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Abstract 

Object identification—the task of deciding that two 
observed objects are in fact one and the same 
object—is a fundamental requirement for any sit­
uated agent that reasons about individuals. Object 
identity, as represented by the equality operator be­
tween two terms in predicate calculus, is essentially 
a first-order concept. Raw sensory observations, 
on the other hand, are essentially propositional— 
especially when formulated as evidence in standard 
probability theory. This paper describes patterns 
of reasoning that allow identity sentences to be 
grounded in sensory observations, thereby bridg­
ing the gap. We begin by defining a physical event 
space over which probabilities are defined. We then 
introduce an identity criterion, which selects those 
events that correspond to identity between observed 
objects. From this, we are able to compute the prob­
ability that any two objects are the same, given a 
stream of observations of many objects. We show 
that the appearance probability, which defines how 
an object can be expected to appear at subsequent 
observations given its current appearance, is a nat­
ural model for this type of reasoning. We apply the 
theory to the task of recognizing cars observed by 
cameras at widely separated sites in a freeway net­
work, with new heuristics to handle the inevitable 
complexity of matching large numbers of objects 
and with online learning of appearance probability 
models. Despite extremely noisy observations, we 
are able to achieve high levels of performance. 

1 Introduction 
Object identification—the task of deciding that two observed 
objects are in fact one and the same object—is a fundamental 
requirement for any situated agent that reasons about indi­
viduals. Our aim in this paper is to establish the patterns 
of reasoning involved in object identification. To avoid pos­
sibly empty theorizing, we couple this investigation with a 

'This work was sponsored by JPL's New Traffic Sensor Technol­
ogy program and by California PATH under MOU 152 and 214. 

real application of economic significance: identification of 
vehicles in freeway traffic. Each refinement of the theoretical 
framework is illustrated in the context of this application. We 
begin with a general introduction to the identification task. 
Section 2 provides a Bayesian foundation for computing the 
probability of identity. Section 3 shows how this probability 
can be expressed in terms of appearance probabilities, and 
Section 4 describes our implementation. Finally, Section 5 
presents experimental results in the application domain. 

1.1 Conceptual and theoretical issues 
The existence of individuals is central to our conceptualization 
of the world. While object recognition deals with assigning 
objects to categories, such as 1988 Toyota Celicas or adult 
humans, object identification deals with recognizing specific 
individuals, such as one's car or one's spouse. One can have 
specific relations to individuals, such as ownership or mar­
riage. Hence, it is often important to be fairly certain about 
the identity of the particular objects one encounters. 

Formally speaking, identity is expressed by the equal­
ity operator of first-order logic. Having detected an ob­
ject C in a parking lot, one might be interested in whether 
C = MyCar. Because mistaken identity is always a possibil­
ity, this becomes a question of the probability of identity: 
P(C=MyCar\ all available evidence). There has been little 
work on this question in AI . 1 The approach we wi l l take (Sec­
tion 2) is the standard Bayesian approach: define an event 
space, assign a prior, condition on the evidence, and identify 
the events corresponding to the truth of the identity sentence. 
The key step is the last, and takes the form of an identity 
criterion. Once we have a formula for the probability of iden­
tity, we must find a way to compute it in terms of quantities 
that are available in the domain model. Section 3 shows that 
one natural quantity of interest is the appearance probability. 
This quantity, which covers diverse domain-specific phenom­
ena ranging from the effects of motion, pose, and lighting to 
changes of address of credit applicants, seems to be more nat­
ural and usable than the usual division into sensor and motion 
models, which require calibration against ground truth. 

' in contrast, reasoning about category membership based on ev­
idence is the canonical task for probabilistic inference. Proposing 
that MyCar is just a very small category misses the point. 
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1.2 Application 

Figure 1: Images from two surveillance cameras roughly two miles 
apart on Highway 99 in Sacramento, California. The top image 
is from the upstream camera, and the bottom image is from the 
downstream camera. The boxed vehicle has been identified at both 
cameras. 

