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Abstract 
We present an overview of symbolic-statistical 
modeling language PRISM whose programs are 
not only a probabil istic extension of logic pro­
grams but also able to learn f rom examples w i th 
the help of the EM learning algori thm. As a 
knowledge representation language appropriate 
for probabil istic reasoning, it can describe var­
ious types of symbolic-statistical modeling for­
malism known but unrelated so far in a sin­
gle framework. We show by examples, to­
gether w i th learning results, that most popular 
probabil istic modeling formalisms, the hidden 
Markov model and Bayesian networks, are de­
scribed by PR ISM programs. 

1 Introduct ion 
We can make programs probabilistic by incorporating 
probabil istic elements, which is rather obvious. What is 
less obvious would be the existence of a general learn­
ing algor i thm for these probabilistic programs. In this 
paper, we present an overview of symbolic-statistical 
modeling language PRISM (PRogramming In Statistical 
Model ing). PR ISM was born as the integration of logic 
programming and the general learning algori thm wi th 
which programs can change their behaviors, a posteri­
or i , by learning f rom examples. PRISM is a new type of 
programming language designed for symbolic-statistical 
modeling of complex objects and the real world. 

The theoretical basis of PRISM is fixed point (least 
model) semantics and probabil i ty theory, but the de­
velopment was spurred by the noticeable success of 
H M M (hidden Markov model) in speech recognition (and 
their applications to genetic information processing) 
[Rabiner 89, Asai et al. 93], a rapid surge of the interest 
in statist ical methods in N L P (Natural Language Pro­
cessing) [Charniak 93], well-developed uncertainty han­
dl ing mechanisms in Bayesian networks [Pearl 88] and 
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very encouraging results f rom I LP (Inductive Logic Pro­
gramming) [Muggleton 91]. They are all symbolic sys­
tems able to learn f rom statistical data. 

PRISM offers a common vehicle for these diverse re­
search fields in symbolic-statistical modeling, and also 
gives us hopes for bui lding even more complex and intel­
ligent systems. This is because PRISM programs can be 
arbi t rar i ly complex (no restrict ion on the form or size), 
and what is more, regardless of the complexity, there 
is, at least in theory, a method for PR ISM programs to 
learn from positive/negative examples. To put it differ­
ently, we have the possibility of t ra ining arbi t rar i ly large 
programs so that they behave as we desire. 

In the rest of paper, we describe PRISM in stages. We 
first describe the semantic aspect of PR ISM programs in 
Section 2, then move to an example in Section 3 where a 
program modeling human blood types is presented. Sec­
t ion 4 explains learning and the EM (Expectat ion Max­
imization) algori thm. PRISM as a programming system 
is described in Section 5, followed by examples of the 
hidden Markov model and Bayesian networks in Section 
6. Section 7 contains related work and Section 8 conclu­
sion. 

2 PRISM programs and distr ibut ional 
semantics 

PRISM programs are roughly defined as logic programs 
w i th a probabil i ty d istr ibut ion given to facts. So we can 
compute any recursive functions as a special case of non-
probabilistic facts. To capture PRISM programs mathe­
matically however, we need a probabil istic generalization 
of fixed point semantics. 

A PRISM program DB is a set of definite clauses wr i t ­
ten as DB = FUR where F is a set of facts (uni t clauses) 
and R is a set of rules (non-unit clauses). In the theo­
retical sett ing, we always equate clauses w i th the set of 
their ground instances, and allow DB to be countably 
infinite. 

What makes PRISM programs differ from usual logic 
programs is a basic joint probability distribution PF given 
to F. It means that ground uni t clauses A1 , A 2 , . . . be­
longing in f are probabil istically t rue and the probabil­
ities are determined by the jo in t probabi l i ty d istr ibut ion 
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PF LIKE etc. Here we con­
sider ground uni t clauses as random variables taking 1 
(true) or 0 (false). 

Sampling f rom PF determines the set of true facts F ' , 
and the least model of determines the t ru th of 
al l ground atoms appearing in the original program. On 
the basis of this observation, we extend Pp to a joint 
probabil i ty d ist r ibut ion PDB for al l (ground) atoms ap­
pearing in DB. We define the denotation of DB as PDB 

and call it distributional semantics. Formal treatment of 
distr ibut ional semantics is found in [Sato 95] where the 
existence of a jo int probabi l i ty distr ibut ion for infinitely 
many random variables and the measurability of the set 
of least models are discussed. 

We i l lustrate how we can extend PF to PDB by 
giving a small example. Let 

be 
a program and the associated basic distr ibut ion respec­
tively. Suppose we got a sampling from Pp which was 
(A1 = 1, A2 = 0) in vector notat ion i.e. the set of true 
facts is {A1}. 

sive PRISM programs (see H M M program in Sec­
tion 6.2). 

