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Abstract 
This paper presents a technique, called GENH, 
that automatically generates search heuristics 
for scheduling problems. The impetus for de­
veloping this technique is the growing consen­
sus that heuristics encode advice that is, at 
best, useful in solving most, or typical, problem 
instances, and, at worst, useful in solving only 
a narrowly defined set of instances. In either 
case, heuristic problem solvers, to be broadly 
applicable, should have a means of automat­
ically adjusting to the idiosyncrasies of each 
problem instance. GENH generates a search 
heuristic for a given problem instance by hi l l-
climbing in the space of possible mult i -attr ibute 
heuristics, where the evaluation of a candidate 
heuristic is based on the quality of the solution 
found under its guidance. We present empirical 
results obtained by applying GENH to the real 
world problem of telescope observation schedul­
ing. These results demonstrate that G E N H is a 
simple and effective way of improving the per­
formance of an heuristic scheduler. 

1 Introduction 
Employing heuristic methods to solve intractable con­
strained optimization problems like scheduling often suf­
fers from narrowness in the range of problems to which 
they can be effectively applied. To overcome these l im­
itations, researchers have sought to develop more adap­
tive approaches to problem solving; e.g., [Gratch and 
Chien, 1996]. Adaptive heuristic problem solving delays 
the selection of an heuristic strategy unti l some informa­
tion can be obtained wi th respect to which strategy is ex­
pected to perform most effectively in solving a problem 
instance or class of instances. For problems which re­
quire a solution to satisfy a set of constraints, the "best" 
heuristic is typically one which is expected to allow the 
problem solver to most efficiently converge on a solu­
t ion. For example, the approach exemplified by SOAR 
[Laird, et a/., 1986] uses traces of past problem-solving 
efforts to refine heuristics in order to speed up the search 
for a solution. However, other criteria besides problem 

solving efficiency for heuristic selection are possible. For 
scheduling and other constrained optimization problems, 
quality of solution may be a more crucial metric with 
which to compare and select heuristics. 

This paper proposes a technique, GENH, for automat­
ically generating heuristics for solving scheduling prob­
lems. G E N H generates a search heuristic for a given 
problem instance by hil l-cl imbing in the space of pos­
sible mult i -attr ibute heuristics, where the evaluation of 
a candidate heuristic is based on the quality of the so­
lution found under its guidance. GENH has been suc­
cessfully applied to the problem of scheduling telescope 
observations using the Associate Principal Astronomer, 
or APA [Drurnmond, et a/., 1994], a system developed at 
NASA Ames Research Center. Given a set of telescope 
observation requests supplied by the user of the APA, 
GENH solves the problem instance using several "ver­
sions" of the APA scheduler, where the versions differ 
only in the search heuristic employed. Adding GENH to 
the scheduling process incurs acceptable computational 
overhead, is accurate (i.e., converges to a better solu­
t ion more often than previously employed techniques), 
robust (solves a wide range of problem instances), sim­
ple (is based on a simple algorithm easily integrated into 
the scheduling process), and potentially generalizable to 
other problem domains. Following a brief summary of 
the problem domain and the APA scheduler in Section 2, 
we present a description of the GENH method (Section 3) 
and a summary of experimental results (Section 4). We 
then discuss related research (Section 5), future research 
(Section 5) and conclude (Section 6). 

2 Telescope observation scheduling 
The input to the APA observation scheduler is a set of 
requests, expressed using the Automatic Telescope In-
struction Set, or ATis, [Boyd, et a/., 1993]. Each re­
quest is composed of a sequence of telescope movements 
and instrument commands, as well as scheduling con­
straints and preferences. An observation request is said 
to be enabled on a given night if all its constraints are 
met. The enablement intervalis the duration of enabled 
time for a request. The enablement interval is deter­
mined by the observation season, as well as factors such 
as position of the moon on a particular night. For fur-
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ther details on this domain, see [Bresina, et a/., 1994; 
Drummond, et a/., 1995]. 

The ATIS standard also specifies an heuristic dispatch 
policy which can be used to select the next observa­
t ion to execute. The policy is expressed as four selec­
t ion rules: priority, number-of-observations-remaining, 
nearest-to-end-window, and file-position. The rules are 
applied in the sequence given to the currently enabled 
observations; each rule is used to break ties that remain 
from the application of those that preceded it. If the re­
sult of applying any rule is that there is only one group 
remaining, that group is selected for execution and no 
further rules are applied. Since there can be no file-
position ties, the dispatch policy is deterministic. 