The authors are participants in Roadwatch, a major project 
aimed at the automation of wide-area freeway traffic surveil­
lance and control [Malik and Russell, 1997]. Object identi­
fication is required for two purposes: first, to measure link 
travel time—the actual time taken for traffic to travel between 
two fixed points on the freeway network; and second, to pro­
vide origin/destination (O/D) counts—the total number of 
vehicles traveling between any two points on the network in a 
given time interval. The sensors used in this project are video 
cameras placed on poles beside the freeway (Figure 1). The 
video streams are processed at each camera site by vehicle 
tracking software running on customized parallel hardware. 
The resulting streams of chronologically ordered vehicle re­
ports are sent to the TMC (Traffic Management Center). The 
TMC uses these reports to determine when a vehicle detected 
at one camera has reappeared at another. These matches are 
used to build up a path for each vehicle as it travels through the 
freeway network. The set of paths can be queried to compute 
link travel times and O/D counts as desired. The output of the 
system is a traffic information display, updated in real time for 
use by traffic operations managers or by individual drivers. 

Obviously, a license-plate reader would render the vehi­
cle identification task trivial, but for political and technical 

reasons, this is not feasible. In fact, because of very re­
stricted communication bandwidth, the vehicle reports sent to 
the TMC can contain only about one hundred bytes of informa­
tion. In addition, the measurements contained in the reports 
are extremely noisy, especially in rainy, foggy, and night-time 
conditions. Thus, with thousands of vehicles passing each 
camera every hour, there may be many possible matches for 
each vehicle. This leads to a combinatorial problem—finding 
most likely consistent assignments between two large sets of 
vehicles—that is very similar to that faced in data association, 
a form of the object identification problem arising in radar and 
sonar tracking. Section 4 explores this connection in more de­
tail. We adopt a solution from the data association literature, 
but also introduce a new "leave-one-out" heuristic for select­
ing reliable matches. This, together with a scheme for online 
learning of appearance models to handle changing viewing 
and traffic conditions, yields a system with performance good 
enough for practical deployment (Section 5). 

2 Inferring identity from observations 
This section shows how the probability of identity can be 
defined in terms of physical observations and events. We 
begin with the formal framework and then illustrate it in the 
traffic domain. 

2For the purposes of this paper, we will assume that each observa­
tion corresponds to exactly one physical object. This assumption can 
be relaxed, at the cost of introducing into the theory the mechanism 
whereby objects generate observations. 

3One is tempted to write this as P(a = b\o\ ,...,o„), i.e., to condi­
tion on a conjunction of the "positive" observations. However, con­
ditioning on the positive observations is not the same as conditioning 
on both positive observations and negative observations—that is, 
observations of no vehicles at a given time and place. The temp­
tation therefore reflects a natural "semi-closed-world" assumption: 
one assumes that the stated positive observations are all that have 
been made in the past, and that all other observations were negative. 
Obviously, one does not make this assumption regarding the future. 
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3 Appearance models 
The previous section showed how to express the probability 
of identity in terms of the probability of observations given 
events. Some domains, including traffic surveillance, involve 
observation sets that contain initial observations of objects as 
well as subsequent observations of objects. In these situations, 
appearance probabilities, which define how objects observed 
at some point in the past can be expected to appear at some 
point in the future, seem to provide a more usable model than 
standard motion and sensor models. In this section, we show 
how to express Eq. (1) in terms of appearance probabilities 
and describe the specific appearance probabilities used in the 
vehicle identification domain. 
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In this way, we express the probability of identity in terms of 
the probability of observations given events. We now make 
this framework more concrete in the context of the traffic 
domain. 

That is, the two observed objects are the same if each obser­
vation was generated by the life history of the same object. 
This is the basic step in relating propositional observations to 
identity sentences. 

Since the propositions in this disjunction are mutually ex­
clusive, we have 

Now the key step is to provide an identity criterion to select 
those events corresponding to a and b being the same object. 
We write this as 

Conditioning on the event space S yields 

To illustrate Eq. (1), consider the simplified case where 
the universe contains exactly two vehicles of similar appear­
ance, each moving at constant velocity along the same road. 
Two reliable cameras, located at yu and yd> make observa­
tions whenever vehicles pass by. From time t = 0 to t = 7 \ 



that i = j. This probability can only be computed by taking 
into account all other observations. 

To ground this discussion, we will now discuss the specific 
observed features and appearance probability models used in 
the traffic domain. 

