System Assistance in Structured Domain Model Development®

Susanne Biundo and Werner Stephan
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
D-66123 Saarbriicken, Germany
{biundo, stephan}@dfki.uni-sb.de

Abstract

In this paper, we introduce a domain model-
ing tool that supports users in the incremental
and modular development of verified models of
planning domains. It relies on a logic-based
concept for systematic domain model construc-
tion that provides well-defined, safe operations
for the union, extension, and refinement of al-
ready existing models. The system is equiped
with a deductive component. It automati-
cally performs the proofs necessary to guaran-
tee both the consistency of single models and
the safety of operations on models. By means
of detailed examples, it is shown how the sys-
tem has been used for the structured develop-
ment of a model for a complex, safety-critical
planning domain.

1 Introduction

As soon as we aim at using planning systems in the con-
text of realistic applications, the task of generating the
underlying domain model becomes increasingly crucial.
It is not only difficult to overlook the great amount of
object types, relations, and actions involved when speci-
fying such a model. It is also difficult to keep consistency
in mind, which is of particular importance if the applica-
tion domain is a safety-critical one. Consequently, sys-
tem assistance in constructing safe models of complex
planning domains would be of real help.

Our work is motivated by the experiment of using a de-
ductive planning system in the simulation of a safety-
critical application, namely a chemical warehouse. This
planning domain is quite complex and it has turned out
that the construction of a clearly structured, adequate,
and consistent model would have been almost infeasi-
ble if done without any system support. The reason is

"This work has partly been supported by the Federal Min-
istry of Education, Science, Research, and Technology under
grants ITW 9404 and ITW 9600.

1240 PLANNING AND SCHEDULING

that specifying a complex planning domain is an iterative
process which includes frequent modifications of already
specified parts and attempts to extend parts and finally
put them together.

In this paper, we introduce a domain modeling tool
(DMT) that supports users in the incremental and mod-
ular development of safe, i.e. provably consistent, mod-
els of planning domains. It relies on the concept of
systematic domain model construction proposed by [Bi-
undo and Stephan, 1996]. This approach—based on a
modal temporal logic—considers domain models as for-
mal structures. Domain models consist of signatures,
action definitions, and domain constraints. The well-
defined operations of union, extension, and refinement
allow for building complex domain models out of already
existing simpler ones. We have improved this domain
modeling concept in order to make it really useful for
practical applications. We have introduced the notion of
static constraints, in addition to domain constraints and
have extended the operations on models. These improve-
ments grew out of a large case study, which - in a some-
what simplified version- is used as the example domain
throughout this paper. Based on the modified concept,
we have implemented the DMT system that supports
the process of domain modeling. It does syntactic anal-
yses of domain specifications given by a user and has a
deductive component which automatically performs the
proofs necessary to guarantee both the consistency of
single models and the safety of the union, extension and
refinement operations. Finally, we have used the system
for modeling a complex, safety-critical planning domain.

The paper is organized as follows. In Section 2 we give
a short introduction into the basic temporal logic formal-
ism on which the domain modeling process relies. Our
formal concept of domain model development and the
domain modeling tool that implements this concept are
presented in Section 3. We give an overview of the chem-
ical warehouse planning domain CHEW in Section 4 and
demonstrate the structured development of a CHEW do-
main model by means of examples in Section 5.