ATIS dispatch is a robust scheduling method that has 
been used fairly successfully for several years to schedule 
automatic photoelectric telescopes at Fairborn Observa­
tory before the development of the APA. (See [Henry, 
1996] for a performance evaluation of ATIS dispatch.) 
The dispatch decisions are determined purely locally, 
without look-ahead; by contrast, the APA uses a search-
based scheduler (for APA scheduler details, see [Bresina, 
et al, 1996; Edgington, et ai, 1996]). 

The scheduler's search space is organized chronologi­
cally as a tree, where the root node consists of the world 
model state at the beginning of the night. Each arc 
out of a search tree node represents an enabled request. 
The purpose of the search heuristic in the APA scheduler 
is to determine which of the enabled requests to select 
to extend a partial schedule. In the experiments con­
ducted here, selection is "greedy"; i.e., the schedule ex­
tension wi th the lowest (= best) heuristic score is chosen. 
Because each extension of a partial schedule is feasible, 
there are no failure nodes. The task of the APA scheduler 
is to find a sequence of observations that achieves a good 
score according to the user-defined objective function. 

Because the APA scheduler does not employ backtrack­
ing in its search for a schedule, it is not relevant in 
evaluating heuristics to compare the computational cost 
incurred (i.e., number of states expanded); differences 
in the cost of applying different heuristics are marginal. 
Hence, in our experiments the sole performance metric 
is in terms of schedule quality according to the domain-
specific objective function. In collaboration with as­
tronomers, we defined the following three objective func­
tion attributes which describe preferred characteristics of 
telescope observation schedules. 

1. Airmass Quality. Measured in terms of where in 
the sky the observations were taken. Closer to 
the meridian means lower airmass, hence better ob­
servation conditions; closer to the horizon means 
higher airmass. 

2. Conformity to "Season Track". Roughly, a season 
track is an ideal "path" of movements a telescope 
should take through the night from West to East. 
This is expressed as a mapping from local time to 
telescope pointing angle. 

3. Priority. It is usually impossible to observe all the 

requests on a given night, so prefer observing the 
more important request (i.e., those with lower pri­
ority numbers). 

In the experiments reported here, the objective function 
used to evaluate complete schedules is the weighted sum­
mation of these three attributes, with each attribute as­
signed an equal weight of 1/3. The attribute values were 
first scaled, so that equal weighting does imply equal 
importance within the objective score. 

As with the objective function, a search heuristic used 
by the APA scheduler is based on a set of attributes, 

For the experiments conducted here, 
this set contains the three objective function attributes 
listed above, as well as the following two attributes which 
were derived from the second and third rules of the ATIS 
dispatch policy. 

4. Fewest Runs. Prefer requests that have been ob­
served the least number of times - a fairness issue. 

5. Least time left in enablement window. Prefer re­
quests whose enablement interval is smallest, in par­
ticular, those requests that are about to become un-
observable for the rest of the night. 

For each attribute there is a domain wa , of 
possible weight assignments. In this application, each 
wa, is the real unit interval [0,1]. An heuristic is the 
weighted summation as in the objective 
function, the attribute values are first scaled. The space 
of possible heuristics can be viewed as the (uncountably 
infinite) set hence, ex­
haustive search of this space is impossible. 

3 The GENH technique 
G E N H adds to the APA the capability of selecting an effec­
tive search heuristic based on the specific characteristics 
of a problem instance. The input to GENH consists of an 
objective function, the set Ah of heuristic attributes, an 
observing night, and a set of requests that are enabled 
sometime during that night. The output from GENH is 
the best heuristic found as the result of a search through 
the space of heuristics defined by Ah- GENH employs a 
hill-climbing approach to conduct a focussed exploration 
of Sh the following factors control this search: 

1. a seed to initialize the search; 
2. a tuning procedure, based on a weight adjustment-

function; and 

3. a termination condition. 
The pseudo-code for a generic GENH heuristic selec­

tion algorithm for observation scheduling based on these 
factors is displayed in Figure 1. First, G E N H initializes 
a seed heuristic as a "head start" for hill-climbing. The 
algorithm then iteratively tunes the heuristic by con­
ducting a hill-climbing search through Sh, always select­
ing the best improvement to the currently best heuris­
tic, bestH. The procedure select Adjustments generates 
candidate improvements, and the procedure bestScore 
selects the best improvement from these candidates. 
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i n p u t : R, set of observation requests; 
Ah, set of heuristic attributes; 
OB, objective function. 

