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Abst rac t 

Most research in learning for planning has con­
centrated on efficiency gains. Another impor­
tant goal is improving the quality of final plans. 
Learning to improve plan quality has been ex­
amined by a few researchers, however, l i t t le re­
search has been done learning to improve both 
efficiency and quality. This paper explores this 
problem by using the SCOPE learning system 
to acquire control knowledge that improves on 
both of these metrics. Since SCOPE uses a very 
flexible training approach, we can easily focus 
its learning algorithm to prefer search paths 
that are better for particular evaluation met­
rics. Experimental results show that SCOPE 
can significantly improve both the quality of 
final plans and overall planning efficiency. 

1 In t roduc t i on 
A considerable amount of planning and learning re­
search has been devoted to improving planning effi­
ciency, also known as "speedup learning" [Minton, 1989; 
Leckie and Zuckerman, 1993; Estlin and Mooney, 1996; 
Kambhampati et a/., 1996]. These systems construct 
domain-specific control rules that enable a planner to 
find solutions more quickly. Another aim of planning 
and learning research, which has received much less at­
tention, is to improve the quality of plans produced by 
a planner [Perez, 1996; Iwamoto, 1994]. In this type of 
learning, control rules guide the planner towards better 
solutions. Generating high-quality plans is an essential 
feature for many real-world planning systems, as is gen­
erating these plans efficiently [Chien et al., 1996]. Im­
proving plan quality and planner efficiency can often be 
accomplished by using similar learning methods. How­
ever, l i t t le research has been done in acquiring control 
knowledge to improve both these metrics. 

*This research was supported by the NASA Graduate Stu­
dent Researchers Program, grant number NGT-51332. 

To investigate this issue, we employ the SCOPE 1 learn­
ing system, which uses a combination of machine learn­
ing techniques to acquire control rules for a partial-order 
planner. SCOPE has previously been shown to signifi­
cantly improve efficiency of a version of the well-known 
UCPOP planner [Estlin and Mooney, 1996]. SCOPE em­
ploys a flexible learning algorithm that can be trained to 
focus on different evaluation metrics. The primary focus 
of previous experiments was to avoid backtracking, and 
thus, improve planning efficiency. However, by using a 
particular training method, SCOPE can be easily modi­
fied to learn rules that guide the planner towards only 
"high-quality" solutions. 

The remainder of this paper is organized as follows. 
Section 2 further introduces the issue of plan quality and 
why it is important. Section 3 describes how SCOPE 
is used to construct control rules, and in Section 4 we 
discuss how SCOPE was used to learn rules for improving 
plan quality. Section 5 presents experimental results that 
show SCOPE can improve both the quality of plans and 
planner efficiency. Finally, Section 6 discusses related 
work, Section 7 presents ideas for future research and 
Section 8 presents our conclusions. 

2 P lan Qual i ty 
In many real-world planning systems the quality of a 
plan may be just as important (if not more) than the 
time it takes to generate the plan. For instance, it may 
be vital in a manufacturing domain for a planner to pro­
duce plans with low resource consumption, or with the 
least number of possible steps. There are a variety of no­
tions about what makes a good plan. Some of the more 
common quality metrics are listed below: 

• The length of the plan (or the total number of steps) 

• The execution time of the plan 

• The resource consumption required 

• The robustness of the plan 
1Search Control Optimization of Planning through 

Experience 
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Figure 1: Two refinement candidates for achieving the goal 
at-obj(pkg1,airport2) . 

Depending on the domain, different quality metrics wi l l 
have varying importance. In this paper, we focus on im­
proving the first quality metric, minimizing the number 
of plan steps. 

3 The SCOPE Learning System 
SCOPE was designed to learn search-control rules for 
planning decisions that might lead to failure (i.e. might 
be backtracked upon). Figure 1 illustrates an example 
from the logistics transportation domain [Veloso, 1992] 
where control knowledge could be useful. Here, there 
are two possible refinement candidates for adding a new 
action to achieve the goal at-obj (pkg l , c i t y2 -a i rpo r t ) . 
Only the first wi l l actually lead to a solution, since in this 
domain, only planes can be used to transport packages 
between cities. For each set of refinement candidates, 
SCOPE learns control rules in the form of selection rules 
that define when each refinement should be applied. For 
example, shown next is a selection rule for the first can­
didate (from Figure 1) which contains several control 
conditions. 

This rule states that unload-airplane(?X,?Y,?Z) should 
be selected to add at-obj(?X,?Z) only when it is in i­
t ial ly true that object ?X starts at a location which is in 
a different city than ?Z. Learned control information is 
incorporated into the planner so that attempts to select 
an inappropriate refinement wi l l immediately fail. 