2 The Logical Setting

The logical representation formalism is a subset of the
temporal planning logic TPL introduced in [Stephan and
Biundo, 1996). We extend this formalism by the concept
of nondeterministic {randem) assignments, but do not
consider recursive actions or plans. TPL is an interval-
based modal temporal logic. Tt relies on a many-sorted
first-order language that provides flezible and rigid func-
tion and relation symbols. The modal operators in-
clude O (weak next), @ (strong next), O (always), $
{sometimes), and the binary operator ; {chop). TPL
formulae are interpreted over intervals. Intervals & are
nonempty sequences of states (F=<o,,02...>). States
g; are interpretations of the flexible symbols, A first-
order formula ¢ holds in an interval & iff it holds in
the first state of that interval. Oy holds in & iff &
is a single-state interval (d=<01>) or ¢ holds in the
greatest proper suffix of @ (which is <a2,...>). © false
means that there exists no such suffix. An interval &
satisfies @y iff & is not a single-state interval and sat-
isfies Oy, i.e., 7 has a greatest proper suffix that sat-
isfies . Oy and ¢ hold in & iff ¢ holds in every
suftix of & and iff there exists a suffix of & that satis-
fies ¢, respectively. The chop-operator is interpreted as
the seguential composition of formulae; ¢ ; ¥ holds in
T=<01,09,...,0n,...> ifl either 7 is infinite and sat-
isfies ¢ or & can be split into two successive intervals
al=<ay,my,. .., 00> and e'=<ey, .. .>—which overlap
in one state—such that ¢’ satisfies v and 0" satisfies 1.
In addition to these modalities, a programming lan-
guage is embedded in TPL. This programming language
is used to specify the effects of basic actions. 1t provides
clementary operations add-.., delete-.., and := (up-
date}, which represent single-step transitions described
by O. As for control structures, ; is used as sequential
composition and the following axioms are given.

skip ;¢ O false (1)
if ¢ then w; else 7y fi 143 ({¢ = 7)) A (0 = m)) (2)

choose z: ¢ begin mend ' ((BHx (¢ A m)) Vv
(-3z ¢ A skip)) (3)

Actions are defined by expressions like a(x,,... x,.) < 7,
where ‘a’ is the action name, (x;,...,X,) are the param-
eters, and 7 s a program. Programs are built using
elementary operations, action colls a{x;,... x,) & 7
{t1,...,1,), and control structures. Programs are TPL
formulae. In general, these programs are used to de-
scribe not only actions but also composite plans.

The elementary operations are characterized by axioms’,
like
(add-r(1;,...,t,)

A @) = (60 false A OF)

"We refer to these as the “wp-axioms™.

(F(T1, - Zn) =212 A @) -

(©0 false A O¢ A O (3T : 2 f(z1,...,24) = T))
where r (£} is a flexible relation (function) symbol and
 : z is a fresh variable of type z. f(...) :=7: z repre-
sents the random assighment. ¢ is the formula resulting
from the first-order formula ¢ by replacing each oceur-
rence of the atomic subformula #{s1,...,8,)} by
((hh#FaV.. . VieFE) 7(s,....8.)
and ¢ results from ¢ by replacing f(s;,...,s,) =5 by
({f(sry v sa) =sA(Z1 # 5/ V... Va, #8,)).
¢ and ¢ are the weakest preconditions of ¢ w.r.t. the
respective elementary operation®. Please note that el
ementary operations describe single state transitions,
whereas actions and plans are composed of many of them
using the chop-uperator, thereby specifying intervals of
arhitrary length,

Finally, for action calls we have the equivalence?

a(f) € n(l) & nlz/la/aE) <, @

3 The Domain Modeling Tool

In [Biundo and Stephan, 1996], we proposed a formal
concept for the construction of provably consistent plan-
ning domain models. It provides well-defined operations
on models that allow for the structured and incremental
development of domain models by combining and ex-
tending already existing ones in a sound manner. We
extend this concept by introducing the notion of static
constraints and by extending the refinement operation
in a way such that also abstract relations can be "imple-
mented" by concreter ones.

A domain model M is a data structure <Z, Sig, 8C, DC,
A>, where Z is a set of sort symbols, Sig is a signature,
SC and DC are sets of static constraints and domain
constraints, and A is a set of action definitions. SC and
DC consist of first-order formulae, whereby only rigid
symbols are allowed in SC. Static constraints serve to
describe unchangeable domain features, whereas domain
constraints reflect essential changeable facts that nev-
ertheless have to hold in each situation. Domain con-
straints therefore contain flexible symbols. A domain
model is consistent if it is syntactically sound (i.e. sym-
bols are used in a unique way and terms and formulae
are well-formed) and if each domain constraint is invari-
ant against each action (i.e. it holds after the execution
of an action iff it has held before). Please note that the
latter trivially holds for static constraints.