3.2 Observed features for traffic 
When a certain camera c observes some vehicle i, it generates 
a vehicle report consisting of various features. Thus, the 
observation oc

i in our system is a vector of features. Currently, 
we use the features in this table: 

The matching algorithm is designed to be independent of the 
specific features used; new features of arbitrary complexity, 
informativeness, and noise level can be added without chang­
ing the algorithm. 

The arrival time model is particularly important, since it dras­
tically reduces the number of vehicle pairs that are considered 
to be plausible matches. The parameters and rep­
resent the mean and standard deviation of the predicted link 
travel time for cars that start upstream in lane xu and end up 
downstream in lane . This allows the system to accurately 
model, for example, the fact that cars in the car pool lane 
travel faster than cars in other lanes. 

In examining the empirical distributions for the appearance 
probability, we were surprised by the level of noise and lack 
of correlation in measurements of the same feature at two 
different cameras. Some features, such as saturation, appear 
virtually uncorrected. In all, we estimate that the size and 
color features provide only about 3 to 4 bits of information. 
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Finally, we assume that the probability of a specific subsequent 
observation, given a specific initial observation and a matching 
between the two observations, is independent of the other 
observations and matchings. Hence, we can factor P(D|U, w) 
into the product of the individual probabilities so that the 
identitv equation becomes 

Since the principle of exchangeability requires a uniform prior 
over and since i is constant given no information 
about the observations to which the observations in U cor­
respond, these constant terms can be grouped outside of the 
summation along with the normalization constant 
so that we have 



Figure 3: Diagram showing observed upstream and downstream 
x-position data for a sample of 41 matched vehicles from the Mack 
Road and Florin Road cameras. The horizontal axis corresponds to 
upstream x-position and the vertical axis corresponds to downstream 
x-position. Each marked point corresponds to a single matched ve­
hicle. Lane dividers are shown as horizontal and vertical lines. For 
example, 13 vehicles are observed in lane 4 (onramp, highest x val­
ues) upstream, of which 7 end up in lane 2 (middle lane) downstream, 
indicating that 

3.4 Online learning of appearance models 
Because traffic and lighting conditions change throughout the 
day, our system uses online (recursive) estimation for the ap­
pearance probability model parameters. As new matches are 
identified by the vehicle matcher, the parameters are updated 
based on the observed feature values at the upstream and 
downstream sites. Figure 3 shows a sample set of x values for 
matched vehicles, from which can be estimated. Sim­
ilarly, Figure 4 shows a sample set of hue values for matched 
vehicles, from which can be estimated. To adapt 
to changing conditions, our system uses online exponential 
forgetting. For example, if a new match is found for a vehicle 
in lane xu upstream and lane xd downstream, with link travel 
time t, then the mean travel time is updated as follows: 

The r parameter, which ranges from 0.0 to 1.0, controls the 
effective "window size" over which previous readings are 
given significant weight. 

The above assumes that the match found is in fact correct. 
In practice, we can never be certain of this. A better motivated 
approach to model updates would be to use EM; this can be 
approximated by weighting each update by the probability 
that the match is correct. 

4 Matching algorithm 
We begin by describing the simplest case, where all vehicles 
detected at the upstream camera are also detected downstream, 
and there are no onramps or offramps. In this case, the aim is 
to find pairs of vehicles a and b such that 
for some small This problem is intractable in the worst 
case (it relates to computing the permanent of a matrix), so 
we adopt a heuristic approach. 
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Figure 4: Diagram showing observed upstream and downstream hue 
data for a sample of 25 matched vehicles from the Mack Road and 
Florin Road cameras. The horizontal axis corresponds to upstream 
hue, and the vertical axis corresponds to downstream hue. The 
appearance probability for color, which includes hue, saturation, and 
value components, is modeled as a multivariate Gaussian. 

The core of the approach is the observation, from [Cox and 
Hingorani, 1994], that a most probable assignment (pairing 
all n vehicles) can be found in time 0(n3) by formulating 
the problem as a weighted bipartite matching problem and 
using any of several well-known algorithms for this task. To 
do this, we construct an association matrix M of appearance 
probabilities, where each entry so that the 
assignment with least total weight in the matrix corresponds 
to the most probable assignment, according to Eq. (2). 