S C O P E is implemented in Prolog, which provides an 
excellent framework for learning control rules. Search 
algorithms can be implemented in Prolog in such a way 
that allows control information to be easily incorporated 
in the form of clause-selection rules [Cohen, 1990]. For 
its base planner, S C O P E uses a version of the UCPOP 
partial-order planning algorithm which has been reim-
plemented in Prolog.2 Planning decision points are rep­
resented in the planner as clause-selection problems (i.e. 

2The main difference between our planner and UCPOP is 

Figure 2: SCOPE'S High-Level Architecture 

each refinement candidate is formulated as a separate 
clause). 

By analyzing a set of training examples, S C O P E learns 
refinement-selection rules which are incorporated into 
the original planner in the form of clause-selection 
heuristics. As shown in Figure 2, SCOPE'S algorithm 
has three main phases which are are briefly presented in 
the next few sections. A more detailed description can 
be found in [Estlin, 1996]. 

3 .1 E x a m p l e A n a l y s i s 

In the example analysis phase, training examples are 
solved using the original planner and two main out­
puts are produced: a set of selection-decision examples 
and a set of generalized proof trees. A "selection deci­
sion" is a planning subgoal that was solved by apply­
ing a particular plan refinement, such as adding a new 
action. Selection-decisions record successful and unsuc­
cessful applications of plan refinements. To collect these 
decisions, a trace of the planning decision process used 
to solve each training example is stored in a proof tree. 
Then, S C O P E uses the proof trees to extract examples of 
correct and incorrect refinement-selection decisions. 

The second output of this phase is a set of generalized 
proof trees. Standard explanation-based generalization 
(EBG) [Mitchell et a/., 1986; DeJong and Mooney, 1986] 
techniques are used to generalize each training example 
proof tree. The goal of this generalization is to remove 
proof elements that are dependent on the specific exam­
ple facts while maintaining the overall proof structure. 

that UCPOP normally employs a best-first search strategy 
while our Prolog planner operates using a depth-first back­
tracking search. As shown in Section 5, our Prolog planner 
actually performs better than the standard Lisp implementa­
tion of UCPOP on the sample problem sets used to test the 
learning algorithm. 
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Figure 3: Learned control rules for the logistics domain 

Generalized proofs provide a background context that 
explains the success of all correct planning decisions. In­
formation from these trees is used in the next phase to 
construct control rules. 

3.2 C o n t r o l Ru le I n d u c t i o n 

The goal of the induction phase is to produce an opera-
tional definition of when it is useful to apply a planning 
refinement. S C O P E employs a version of the F O I L algo­
r i thm [Quinlan, 1990] to learn control rules through in­
duction. F O I L attempts to learn a control definition that 
is composed of a set of Horn clauses. This definition cov­
ers all of the positive examples of when to apply a refine­
ment, and none of the negatives. The selection-decision 
examples collected in the example analysis phase pro­
vide the sets of positive and negative examples for each 
refinement. 

Individual clause construction is done by using a 
general-to-specific hil l-climbing search. F O I L adds an­
tecedents to the developing clause one at a time. At each 
step F O I L evaluates all literals that might be added and 
selects the one which maximizes an information-based 
gain heuristic. One drawback to F O I L is that the hi l l -
climbing search for a good antecedent can easily explode, 
especially when there are numerous background predi­
cates wi th large numbers of arguments.3 SCOPE circum­
vents this search problem by uti l izing the generalized 
proofs of training examples. By examining the proof 
trees, S C O P E identifies a small set of potential literals 
that could be added as antecedents to the current clause 
definition. S C O P E also considers several other types of 
control rule antecedents during induction. These include 
negated proof tree literals, determinate literals [Muggle-
ton, 1992], variable codesignation constraints, and rela­
tional cliches [Silverstein and Pazzani, 1991]. 

3.3 P r o g r a m Specia l izat ion Phase 

Once refinement selection rules have been learned, they 
are passed to the program specialization phase which 
adds this control information into the original plan-

3When selecting each new clause antecedent, FOIL tries 
all possible variable combinations for all predicates before 
making its choice. This search grows exponentially as the 
number of predicate arguments increases. 

ner. The basic approach is to guard each planning re­
finement wi th the selection information. This forces 
a refinement application to fail quickly on planning 
subgoals to which the refinement should not be ap­
plied. Figure 3 shows two learned rules for the logis­
tics transportation domain. The first rule selects the 
new action unload-airplane (X,P,Loc) to achieve the goal 
at-obj (X.Loc) when X is found to be initially located in a 
different city than the goal location and when the goal lo­
cation is an airport. The second rule uses the init ial state 
to achieve the goal at-track(T,Loc) if there does not ex­
ist another action in the plan drive-truck(T,Loc,Loc2) 
which moves the truck to a new location. 