Operations on domain models are union, extension, and
refinement The operations are safe. They guarantee
that only consistent models develop, given consistent
ones as input.

The wp-axioms for ordinary assignments and the delete
operation are omitted, due to lack of space.
3 (f) denotes a vector of variables (terms).

BIUNDO & STEPHAN 1241

Union (&) combines two domain models M; and Mg,
provided:

e 2, Sigy and Z., Sigz agree on common sorts, i.e.
common sorts are identical w.r.t. subsort and supersort
relationships and the signatures match w.r.t. symbols
ranging over common sorts.

o Actions from A;UA; that use function and relation
symbols from both Sig, and Sigg are in A;NA,.

s Formulae from SC;USCy (DC,UDC4) that use func-
tion and relation symbols from both Sig; and Sigy are in
SCNSC, (DC]HDCQ)-

MiuMg:=<Z,UZ,, Slgl @Sig, SC,USC., DC,UDC;,
A UAs>, where ¢ denotes the union of signatures. The
consistency of M;wM; is given by the consistency of M,
and M. In particular, the invariance of DC,-DC, (DC,-
DC,) against the actions A; {A,) is guaranteed as these
actions and formulae have no symbols in common.

Extensions (A) add new sorts, symbols, actions, or con-
straints to 2 model M = «Z, 8ig, 8C, DC, A>. Let E=
<2., Sig., SC,, DC,, A.>. M can be extended by E if;
e Z and 7. agree on common sorts.

+ Sig and Sig, have no symbols in common.

s A, are action definitions over Sig®Sig,.

e SC, and DC, are constraints over SigdSig, .
MAE:=<ZUZ,, Sig®8ig., SCUSC,, DCUDC,, A'UA.>,
where A’ results from A by extending (some) action defi-
nitions by parts that change only symbols from Sig, and
also by perhaps restricting their applicability. In order
to guarantee consistency of MAE (given that M and E
are consistent), it has to be proved that the actions A’
(A.) are invariant against DC, (DCUDGC,).
Refinements (v7) allow for the replacement of abstract
scenarios by more concrete ones. Let M be given. In
a first step M is extended by some E yielding MAE,
like above. In particular this means that some of the
previous actions e are extended to ¢’. In addition to
that there are completely new actions using only sym-
bols from Sig,.

In a second step we want to forget about some of the
previous symbols and actions. In a sense these sym-
bols and also some of the actions using them will be
implemented in terms of new concepts which in turn
means that facts about the abstract scenario are pre-
served in a somewhat modified form. Let the symbols
we want to implement (and then forget about) be given
by Sigy and let RP = {VZ(r{Z) & ¢.) | r € Sig;} U
{vzg{f(z) = § © ¢y) | f € Sig;}, where the ¢, (¢;) are
first-order formulae not containing symbols from Sigy.
The formulae in RP have to be proved to be invariants
of the actions in MAE. However, some of the actions
in A’ shall no longer be available on the concrete level,
ie. in the refined model. These are given by Ay CA'
We then replace atomic formulae containing the symbols
from Sigy in each constraint ¢ of MAE by the equiva-

1242 PLANNING AND SCHEDULING

lences given in RP. This can be done by a straightforward
algorithm. Let ¢* be the formula resulting from ¢ after
this step. For an action a the transformed version a* is
obtained by translating the tests in the way described
above and by removing all elementary operations that
affect symbols from Sig/. If function symbols from Sig/
occur in arguments of the remaining elementary opera-
tions, these have to be eliminated by using the choose
construct. We end up with a set of actions (A'-Ajf)*.
The refinement finally is (MAE) 7 <Sig; RP,A;>:=
<ZUZ,, (Sig®Sig.)-Sigs, (SCUSC.)*, (DCUDC,)* (A'-
Af)*UA.>

