these 
experiments, the frequency of spurious actions was 0.1. 

spurious actions increases, the impact of adapting the 
recognizer grows considerably. 

Frequency of 
spurious actions 
average plan length 

unadapted 
adapted 

.05 

7.5 
7.2 

.09 

12.5 
7.8 

0.13 

14.4 
7.9 

0.23 

18.3 
8.4 

0.29 

21.4 
8.95 

Figure 4: Impact of adapting the recognizer: In each trial 
run, there were 3 different spurious actions. 

The results shown in figures 2 and 4 show that Adapt 
improves recognition by a factor of two to three over 
unadapted recognition. 

6.2 G o a l d i s t r i b u t i o n 

In the second set of experiments, we simulate people 
whose goals are to find an object with a conjunction 
of properties, such as finding a computer with no users 
working on it that has over 32 MB R A M . We vary the 
probability with which goals include each predicate. 

In our simulations, the person searches unti l she finds, 
or the recognizer suggests, an object that satisfies her 
goal. The recognizer can make one suggestion after each 
time the person polls an object. We measure plan length, 
the average number of objects polled by the person, and 
error, the average number of incorrect suggestions. 

Adapt adjusts the recognizer by adding or removing 
predicates from , the set of predicates wi th which 
BOCE forms goals. If lacks a predicate a per­
son uses then BOCE can suggest a wrong object to the 
user. For example, the person might poll five comput­
ers wi th 32 MB R A M but if does not contain 
the large.memory predicate, then BOCE would suggest 
a computer with small memory. On the other hand, if 

contains too many predicates then BOCE wi l l be 
delayed in suggesting a useful object to the person. 

Figure 5 compares 18 recognizers, each described by a 
point where the X-coordinate is the average plan length 
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and the Y-coordinate is the average error. A perfect rec­
ognizer would be positioned on the origin of the graph. 

Points U1 to U15 represent unadapted recognizers: \Ji 
is a recognizer where contains i random predi­
cates, out of 15 possible predicates. As the size of 
increases the number of errors decrease but the plan 
length increases. Note that no unadapted recognizer has 
both better error and plan length than any other. 

T20, T60, and T100 describe recognizers trained on 
20, 60, and 100 training examples. In these experiments, 
a recognizer trained on 60 or 100 examples saves the 
person twice as much work as any unadapted recognizer 
wi th comparable error, and has much less error than any 
unadapted recognizer that is nearly as effective. 

Figure 5: Learning which goals different people pursue: 
Points T20, T60, and T100 represent a recognizer trained on 
20, 60, and 100 training examples respectively. Points Ul 
through U15 represent 15 different unadapted recognizers. 

6.3 A d a p t i n g in the presence of noise 
We also measured the effect of one type of noise in the 
training data: we removed the second half of the exe­
cuted plan from some of the input episodes. 

We ran these experiments on actions collected from 
Toast, as described in section 6.1. We varied the fre­
quency wi th which Toast would abandon its current goal 
after executing half its plan. Essentially, corrupting the 
input data in this fashion causes Adapt to add extrane­
ous background goals in an effort to avoid mistakes in 
the tainted training cases. As shown in table 6, Adapt 
performs reasonably well with up to 15% noise levels. 
We used 400 training examples in these experiments be­
cause the results were poor with 100 examples.3 Note 
that although the percentage of correct inference goes 
down, BOCE sti l l never makes an incorrect inference 
but rather outputs no goal in more cases. 

7 Related work 
There have been several other approaches to various as­
pects of the general problem of providing user-specific 
plan and goal recognition. 

[Maes and Kozierok, 1993] apply machine learning 
techniques to detect recurrent patterns of behavior of 
computer users. Their interface agents learn from ob­
serving the user, as we do, but also learn from user feed-
back and direct training sessions. They focus on pre­
dicting the user's next action by matching the current 

3Gathering this many training examples may be infeasible 
in some domains. 

Frequency of 
abandonment 
plan length 
percent right 

' percent wrong 
[ percent skipped 

0.0 

7.2 
82 
0 
18 

.05 

7.5 
80 
0 
20 

0.10 

7.5 
80 
0 
20 

0.15 

7.9 
74 
0 
26 

0.20 

8.6 
63 
0 
37 

Figure 6: Effect of noise in training data. The frequency of 
spurious actions was 0.1. and there were 3 distinct spurious 
actions per trial run. 

observations to the closest previously encountered situ­
ation. In contrast, we do not specifically analyze the 
past behavior of the observed person but instead eval­
uate how well a given recognizer, wi th various adapta­
tions, performs on this behavior. Note that our algo­
r i thm, Adapt, might be used to adjust the parameters 
of interface agents to perform better on a sample of past 
behavior. 