4 Focusing SCOPE on Plan Quality 
By learning rules which avoid search paths that lead to 
backtracking, SCOPE has been shown to significantly im­
proving the efficiency of a planner [Estlin and Mooney, 
1996]. However, by modifying the method used to col­
lect training data, it can easily improve other planning 
metrics as well. 

In order to improve plan quality, we trained SCOPE 
on only high-quality solutions. To improve plan lengths, 
SCOPE was given the shortest solution plans for all train­
ing problems. This causes SCOPE to collect positive and 
negative examples of when to apply a plan refinement 
based on finding the optimal plan. Thus, it learns rules 
that not only avoid dead-end paths, but also that avoid 
paths that lead to sub-optimal solutions. 

In order to train SCOPE on high-quality solutions, the 
search method of depth-first iterative deepening (DFID) 
[Korf, 1985] was employed to solve the training prob-
lems. This method ensured that the shortest possible 
solutions were always returned. To improve upon other 
quality metrics, different training methods may have to 
be employed that return optimal (or near-optimal) solu­
tions based on other evaluation functions. 

5 E v a l u a t i o n 

5 .1 E x p e r i m e n t a l S e t u p 

The logistics transportation domain [Veloso, 1992] was 
used to evaluate SCOPE'S ability to improve both qual­
ity and efficiency. In this domain, packages must be 
delivered to different locations in several cities. Trucks 
are used to transport packages within a city, and planes 
are used to transport packages between different cities. 
Training and test problems were produced by generat­
ing random init ial and final states. Problems contained 
one and two packages, two trucks and two planes, which 
were distributed among two cities. 

As explained above, depth-first iterative deepening 
was used to solve the training problems. SCOPE was 
trained on separate example sets of increasing size. Five 
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Figure 4: Efficiency Performance 

trials were run for each training set size, after which re­
sults were averaged. 

For each t r ia l , a test set of 100 independently gener­
ated problems was used to evaluate performance. No 
time l imit was used during testing, but a depth bound 
was given that ensured all test problems could be solved. 
For comparison purposes we used several different search 
methods to solve the test examples. These include 
depth-first search, depth-first search + learned control 
information, depth-first iterative deepening search, and 
best-first search. The best-first search tests were done 
using the standard Lisp implementation of UCPOP [Bar­
rett et al., 1995]. To utilize all of these search methods, 
only test problems wi th solutions under a certain length 
were used. This ensured all problems could be solved by 
all methods in a reasonable amount of t ime. 

5.2 E x p e r i m e n t a l Resul ts 
Figure 4 shows improvement in planning efficiency. The 
times shown represent the number of seconds required 
to solve the problems in the test sets after SCOPE was 
trained on a given number of examples. The best per­
formance occurred when the planner utilized the learned 
control information. In these tests, SCOPE was able to 
produce a new planner that was an average of 28 times 
faster than the original depth-first planner. Depth-first 
iterative deepening performs better than depth-first but 
not nearly as well as S C O P E . Best-first search, on the 
other hand, performed worse than depth-first.4 

Figure 5 represents how S C O P E improved final plan 
quality. The lengths shown in the graph represent the 
average solution lengths returned for the test problems. 
The depth-first iterative deepening line shows the aver-

4 Note that the best-first tests were done using the Lisp 
implementation of UCPOP. Thus this result could be par­
tially due to implementation differences between Prolog and 
Lisp. 

Figure 5: Qual i ty Performance. Here, depth-first iter­
ative deepening and best-first have almost identical perfor­
mances. 

age length of all optimal solutions. In this experiment, 
S C O P E was able to produce a new planner that returned 
optimal solutions, and returned significantly shorter so­
lutions than those returned by depth-first alone. Best-
first search also generated near-optimal solutions. 

Overall, these results indicate that is it possible to 
learn control rules that improve both planning efficiency 
and plan quality. By using depth-first iterative deepen­
ing to solve the training problems, S C O P E can be trained 
on optimal solutions. SCOPE can then learn control rules 
that not only help the planner find solutions quickly, but 
that also lead to high quality solutions. 

5.3 Scalability 
One other set of experiments was performed to test how 
SCOPE performed on harder problems. Using depth-first 
iterative deepening, S C O P E was trained on 100 training 
problems from the same distr ibution explained above. 
Four different test sets of increasing complexity were 
then used to evaluate SCOPE'S performance. During 
testing, a t ime l imi t of 500 seconds was used. No l im­
its on solutions length were imposed on test problems 
in these experiments, however, a depth bound was used 
that ensured all test problems could be solved. Five 
trials were run for these tests, after which results were 
averaged. 