Based on this formal concept of domain model con-
struction, we have implemented a deduction-based do-
main modeling tool (DMT) that supports the modeling
process by carefully analyzing an user's inputs and by au-
tomatically performing the necessary proofs. The system
has components for both syntactic analysis and deduc-
tion. Syntactic analysis guarantees well-formedness of
terms and formulae and proves that no flexible symbols
occur in static constraints and that no rigid symbols are
manipulated by update-, add-, or delete-operations. In
order to prevent the user from specifying an action that
causes undesired effects or no effects at all, the system
does the following analysis in addition. It checks the pre-
condition and body of each action. If it detects flexible
terms in the precondition that are identical with terms
being manipulated in the action body, it tries to prove
that the values they have before and after the action ex-
ecution differ. This is done by the deductive component
of DMT which tries to derive this fact from the pre-
conditions, using the static constraints and the domain
constraints. The deductive component is an automated
theorem prover for TPL.

4 The Chemical Warehouse Scenario

The chemical exchange warehouse (CHEW) was devel-
oped at the Hazardous Waste Management Division
(HWM) of the Lawrence Livermore National Lab*. The
CHEW concept is part of a programme for the environ-
mentally sound, cost effective and legal management of
chemical waste. It is devoted to the storage of excess
usable chemicals, the resale of inquired substances, and
the disposal of unsaleable ones. Dealing with danger-
ous materials, the chemical warehouse is a safety-critical
environment. The HWM concept takes this fact into
account by specifying a collection of safety conditions
that must not be violated by anyone who acts in this
environment. We have implemented a simulation of the
CHEW warehouse (cf. Figure 1) where—in contrast to
what the HWM concept says—we assume that a robot is
used for the transportation of barrels. Barrels containing

4http://www.lInl.gov/es_andJh/hwmJiome/hwm.html

| — e

Figure 1: The Chemical Exchange Warehouse

chemicals are delivered at the ramp. First, the barrels
are proved and their content is analyzed. The barrels
are then stored in suitable cells from where they can be
retrieved as soon as respective inquiries have been sub-
mitted. A deductive planning system is used to generate
plans that enable the robot to act safely in this (simu-
lated) environment by executing provably correct plans
that in particular meet the required safety conditions.
As a prerequisite for using our planning system, we
had to set up a model of this domain. In order to obtain
a suitable and consistent, comprehensive model we have
constructed a development tree using the DMT domain
modeling tool. This tree reflects how separate parts of

m Refinad Transporistion

nnd Movement

AlV
Tra rint
M4 nlg:“.on
A
M3
(&)

Bulkding & Traatrnent of
Equipmant m m Chamicals

Figure 2: Development of the CHEW Domain Model

the model have been specified, flexibly extended and re-
fined, and finally tied together. Figure 2 shows a (sim-
plified) part of this development tree and Section 5 gives
some detailed examples on the development steps.

5 A Structured Domain Model
Development

We start developing the CHEW model by first speci-
fying some basic components of the warehouse building

and its equipment. There are rooms, doors, and a rebot.
The rooms are connected by doors and the robot is able
to move from one room te another. We set up a do-
main model M, = <2,, Sig,, 8C,, DC,, A,>, where
Z) = {room, door, robot}. The signature Sig, consists
of R,= {wnnecm(donr,mom,ronm) } s Ff = { E1-F'r pbot—room })
Fr={roh_irau}: Ry={). There is only one robot sup-
pused to be in our scenario; it is denoted by a constant.
We have two static constraints saying that a door con-
nects two different rooms, and that the connects rela-
tion is symmetric w.r.t. the room arguments: 5C, =
{¥d, ry, ro(connecta(d, vy, m2) =) #r2),
Vd,ry,ro(connects(d, 7y, 72) & connects(d,ra,r)) }.
As the TPL representation formalism allows for the
use of flexible function symbols, we are able to repre-
sent unique relations like in-r by functions. This pre-
serves us from specifying and maintaining a domain ¢on-
straint explicitely stating the uniqueness of in-r, namely
¥ry, re((in-r{reb, v} Adn-rrob,m2)) — r; = rs). Fi-
nally, we define an action that allows the robot to move
from one room to another: A, consists of
move(r; : room, tz : Toom) <=