2. b l o o d t y p e / 1 calls genotype/2 which in turn calls 
gene/2. First two predicates have probabil i ty dis­
tr ibutions determined from that of gene/2. The 
distr ibut ion of gene/2 is arbi t rary but must be such 
that for P instanciated to f a t h e r or mother, one of 
{gene(P,a ) , gene(P,b) , gene(P,o) } is exclusively 
true. 

3. To let gene/2 predicate have an appropriate 
probabil i ty d istr ibut ion, we use a bui l t - in predi­
cate bsw/3, representing a random binary switch. 
bsw(ID,N,R) says that sampling a random binary 
switch named ID gives the result R (0 or 1) at Nth 
sample2. The probabil i ty of b s w ( - , - , l ) being true is 
called a parameter and PRISM programs containing 
only bsw/3 predicate as bui l t - in probabilistic pred­
icates are called BS programs3. 

4. Sampling all bsw/3 atoms determines which ground 
bsw/3 atom is true, thereby determines which 
ground gene/2 atom is true. Non-unit clauses to­
gether w i th these true ground atoms joint ly de­
termine the t ru th of the remaining atoms, i.e. 
genotype/2 and blood b l o o d t y p e / 1 . In this way, 
we get a sampling from the jo int probabil ity distr i­
bution for all ground atoms. 

4 Learn ing 
The above program is a fai thful representation of ge­
netic knowledge concerning how one's blood type is 
determined. It is a computational model (runnable) 

2bsw(ID,N,R) is called BS atom in [Sato 95). 
3 Currently, we admit only the class of BS programs as 

PRISM programs. Expanding the class of BS programs is a 
future task. 
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3 A b l o o d t y p e example 
As a typical symbolic-statistical model, we present a 
blood type program. It is very like a Prolog program 
and as usual, variables begin w i th upper case letters. We 
hope that the following comments wi l l help the reader 
understand the program. 

1. This program describes how one's blood type 
(b l ood t ype /1 ) is determined from the genes in­
herited f rom the parents. It happens to be non-
recursive but there is no problem in wr i t ing recur-



and at the same time, a statistical model, i.e. pro­
vides a probability distribution for bloodtype/1. Since 
blood type in the real world has a probability dis­
tribution, our learning task is to approximate it in 
terms of P D B {b loodtype( ) = 1}, the distribution for 
bloodtype/1 defined by our program, by assigning each 
binary switch bsw/3 a suitable parameter value. 

Let {bloodtype(a), bloodtype(a), bloodtype(b), 
bloodtype (o ) , . . . } be our observations of people's blood 
types. Parameters associated with bsw/3 are determined 
by a maximum likelihood method; they are calculated as 
the ones that maximize the probability of the conjunc­
tion of these observed atoms. 

An algorithm we use for maximization is the EM (Ex­
pectation Maximization) algorithm [Tanner 93]. It is 
an iterative method in statistics for maximizing likeli­
hood and has been used in various fields, in particular in 
the Baum-Welch learning algorithm for HMMs in speech 
recognition [Rabiner 89]. 

We successfully combined the EM algorithm with 
BS programs to derive a general learning algorithm 
for BS programs [Sato 95]. It should be empha­
sized that the derived learning algorithm is valid for 
the entire class of BS programs, and second that the 
class of BS programs seems fairy large. For exam­
ple, it covers Bayesian networks, HMM and PCFG 
(Probabilistic Context FVee Grammar), currently known 
as the most powerful symbolic-statistical formalism in 
AI . For more details, see [Asai et al. 93, Charniak 93, 
Charniak et al. 93, Pearl 88, Poole 93, Rabiner 89]. 

Figure 1: PRISM programming system 

5 P R I S M Programming System 
PRISM programming goes through three phases: pro­
gramming, learning and execution. Since the learning 

Figure 2: A PRISM program 

phase and the execution phase require rather different 
treatment of an original program, PRISM translates it 
into two specialized programs, one for execution and the 
other for learning. The latter works in the learning phase 
cooperating with the built-in EM learning routine to per­
form maximum likelihood estimate. 

5.1 Structure of a P R I S M Program 
A PRISM program is comprised of three parts, a model, 
a utility program and the control declarations (Figure 2). 
The model part is just a logic program whose purpose is 
to generate possible proof trees of a target atom which 
represents our observations. Those trees may or may not 
contain special built-in predicate bsw/3. Since bsw/3 is 
probabilistic, so can be the target atom, and the problem 
is to make the distribution of the target atom as close to 
the observed (empirical) distribution as possible. This is 
achieved in the learning phase by tuning the parameters 
of bsw/3 atoms. 