The results are shown in Table 1. The first two 
columns of the table show the percentage of test prob­
lems that could be solved wi th in the t ime l imi t (using 
depth-first search) before and after learning. The next 
set of columns report the planning t ime required. The 
last two sets of columns contain results on plan quality. 
In the first set, we show the average solution lengths of 
all solved test problems before and after learning. In the 
last set, we show the average solution lengths (and opt i­
mal solution lengths) for problems that could be solved 
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Table 1: Efficiency and quality results on increasingly complex test problems in the logistics domain. 

by the original planner (without rules). This last set of 
columns show any improvements made in solution length 
by the learned rules. 

For all four test sets, S C O P E was able to improve plan­
ning efficiency, and when possible, increase the percent­
age of problems solved. For instance, on the first set of 
problems (containing 1 goal), S C O P E was able to create a 
new planner that was an average of 800 times faster than 
the original. Unfortunately, it was difficult to gather 
data on whether plan quality was improved in all test 
sets. For many examples, the original planner could not 
find a solution under the time l imi t , and thus we were of­
ten not able to compare solution lengths. (Additionally, 
neither DFID or best-first search could find solutions for 
any problems in the two larger test sets.) For the first 
test set, SCOPE was able to significantly improve final 
solution quality and always generated optimal solutions. 
For the second test set, only 18 problems could originally 
be solved under the time l imit and these solutions were 
already at optimal length. 

6 Related W o r k 
Most systems that learn control knowledge for planning 
have been directed at improving planning efficiency. In 
this regard, the most closely, related system to SCOPE 
is UCPOP+EBL [Kambhampati et al., 1996]. In con­
trast to S C O P E , which uses a combination of EBL and 
induction, U C P O P + E B L uses a purely explanation-
based approach to construct control rules in response 
to planning failures. This system has been shown to 
improve planning efficiency, however, SCOPE has out­
performed U C P O P + E B L in previous experiments us­
ing the blocksworld domain [Estlin and Mooney, 1996]. 
Most other research on learning control rules to im­
prove planning efficiency has been conducted on l in­
ear, state-based planners. [Minton, 1989; Etzioni, 1993; 
Leckie and Zuckerman, 1993; Bhatnagar and Mostow, 
1994]. 

Very l i t t le research has been done in learning rules 
that improve plan quality. One learning mechanism for 
improving the quality of plans was introduced by [Perez, 
1996] and is bui l t on top of the PRODIGY nonlinear 

planner [Carbonell and et al., 1992]. It uses EBL and 
an input quality evaluation function to explain why a 
higher quality solution is better than a lower quality one 
and converts this information into control knowledge. 
This method has been successfully used to improve solu­
tion quality in the process planning domain [Gil, 1991]. 
In contrast, SCOPE uses a combination of learning tech­
niques to learn control rules that cover good planning 
decisions and rule out bad ones. Also, SCOPE has been 
focused on improving b o t h quality and efficiency. 

Another learning method for improving quality, which 
was also runs on the PRODIGY nonlinear planner, was 
developed by [iwamoto, 1994]. This technique uses EBL 
to acquire control rules for near-optimal solutions in LSI 
design. This method is similar to the one employed by 
Perez, however it does not make use of the quality eval­
uation function to build the explanation. 

Most other work in plan quality has concentrated 
on adding features to the plan algorithm itself that 
prefer least-cost plans [Hayes, 1990; Williamson and 
Hanks, 1994] or on examining goal interactions and 
how they relate to solution quality [Wilensky, 1983; 
Foulser et al., 1992]. 

7 Future Direct ions 
There are several issues we hope to address in future 
research. First, we would like to experiment wi th differ­
ent types of quality metrics. We are currently working 
on implementing a version of the logistics domain where 
actions have different execution costs. In this way, we 
can measure plan quality in terms of plan execution cost 
as well as plan length. We would also like to experiment 
with the Truckworld domain utilized by [Williamson and 
Hanks, 1994] where resource consumption is important, 
and the process planning domain [Gil, 1991], where a 
number of quality metrics would be applicable. 

Finally, we would like to devise a method for incremen­
tal learning and training for SCOPE. SCOPE could use 
learned control information for smaller problems to help 
generate training examples for more complex problems. 
This type of incremental approach could help SCOPE 
scale up more effectively to solve harder problems. 
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8 Conclusion 
This paper describes experimental results from learning 
control knowledge to improve both planning efficiency 
and plan quality. Most planning and learning research 
has concentrated on improving efficiency. Another im­
portant learning goal is to improve the quality of the 
final solution. However, l i t t le research has been done 
in learning rules that improve both these metrics. In 
this paper, we have presented results uti l izing the S C O P E 
learning system that show both of these metrics can be 
improved simultaneously by focusing the learning system 
on avoiding both dead-end paths and paths that lead to 
sub-optimal solutions. 
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