choose d : connects(d, ry,72)

begin if in-r(rob) =r, then

in-r(rob) := r; else skip fi end

As already cxplained in Section 3, the DMT tries to
prevent the user from specifying an action that causes
undesired effects or no effects at all. In our example,
the systern detects a flexible term in the precondition of
‘move’ that is changed in the action body, namely in-
r{rob). Therefore, it tries to derive the unequality of the
respective values frotn the preconditions using the static
constraints: SC F ¥ ry, 7o, d ({connects(d,r),r) A in-
rirob) = r1) -+ 11 # r2). The system succeeds with
this proof as the first static constraint in SC states that
the rooms connected by a door are different. This way,
static constraints serve to keep certain (static) facts out
of preconditions which helps to make action definitions
simpler.

In a second step, we concentrate on the treatment of
chemicals in our warchouse scenario. We specify the re-
spective objects and, among others, an action that rep-
resents the analysis of the content of a delivered barrel.
The analysis process is modeled on an abstract level, be-
cause in reality it is carried out by a human. Thus, the
analysis device is considered to be a black box. In or-
der to analyze its content a harrel has to be put in the
device. After the analysis process the barrel is put out
and has a color mark indicating the type of chemical it
contains (cf. Figure 3).

We set up the domain todel My = <Zy, Sigy, SCy,
DCa, Ay>, where Z; = {barrel, color, default.color,
new.color, device}. Here, we have a hierarchy of sorts.
color has two subsorts: default.color and new.color.

BIUNDO & STEPHAN 1243

‘ l
in{b) out(b)

Figure 3: Analyzing the Content of a Barrel

Sige comsists of Ry={ifbarrer)r Mtisarren, clear-
iry ,,dear-out(}}s Ra':{}s F)f:{.paiﬂfrbarrcl—molor}s and

r= {dev—.dcuicn Ted_snew.colors
Greefanew.colory YEHOW 4new color, grey—-!default-color}-
As static constraints we have that different constant
symbols denote different objects, also known as unigque
name assumption. In order to correctly model our plan-
ning domain, we have to make sure that the model re-
flects essential properties of that domain, like “a bar-
rel cannot be located at the input- and output position
of the device at the same time”. Therefore, suitable
domain constraints are introduced. We have DC; =
{ ¥b ~{in(b') A out(d)), clear-in + -3 b in(b), clear-
out & -3 b out(b)}. The analysis action is defined as
follows.

Muesnew colors

analyze(b:barrel) <
ifin(b) A clear-out then
delete-in(b) ; add-clear-in ; paint(l) :=7 ;
add-out(b) ; delete-clenr-out else skip fi

As we proceed on the assumption that the content of
a barrel is not known unless it has been analyzed, the
action is formulated as a nondeterministic one. It as-
signs an “unknown” value ? to paint(d). As one effect of
this action, we have that there exists an object of type
new.color that equals paint(b). In addition, we have ac-
tions for loading and unloading the device. ‘load’, for
example, reads:

load(b:barrel) «
if clear-in then
delete-clear-in ; add-in(b) else skip fi

During the specification of My, DMT provides type
checks and proves syntactical soundness of terms and
formulae. In addition, it has to process the domain con-
straints. This means, the domain constraint

w = Y ~(in(l) A out(d))
of DC; has to be proved invariant against ‘analyze’, for
example. To do so, the system generates the invariance
assertion :
(v A analyze(b)) = ¢ (O false A) stating: If
 holds in a state where we execute ‘analyze’, then we
end up in a state where holds again.