The utility part contains a logic program that makes 
use of the distribution PDB with special built-ins such 
as learn/0-1 for learning and prob/1-2 and cprob/2-3 
for calculation of probabilities. The model part and the 
utility part should be conceptually distinguished, but 
actually, when combined, they look like just a logic pro­
gram with special built-ins. 

The control declarations give information required for 
the learning phase. Currently, we have target declara­
tion for specifying a target atom, and data declaration 
for specifying a file containing teacher data (randomly 
sampled target atoms). 

5.2 Learning phase 
The learning phase starts with commands learn /0 -1 . 
Prior to them, we have to specify a target atom by target 
declaration, and the data file by data declaration. 
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Teacher data are expressed as ground literals contain­
ing the target atom. They are henceforth called goals. 
What PRISM does in the learning phase is to adjust sta­
tist ical parameters (associated w i th bsw/3) to maximize 
the conjunctive probabil i ty of these goals. Presently 
for practical reasons, only positive goals are allowed as 
teacher data. 

PRISM, given the goals in the data file, builds a ta­
ble to keep the records of the correspondence between 
a goal and the conjunctions of bsw/3 atoms that ap­
pear in one of the proof trees of the goal. It means that 
PRISM computes all solutions, by top-down exhaustive 
search, and hence sometimes becomes computationally 
inefficient compared to specialized algorithms developed 
for specific tasks. Anyway, after completing the table, 
PRISM sets random values (between 0 and 1) to sta­
t ist ical parameters associated wi th bsw/3 atoms in the 
table. The EM learning routine then starts to update 
these parameters iteratively unt i l convergence to attain 
the maximum likelihood estimators. 

5 .3 E x e c u t i o n p h a s e 
After learning, we run the learned program to check how 
it learned or how it behaves. There are three execution 
modes, i.e. sampling, answer with probability and answer 
with formula. 

A special command is used to specify the execution 
mode. Sampling is done by the command sample/1. 
For example, for query I ?- sample (b lood type(X) ) 
the system returns the answer X=a, X=b, X=o or 
X=ab according to the distr ibut ion of b l o o d t y p e / 1 . 
The commands p r o b / 2 and cprob /3 are used for the 
answer w i th probabil i ty mode; for the query I ?-
p r o b ( b l o o d t y p e ( a ) , P r o b ) we have Prob=0.4 for in­
stance. In the case tha t the given formula is false wi th 
probabil i ty 1 such as b lood type (a ) & b loodtype(b) 
we have answer no. 

The commands p r o o f / 1 and p r o b f / 2 give answers 
w i th formula. The formula is a D N F of bsw/3 atoms 
which logically explains the given formula. For example, 
the answer w i th formula for b lood type(a ) is 

6 Examples 
In this section, we present modeling examples by PRISM 
programs, together w i th learning results. 

6.1 Blood type 
The first one is the blood type program in Section 3. 
In case of Japan, the rat io of blood types is A :0 :B :AB 
= 4:3:2:1. We art i f icial ly generated random data wi th 
this rat io and used them as teacher data for the pro­
gram to estimate the probabil i ty distr ibution of gene/2. 
The result is shown in Table 1. Conv shows converged 
parameters values of the bsw/3 named ID. 

6 .2 H M M 

The hidden Markov model (HMM) [Rabiner 89], which 
has long been a basic tool for speech recognition, stands 
for a class of finite state automata in which transition is 
probabilistic and an alphabet is emitted on each transi­
t ion. What we can observe from outside is only an out­
put string consisting of emitted alphabets while the state 
transition is not observable, hence the name of H M M . 
Figure 3 is an example of H M M that has a state set 
{sO, s1, s2} and output alphabets {a,b} . We can see 
from the figure that the transit ion probabil i ty from sO 
to sO is 0.7 whereas that of sO to s1 is 0.3. We can 
also see that on a transition from sO, a is emitted wi th 
probabil ity 0.2 and b w i th probabil ity 0 .8 etc. 

This H M M is described by a PRISM program on next 
page (the ut i l i ty part is not shown). For learning, we 
l imi t the length of output strings to 5 and leave all pa­
rameters associated wi th bsw/3 undefined. 

A learning experiment was conducted using 500 
teacher data4 generated from the H M M in Figure 3. We 
then let the program learn the data placed on the file 
hmm.dat by the PRISM's built- in EM learning routine. 
Convergence is judged when an increment of the loga­
ri thmic likelihood of the conjunction of all hmm/1 atoms 
(teacher data) becomes less than 1 0 - 6 . The result is 
shown in Table 2 (Smp shows original parameter values). 