For our purposes, knowing the most likely assignment is 
not enough. It can easily happen that some c of the n vehi­
cles are all very similar and fairly close to each other on the 
freeway. In this case, there wi l l be c! assignments all having 
roughly the same probability as the most probable assignment. 
Since matches within this group may be very unreliable, we 
employ a leave-one-out heuristic that "forbids," in turn, each 
match contained in the best assignment. For each forbidden 
match, we measure the reduction in likelihood for the new 
best assignment. Matches whose forbidding results in a sig­
nificant reduction are deemed reliable, since this corresponds 
to a situation where there appears to be no other reasonable 
assignment for the upstream vehicle in question. 

For example, suppose we have the following matrix: 



we accept the a=x match, since no other reasonable choice 
seems to exist. On the other hand, if we forbid b = z, the 
best assignment has weight 12.7. If 12.7 - 12.6<=t, then we 
reject b=z , since there is another match for b that yields a 
good overall assignment. By increasing the threshold t, we 
obtain more reliable matches, i.e., the error rate E is reduced; 
however, this reduces the overall number of accepted matches. 

4.1 New and missing vehicles 
In the general case, vehicles can appear from onramps between 
the cameras or can disappear onto offramps. (Equivalently, 
they can fail to be detected at the upstream or downstream 
camera.) To handle this, we add extra rows and columns to 
the association matrix. With m upstream and n downstream 
vehicles, the matrix now has m + n rows and columns to allow 
for all possibilities. Figure 5 illustrates the structure of the 
matrix for m = n = 2. Here, is the probability that a vehicle 
exits the freeway, is the number of vehicles entering the 
freeway between the cameras per unit time, and P(oi) refers 
to the prior probability of seeing a vehicle with features Oi5 

The formulas in the table explain the interesting fact that 
human observers feel far more confident matching unusual 
vehicles than typical vehicles: not only is the probability of 
confusion with other vehicles lower, but the probability that 
the upstream vehicle exited, only to be replaced by another 
vehicle of the same unusual appearance, can be discounted 
because the extra multiplicative P{oi) factor for an unusual 
vehicle would be tiny. 

Figure 5: Extended association matrix for two upstream and down-
stream observations, showing additional rows and columns to ac­
count for entering and exiting vehicles. Each entry will be replaced 
by its negative logarithmic value before computing the minimum 
weight assignment. 

4.2 Relationship to data association 
The vehicle matching problem is closely related to the tradi­
tional "data association" problem from the tracking literature, 
in which new "observations*' (from the downstream camera) 
must be associated with already-established "tracks" (from the 
upstream camera). Radar surveillance for air traffic control 
is a typical application: the radar dish determines an approx­
imate position for each aircraft every few seconds, and each 
new set of positions must be associated with the set of exist­
ing tracks. There is a large literature on data association— 

assignment and the observations given the best assignment with a 
forbidden match. 

5In our implementation, each of these models is learned online; 
and are also specific to individual lanes. 

typically over 100 papers per year. The standard text is by Bar-
Shalom and Fortmann [Bar-Shalom and Fortmann, 1988], and 
recent developments appear in [Bar-Shalom, 1992]. Ingemar 
Cox [Cox, 1993] surveys and integrates various developments, 
deriving formulas very similar to those in Figure 5. Cox's aim 
in his review paper is to present the ideas from the data asso­
ciation field to the computer vision and robotics community, 
where they might be used to resolve problems of identifying 
visual features seen in temporally separated images. 

Major differences between our work and "standard" data 
association include the following: 

1. Sensor noise and bias are large, unknown, time-varying, 
site-dependent, and camera-dependent, and sensor ob­
servations are high-dimensional. 

2. Successive observations of a vehicle are widely separated 
in time and space, and all observations are asynchronous. 

3. Vehicle trajectories are highly correlated. 

5 Results 
We tested the vehicle matcher with data from a region-based 
vehicle tracker on video sequences from the sites in Figure 1. 

On any given run, the number of matches proposed by the 
vehicle matcher depends on the reliability threshold selected 
for that run. In the results discussed below, coverage refers to 
the percent of vehicles observed by both cameras for which 
matches were proposed, and accuracy refers to the percent of 
proposed matches that were in fact correct. In general, the 
coverage goes down as the reliability threshold is increased, 
but the accuracy goes up. 