®analyze(b) abbreviates the action call
analyze(b:barrel) <= x (b), the variable b being the actual
parameter.

1244 PLANNING AND SCHEDULING

In order to prove this formula, the system first ap-
plies the axioms for control structures given in Section 2.
Then it iteratively computes weakest preconditions of ¢
w.r.t. the elementary operations in the body of ‘ana-
lyze’, using the wp-axioms. As a result it obtains the
first-order implication
Yh (Wb -(in(d') A out(¥)) A in(b)) —
¥ S(in{b'} A b#EE A out(h))).

It is easy to see, that this formula can be simplified to
true.

In the next step, we want to combine My and M,,
thereby introducing the concepts of barrels and their
analyses into the model of the building. The combina-
tion of these models is achieved by applying the union
operation for models. The prerequisites for this opera-
tion are gbviously satisfied: The models have no sorts in
common and with that differ also in signatures, actions,
and constraints. We obtain Mz = M; & My, where Z;3
= Zy U Za, Sigy = Sig1 @ Sige, 8C3 = SC, U SCy, DG,
= DCy, and Az = A U A,

Now, we extend M3 by modeling the transporta-
tion of barrels using the robot. We define the ex-
tension E = «Zj, Big, {}], DC, A>. Sig has
the flexible symbols: Ry={held,rre), handempty, |}
and Fy={in-byarret—room}- There are no static
constraints, but three domain constraints: DC =
{handempty + -3 b held(d),
Vb (held(b) — in-r{rob) = in-b(b)),
¥ by, by ((held(by) A held(dy)) — by = b2)}. Note that
we have used a flexible relation symbol for the unique
relation held, in contrast to what has been done in the
cases of in-r and in-b and at the cost of needing a do-
main constraint explicitely stating the uniqueness. The
reason is that using a flexible function symbol instead
(describing the held property by formulae like hefd=h)
would bave required the introduction of a so-called error
element, like empty-barrel, in order to express the fact
that nothing is held by the robot. This in turn would
have required an expensive exception handling in the
body of actions that manipulate barrels, like case analy-
ses of the form if b # empty-barrel then ... else skip.
A contains the actions for picking up and putting down
barrels. ‘pickup’ reads:
pickup(b : barrel) <

if handempty A in-r(rob) = in-b(b) then

delete-handempty ; add-held(b) else skip §

The DMT syntax check detects no errors and the sys-
temn also succeeds in proving the domain constraints DC
invariant against ‘pickup’ and ‘putdown’. Now we can
extend Mj by E as the prerequisites of the extension op-
eration A are satisfied: The signatures are disjoint and
A and DC are built over Sig; & Sig. We generate the
extension Ms A E = M, where Z; = 23, Sigy = Sigz &
Sig, SC4 = 8C3, DCq = DC3; UDC, and Ay = Aj U A.

Aj results from Aj; by inserting some expressions from
Sig into the definition of ‘move”;
move(r; : room,trs : room) <«
choose d : connecta(d,ry,7;)
begin if in-r(rob) =r; then
in-r(rob) == rz;
choose b : held(b)
begin in-b(b) :=r; end
else skip fl end
This modification is necessary, in order to get the second
domain constraint of DC invariant against ‘move’. With
that, the systemn succeeds in performing the proof obli-
gations that guarantee safety of our extension, namely:
DC; are invariants w.r.t. A (‘pickup’ and ‘putdown’ ma-
pipulate only symbols from Sig) and DC are invariants
w.r.t. A4 (‘analyze’, ‘load’, and ‘unload’ do not affect
symbols occurring in DC). So, My is accepted by the
system.