o u t p u t : bestH, best heuristic found 
beg in 
bestH = seed(OB,A,R)\ 
bestScore({bestH}, R, OB, bestH, score); 
initialize boundary variables; 
u n t i l some boundary condition is exceeded do 

H = select Adjustments(bestH); 
bestScore(H, R, OB, h, bestscore); 
if bestscore < score then 

score = bestscore, 
bestH = h; e n d i f 

reset boundary variables; 
r e t u r n bestH 
e n d 

Figure 1: GENH heuristic selection algorithm 

The result of a single call to select Adjustments is a 
set H of candidate heuristics formed by adjusting the 
weights of different subsets of bestH's attributes. The 
procedure bestScore has input variables comprised of H, 
R, a set of requests (problem instance), and OB, a user-
defined objective function. For each candidate heuristic, 
bestScore invokes the A PA scheduler to find a schedule 
via greedy heuristic search. Each resulting schedule is 
scored using the objective function, OB, and bestScore 
returns the best scoring heuristic, h, among the set of 
candidates along wi th its score, score. If the returned h 
is an improvement over the current best heuristic (i.e., 
score is better than bestScore), then h becomes the new 
bestH and the improvement process is repeated. 

The termination condition for G E N H is determined 
by boundary conditions, chosen empirically, for a set of 
global variables. One boundary variable establishes the 
size of the weight adjustment in the tuning algorithm. 
This value is decremented unt i l some l imi t is reached. 
Another pair of variables establish the upper and lower 
bounds of possible weight values of attributes. The in­
terval defined by these bounds shrinks during G E N H ' S 
search. Eventually, a condition is reached in which tun­
ing produces no changes to the value of bestH, at which 
t ime boundary variables are reset to exceed their l imits, 
whereupon the algorithm terminates. 

In the remainder of this section, we discuss the seed se­
lection and weight adjustment modules of this algorithm 
in more detail. It has been noted that the abil i ty of hi l l -
climbing algorithms to produce good solutions seems to 
depend upon the abil i ty to provide a good "head start" 
on hi l l cl imbing. This is achieved using a pre-processing 
stage to produce an ini t ia l assignment which is "close to 
a solution" [Morris, 1992]. We isolated the seed selection 
component of G E N H and empirically investigated differ­
ent methods for selecting a seed heuristic. Here we only 
discuss the one method used in the experiments reported 
in Section 4. 

This seed method roughly "mirrors" the weights as­
signed in the given objective function. The intui t ion 
behind this approach is that applying the objective func­
tion to a partial schedule is a reasonable predictor of the 
score of the complete schedule. One potential drawback 
is that attributes which are more "global" (e.g., sched­
ule fairness) tend to not perform as well a local heuristic; 
however, such attributes should get weeded out during 
the weight adjustment phase. 

In this seed method, those candidate heuristic at­
tributes in the objective function are in i t ia l ly assigned 
the same weights as in the objective and the additional 
attributes are ini t ial ly assigned a very low weight. These 
ini t ial weight assignments are then normalized so that 
they sum to 1. This requirement that weights sum to 1 
is also maintained during the weight adjustment phase. 
This constraint is not imposed by the APA scheduler; 
rather it was applied here simply to avoid redundancy 
in the exploration of Sh • 

A weight adjustment method systematically adjusts 
values to a weight vector wE Sh in the direction that 
most improves the performance of the scheduler. The ad­
justment mechanisms that we have explored are inspired 
by optimization methods in Operations Research, in par­
ticular, by methods for selecting multipliers for solving 
Lagrangian relaxation problems [Fisher, 1985]. As wi th 
seed selection, we empirically investigated a range of ad­
justment methods which vary in the size of the heuristic 
search space explored; however, here, we only define the 
one used in the reported experiments. 

This robust tuning method generates a candidate 
improvement to bestH by adjusting the weights on a 
pair of attributes, increasing one and decreasing the 
other. Hence, with this method, a single call to 
select Adjustment returns a set of a x (a — 1) candidates. 
The size of each weight adjustment is determined by the 
values of the boundary variables, which diminish rnono-
tonically as the method is applied. The result is that as 
better heuristics are found, smaller regions of Sh around 
bestH are explored. Eventually, no significant changes 
are made to the currently best heuristic, at which point 
the search terminates. 