To verify the accuracy of the matcher, the ground-truth 
matches were determined by a human viewing the digitized 
sequences with the aid of a frame-based movie viewer. Since 
this method required about 3 hours of viewing to match each 
minute of video, it was used only during the early stages of 
testing. In subsequent testing, we first ran the matcher on 
the vehicle report data and then used the frame-based movie 
viewer to verify whether the suggested matches were correct. 

Testing our system involved a start-up phase during which 
it estimated the appearance probability models online. For the 
results shown in Figure 6, we trained our system on a pair of 
60-second video sequences and then ran it on the immediately 
following 60-second sequences. The sequences contained 29 
vehicles upstream, along with numerous vehicles that either 
entered or exited the freeway in between the cameras. The 
resulting accuracy/coverage curve in figure 6 shows that de­
spite very noisy sensors, the system achieved 100% accuracy 
with a coverage of 14%, and 50% accuracy with a coverage 
of 80%. Incorporating additional features would probably 
improve system performance. The boxed vehicles in Figure 1 
show a pair of vehicles correctly matched by our system. 

Link travel times between each camera pair are currently 
calculated by averaging the observed travel times for matched 
vehicles. These times were accurate to within 1 % over a dis­
tance of two miles, over a wide range of coverage/accuracy 
tradeoff points. This suggests that matched vehicles are rep­
resentative of the traffic flow—that is, the matching process 
does not select vehicles with a biased distribution of speeds. 
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Figure 6: Sample matching results: the graph shows accuracy 
versus coverage for a range of reliability threshold values. A low 
threshold implies high coverage and low accuracy, while a high 
threshold implies low coverage and high accuracy. 

Our results are comparable with those obtained by Petty et 
al. [Petty et a/., to appear], who use an "ensemble" matching 
approach that detects downstream propagation of distinct ar­
rival time patterns. The two approaches are complementary, 
in that our approach allows identification of individual vehi­
cles (and hence the generation of O/D counts), whereas the 
Petty et al approach provides a robust bootstrap method for 
initializing our arrival time models. 

6 Conclusions and further work 
This paper has described the patterns of reasoning involved 
in establishing identity from observations of objects. We pro­
posed a formal foundation based on a prior over the space 
of physical events, together with an identity criterion defin­
ing those events that correspond to observations of the same 
object. In the case of vehicle matching, the events are the 
different sets of trajectories of vehicles in a given freeway 
network. When a single trajectory passes through two vehicle 
observations, that implies that the observations correspond to 
the same object. This general approach makes it possible to 
define the probability of identity and to integrate the necessary 
patterns of reasoning into an intelligent agent. 

This research can be seen as another step in the Carnapian 
tradition that views a rational agent as beginning with unin-
formative prior beliefs and then applying Bayesian updating 
throughout its lifetime. The general relationship between per­
ception and the formation of internal models is a subject that 
needs much more investigation [Bacchus et al., 1995]. 

We showed that the abstract probability of identity can be 
expressed in terms of measurable appearance probabilities, 
which define how, when, or where objects that were observed 
at some point in the past are expected to appear at some point 
in the future. These appearance probabilities can be learned 
online to adapt to changing conditions in the environment— 
such as changing weather, lighting, and traffic patterns. 

We have implemented and tested a system for vehicle 
matching using an efficient algorithm based on bipartite 

matching combined with a leave-one-out heuristic. Despite 
very noisy feature measurements from the cameras, our sys­
tem achieved a high level of accuracy in matching individual 
vehicles, enabling us to build the first reliable system for mea­
suring link travel times. Although experimental camera data 
were not available for the system to do so, it is already ca­
pable of tracking the path of a vehicle over a sequence of 
camera sites. Thus, O/D counts for a time period can be 
computed by examining the complete set of recorded paths 
during that time period. For successful O/D measurement 
over a long sequence of cameras, however, we need to im­
prove both matching coverage and the detection rate of the 
tracking subsystem. 

The patterns of reasoning described here have broad appli­
cability to other domains. For example, the object identifica­
tion problem occurs in database management, where it is pos­
sible that two different records could correspond to the same 
entity. For example, US credit reporting agencies record over 
500 million credit-using Americans, of whom only about 100 
to 120 million are actually distinct individuals. Applying our 
approach to this problem could help with maintaining database 
consistency and with consolidating multiple databases con­
taining overlapping information. 
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