Finally, we will show how our new model My is refined
0 a more concrete one by introducing the noticn of leca-
tion that serves to represent the various positions inside
the building at which movable objects, like barrels and
the robot, couid be located. This notion will enable the
specification of "moving inside a room", for example.
As described in Section 3, the operation of domain
model refinement comprises extension as well as the
climination of actions and symbols. Assume we first
extend My by some E = <Z, Sig, SC, DC, A>,
where Z = {location} and among the rigid symbols
we have entrancedevice—siocations €Tidevice+location, and
8reQocation—room- Lhe flexible symbols include at-
Trabot—+ocation 8N @i-Bharrei—iocation. We add also ac-
tions for moving inside a room and for passing a door,
respectively. After the extension step, we want to for-
get about the previous ‘move’ action of M, as well as
about the relations in and out, originating from M,.
Let RP contain the formulae ¥ b (in{d) + at-b(h) =
entrance(dev)) and ¥V b {out(d) & ai-b(b) = exit{dev)).
It turns out that ‘analyze’ is among the actions of A,
that have to be modified in order to enable the invari-
ance proof of the RP formulae: We have to consider
locations here:

analyze{b:barrel) <
if in(b) A clear-out A

at-b(b} = entrance(dev) then

delete-in{b) ; add-clear-in ; paint(h} :=7 ;

add-out(b) ; delete-clear-out ;

at-b(b) := ezit(dev) else skip
It is easy to see that the first formula of RP still cannot
be proved to be invariant against ‘analyze’ unless we have
added the state constraint entrarce(dev) # exit(dev).
As can be seen from this example, the generation of
sound models can be a tricky task, the deductive support

of which is really useful. In this case an analysis of the
failed invariance proof has helped us modifying the ex-
tension accordingly unless we ended up with a correctly
refined domain model.

6 Related Work and Conclusion

The question of knowledge acquisition and knowledge
base maintenance for planning has hardly been ad-
dressed in the literature. Recently, [Chien, 1996] has in-
troduced an approach to the analysis of planning knowl-
edge bases. This mechanism detects goals that are not-
achievable by actions and supports the user in detecting
modeling errors by allowing the generation of automati-
cally completed plans. In the work of [Cesta and Oddi,
1996], a formal domain description language has been
proposed, which is especially well suited for the descrip-
tion of physical planning domains. This approach also
considers domain model construction based on a formal
semantics.

In this paper, we have introduced the domain mod-

eling tool DMT that assists users in the modular and
structured development of verified domain models. It
provides well-defined operations for the extension, re-
finement, and combination of existing models and au-
tomatically performs the proofs that are necessary to
guarantee the safety of these operations.
Although our system uses the TPL planning logic,
DMT can easily be adapted—by restricting the logical
language—to construct safe domain models for operator-
based planning systems that rely on different formalisms;
examples being systems using STRIPS-like operator de-
scriptions or systems based on ADL, like UCPOP [Pen-
berthy and Weld, 1992].

References

[Biundo and Stephan, 1996] S. Biundo and W. Stephan.
Modeling Planning Domains Systematically. In Proc.
of ECAI-96, pages 599-603. Wiley & Sons, 1996.

[Cesta and Oddi, 1996] A. Cesta and A. Oddi. DDL.I:
A Formal Description of a Constraint Representation
Language for Physical Domains. In New Directions in
Al Planning, pages 341 352. 10S Press, 1996.

[Chien, 1996] S. A. Chien. Static and Completion Anal-
ysis for Planning - Knowledge Base Development and
Verification. In Proc. of AIPS-96, pages 53-61. AAAI
Press, 1996.

[Penberthy and Weld, 1992] J. S. Penberthy and D. S.

Weld. UCPOP A Sound, Complete, Partial Order
Planner for ADL. In Proc. of KR-92, pages 103-114,
1992.

[Stephan and Biundo, 1996] W. Stephan and S. Biundo.
Deduction-Based Refinement Planning. In Proc. of
AIPS-96, pages 213-220. AAAI Press, 1996.

BIUNDO & STEPHAN 1245