There is no guarantee that this weight adjustment 
method ever eventually converges to an opt imal heuris­
tic; however, the next section demonstrates that this 
tuning method works well in practice over a wide range 
of problem instances. 

4 Exper iments w i t h GENH 
Experiments were conducted to test the hypothesis that 
automatically adapting the heuristic to the problem in­
stance wi th G E N H wi l l result in higher quality solutions 
than scheduling wi th a fixed heuristic approach. G E N H ' S 
heuristics were pitted against the ATIS dispatch policy, 
and they were pitted against using the objective func­
tion as the search heuristic. The reason for the former 
comparison is that for this application, ATIS dispatch is 
the gold standard; the reason for the latter comparison is 
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Figure 2: Performance improvement of G E N H over ATIS dispatch (at left) and over the objective function as a greedy 
search heuristic (at r ight). Improvement is measured in terms of the standard deviation of each JD's QDF. 

Figure 3: The standard deviation of each JD's QDF, 
based on the objective function scores of 200 randomly 
generated schedules; these are used in Figure 2 to express 
the performance improvement. 

that using the objective function as the greedy heuristic 
is a standard approach to try in a search-based system. 

The APA system maintains an extensive log of previous 
scheduling problem instances; this database was used for 
empirical evaluations of different versions of G E N H . The 
experiments reported here test the one G E N H version 
described in the previous section and use a set of sixty 
problem instances over the interval of days, expressed 
as Julian Dates (JDs), [2450111,2450170]. This allows 
for a range of problem characteristics in the test suite 
due to changes in the stars' relative positions, as well as 
in the phase and location of the moon; hence, they are 
sufficient to challenge the adaptive capabilities of G E N H . 

The results of these comparative analyses are shown 
in Figure 2. If we express performance improvement in 
terms of the difference between the objective function 
scores, then it would be difficult to interpret the signif­
icance of the improvement. To overcome this problem, 

we employ the expected solution quality (ESQj methodol­
ogy [Bresina, et al, 1995] and express the improvement 
on a JD in terms of the standard deviation of that JD's 
quality density function (QDF). A QDF is a statistical 
estimate of the expected density of schedules within dif­
ferent quality ranges and is based on the objective func­
tion scores obtained via iterative sampling. The QDF 
standard deviation measure better indicates the signifi-
cance of the improvement, and also takes into account 
the varying (relative) problem difficulty over the set of 
instances. For our experiment, each JD's QDF is based 
on 200 randomly generated schedules; Figure 3 plots the 
standard deviations of the sixty QDFs. 

From the left plot in Figure 2, it is clear that greedy 
search with GENH's heuristics outperforms ATIS dis­
patch. The right plot shows the comparison between 
using a fixed heuristic (the objective function in this 
case) versus adapting the heuristic for each problem. 
Furthermore, since the seeding method used in these ex­
periments starts GENH'S search with an heuristic very 
close to the objective function, the plot also illustrates 
the amount of improvement that the tuning method was 
able to achieve. Only on five of the sixty problems was 
G E N H unable to make any improvement upon the ob­
jective function as a greedy heuristic: the consecutive 
JDs [2450157,2450161]. On ten of the problems, GENH 
makes a substantial improvement of over 4.0 QDF stan­
dard deviations. 

Figure 4 illustrates the heuristics generated by GENH 
by plotting each attribute's assigned weight for the sixty 
problems. As is clear from the five plots, there is signifi­
cant variance in the heuristics considered best by GENH, 
indicating that G E N H did find relevant differences in the 
characteristics of the problem instances. 

Although these results cannot be used to infer that 
GENH produces optimal schedules for the telescope ob­
servation problem, the results confirm that automatic 
adaptation of the scheduling heuristic for each problem 
improves the quality of schedules over non-adaptive ap-
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Figure 4: The heuristics generated by GEN H illustrated by the weights assigned to each of the five candidate attributes. 
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proaches for this domain, which was the primary purpose 
of these tests. 

GENH is easily integrated into the APA system as a pre­
processing module. Furthermore, adding G E N H to the 
scheduling process is not prohibitively costly; we found 
that the particular version of G E N H presented here took 
five to ten minutes to terminate. 

5 Related Research 
GENH resembles systems such as PALO [Greiner and Ju-
risica, 1992] which contain a mechanism for modifying a 
problem solver based on experience obtained from pre­
vious activity. The PALO algorithm incrementally pro­
duces a series of problem solvers (called problem elements 
or PEs) such that each element of the series is statisti­
cally likely to be an improvement over its predecessors 
over an ensemble of problems. PE selection is accom­
plished via a hil l-cl imbing search in which candidates 
are evaluated using a performance cost function. 