[Elzer et al., 1994; Ardissono, 1996] integrate user 
modeling and plan recognition to support dialogue un­
derstanding. For example, if the user model indicates 
that John is terrified of flying, then the plan recognizer 
can reject the plan of flying to Chicago when John says 
"I want to go to Chicago". In principle, this work could 
allow a plan recognizer to take advantage of the many 
techniques developed by the user modeling community 
for acquiring user preferences and beliefs. While our 
work has similar motivation, our approach is more di­
rect, or "low-level", in that we find a goal recognizer 
which works well on a person's recent behavior rather 
than infer a declarative model of that person's idiosyn­
crasies or beliefs. Again, our approach could be used in 
conjunction with this work by adapting a recognizer that 
uses user-specific information or even adapting the way 
in which the recognizer reasons about the user model. 

Our work most closely resembles that described in 
[Bauer, 1994; 1996]. Bauer runs a plan recognizer on 
a set of input episodes from a typical user (just as we 
do), and then gathers statistical data based on the re­
sults of running the plan recognizer on the entire ob­
servable behavior in each episode. For example, Bauer's 
techniques can learn that a particular computer user wi l l 
save email with 80% certainty, unless the email is from 
her manager, in which case she deletes it wi th 90% cer­
tainty. This analysis enables a plan recognizer to reach 
the same conclusions with fewer observed actions. A l ­
though we both treat past planning episodes as training 
data, we learn very different information: Bauer learns 
statistical rules while we learn, for example, a good set of 
background goals. Bauer's approach is restricted to rec­
ognizers that use probabilistic information while our al­
gorithm is restricted to recognizers that produce a single 
goal, whether or not they use probabilistic information. 
Additionally, we do not assume our recognizer wi l l work 
well without adaptation. As shown in figure 2, when the 
frequency of spurious actions is 0.29, the unadapted rec­
ognizer correctly identifies only about 20% of the actor's 
goals and is wrong on about 40% of the goals. Adapt im­
proves the recognizer so that it correctly identifies 80% 
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of the goals and never makes a wrong prediction. 
[Mooney, 1990] employs explanation-based learning to 

add new plans to the plan l ibrary when a person is ob­
served to execute a plan that is not in her known reper­
toire. They address the question of how to generalize the 
new plan so that structurally similar plans can be rec­
ognized in the future. One difference between this work 
and ours is that our adaptations can remove as well as 
add plans and goals from the plan library. 

Finally, [Caruana and Freitag, 1994] examine several 
variations of hil lclimbing to select which attributes a con­
cept learner should use. Attribute-selection is similar to 
predicate-selection, which we explore experimentally in 
section 6.2. They face different problems than we do 
in that they receive labeled training data while our al­
gorithm performs unsupervised learning. Furthermore, 
adding or removing goal predicates is just one of the 
adaptations that Adapt considers. 

8 Future work and conclusions 
In future work, we wi l l apply Adapt to more types of 
adaptations and to other goal recognizers. We are inter­
ested in adapting a recognizer to better reflect charac­
teristic mistakes that people make. For example, peo­
ple sometimes have flawed domain operators. We could 
adapt for this by introducing a new adaptation that adds 
or removes a precondition or effect from the domain op­
erators that BOCE forms plans from. We hypothesize 
that recognition wi l l work best when BOCE builds plans 
based on what preconditions and effects the observed 
person believes actions have. Another line of future work 
is to examine search strategies other than hillclimbing. 

The primary contribution of this work is the Adapt 
algorithm for adapting a goal recognizer to perform well 
on a sample of behavior. Adapt is an unsupervised-
learning algorithm in that the sample data is not an­
notated wi th the person's actual goals. Adapt is a 
recognizer-independent algorithm in that it can be ap­
plied to any goal recognizer for which there is an avail­
able set of adaptations. Our experiments in two domains 
show that applying Adapt to the BOCE recognizer can 
improve its performance by a factor of two to three. 
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