COMPOSER [Gratch and Chien, 1996] uses statistical 
hil l-climbing to explore a space of heuristics. A can­
didate heuristic is adopted if it increases the expected 
performance of solving problems over a suite of prob­
lems. The adaptive version of the hybrid scheduler LR-
26, incorporating both integer programming and con­
straint propagation, settles on a particular combination 
of heuristics after a training period. A ut i l i ty function 
assigns positive values to heuristics that minimize com­
putational effort. 

The G E N H algorithm also bears a resemblance to the 
family of local search algorithms (also known as repair 
search or iterative improvement) for solving Constraint 
Satisfaction Problems (CSPs) and optimization prob­
lems [Minton, et al., 1990; Morris, 1990]. Local search al­
gorithms explore the space of candidate solutions (some­
times including invalid solutions) by performing local 
modifications to the current solution. At each step, the 
local solution modification that results in the greatest 
cost reduction, wi th respect to the given cost function, 
is selected. This process continues unti l a solution is 
reached in which no local changes can reduce the cost 
further. W i t h G E N H , of course, the goal is not to solve 
the problem, but rather to select an heuristic with which 
to subsequently solve the problem. 

6 Future Research 
A number of refinements to G E N H are planned. At 
the t ime this work was carried out, the APA scheduler 
used a deterministic greedy search; this same sched­
uler search strategy was used in GENH to evaluate can­
didate heuristics. However, more recently, the sched­
uler's search strategy has been modified to incorporate 
heuristic-biased stochastic sampling, or HBSS, [Bresina, 
1996]. HBSS stochastically explores the search space in 
the "neighborhood" of the greedy solution. The balance 
between heuristic adherence and exploration in HBSS is 
parameterized by specifying a ranking function and a 
bias function. At each decision point during search, 

these functions are used to assign selection probabilities 
to the different choices; a weighted stochastic selection is 
then made according to these probabilities. By varying 
these functions, HBSS encompasses a family of search al­
gorithms of which greedy and random search are extreme 
members. 

The current version of the APA scheduler first gener­
ates a schedule via ATIS dispatch, then performs a num­
ber of samples of HBSS; each sample generates a schedule. 
The best schedule found during these two search phases 
is then communicated to the telescope controller for ex­
ecution. The evaluation metric for candidate heuristics 
used by G E N H should be correlated with how the heuris­
tic is used during solution search. We plan to compare, 
in terms of APA scheduler performance, GENH'S current 
evaluation metric based on greedy search with one based 
instead on "greedy sampling". Greedy sampling is an in­
stance of HBSS in which all the choices tied with respect 
to the best heuristic score are assigned equal selection 
probabilities and all other inferior choices are assigned 
a zero selection probability. Hence, at each decision 
point, a random selection is made among the equally 
best choices. 

7 Concluding Remarks 
This paper has presented G E N H , an approach to adaptive 
problem solving in the telescope observation scheduling 
domain. GENH adapts to the idiosyncrasies of a given 
problem instance by generating an effective scheduling 
heuristic. GENH performs a hill-climbing search through 
the space of possible heuristics using a series of local 
modifications to a seed heuristic. An innovative aspect 
of this work is the attention paid to user-defined, so­
lution quality-based measures of heuristic performance, 
rather than performance measures based on search time 
to a solution. During GENH's search, each candidate 
heuristic is evaluated by employing the heuristic to find 
a schedule and then scoring the resulting schedule with 
the user-defined objective function. 

The research that led to G E N H was init ial ly motivated 
by the idea that the role of a domain expert should 
be limited to constructing the domain-specific objective 
function; by contrast, the task of constructing the search 
heuristic is more appropriately performed by the system 
that generates the schedules. Before GENH, it was up to 
the user to carry out a "generate and test" exploration in 
the space of heuristics in order to find a satisfactory one. 
This is a time-consuming and difficult process, one that 
the user was not likely to repeat very often. However, 
as evidenced by the empirical results presented above, 
the heuristic that performs well for one day's scheduling 
problem may not do so well for the next one. 

G E N H represents progress in the automation of 
the schedule optimization process. Experiments con­
ducted using G E N H in the telescope observation schedul­
ing domain demonstrate significant improvements over 
scheduling without adaptive heuristic selection, with l it­
tle computational overhead incurred. 
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