In PRISM, the probabilities of atoms are com­
puted by p rob /2 predicate and the probabil ity of 
p r o ( h m m ( [ a , a , b , a , b ] ) , ? ) is 

This experiment exemplifies the expressive power of 
PRISM and the learnability of HMMs. It is however 

4These data were obtained from running the HMM pro­
gram in sampling mode. 
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not sufficient to claim practical usability of PRISM, 
because the practical merit of using H M M s resides in 
the availabil i ty of three efficient algorithms for three 
basic problems. Namely, the forward-backward algo­
r i t hm [Rabiner 89] for calculating the probabil i ty of a 
given str ing, the V i te rb i algori thm [Rabiner 89] for de­
ciding the most l ikely state transit ion sequence for the 
given str ing and the Baum-Welch learning algori thm 
[Rabiner 89] to estimate the probabil i ty parameters of 
an H M M . We expect that since PRISM is a general pro­
gramming language, it w i l l not be very difficult to write 
PR ISM programs for these algorithms. 

Table 2: Result of H M M learning 

" I D 
! 1 
! 2 

3 
4 
5 

Smp 
0.60 
0.30 
0.70 
0.20 
0.85 

Conv 
0.574 
0.319 
0.672 
0.198 
0.849 

6.3 Bayes ian n e t w o r k s 

Now we tu rn to Bayesian networks [Pearl 88]. Bayesian 
networks are a knowledge representation language to 

represent statistical dependencies among random vari­
ables. We confine ourselves to a case where random 
variables are binary, i.e. propositions. Dependencies are 
expressed as a directed acyclic graph where nodes repre­
sent propositions and links indicate direct probabilistic 
dependencies quantified w i th probabil it ies. The graph 
as a whole represents a jo int probabi l i ty distr ibut ion of 
propositions. For example5, In Figure 4, it holds that 

P( Tamering, Fire, Alarm, Smoke, Learning, Report) 
= P(Report | Leaving)P(Leaving \ Alarm) 

P(Alarm \ Tampering, Fire)P(Smoke \ Fire) 
P( Fire) P( Tampering) 

Following [Poole 93], we describe this Bayesian net­
work as follows: 
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Table 3: Result of Bayesian learning 

An experiment was conducted using 500 teacher data 
sampled from the above program wi th parameter values 
shown as Smp in Table 3. Convergence is obtained after 
two iterations of the EM learning routine and the con­
verged parameter values are shown as Conv in Table 3. 

Af ter learning, we can check various probabilities by 
using bui l t - in predicates such as p rob /2 and cprob/3 . 
For instance, P(Fire \Smoke,-*Alarm), the probabil i ty 
of a fire breaking out while smoke is observed but the 
alarm is not r inging, is 

7 Related work 
PRISM is a general programming language wi th the abil­
i ty of learning, and we don't have many predecessors 
w i th the same character and power. Probably, most di­
rectly related one is Poole's Probabilistic Horn abduction 
[Poole 93]. His semantics however excludes large part 
of usual logic programs6. Furthermore probabilities are 
considered only for f inite cases (no jo int distr ibution for 
inf initely many random variables). Accordingly there is 
no way to express Markov chains such as HMMs. 

Ng and Subrahmanian proposed Probabilistic Logic 
Programming [Ng 92]. Their approach is based on in­
tervals. They assign probabil i ty ranges to atoms in the 
program and check, using linear programming technique, 
if probabil it ies satisfying those ranges actually exist or 
not. The use of linear programming confines their ap­
proach to a finite domain. Neither of Poole's proposal 
or Ng and Subrahmanian' proposal mentions learning. 

Charniak and Goldman proposed a special lan­
guage F R A I L 3 for construction of Bayesian networks 
[Charniak et al. 93]. A l though their rules look much 
like definite clauses annotated w i th probabil i ty depen­
dencies, the semantics is not very clear and no learning 
mechanism is provided for their programs. 

Hashida [Hashida 94] proposed a rather general frame­
work for natura l language processing as probabilistic 
constraint logic programming. He assigned probabilities 
to between literals and let them denote the degree of the 
probabil i ty of invocation. He has shown constraints are 
efficiently solvable by making use of these probabilities. 

6 This is due mainly to the acyclicity assumption made in 
[Poole 93]. 

8 Conclusion 
We have presented PRISM which is a new modeling lan­
guage for symbolic-statistical phenomena. It not only 
has general computing power combined w i th probabilis­
tic semantics but also has a general learning mechanism 
that enables any PRISM program to learn from exam­
ples. Below are two potential application areas. 

PRISM programs can define Markov chains such as 
HMMs wi th mathematical rigor. Using this property, 
and taking advantage of PRISM's first order expressive­
ness, it looks feasible to describe Markov decision pro­
cesses controlled by complex symbolic reasoning. This 
might contribute to modeling agents w i th rich knowl­
edge, interacting and learning one another. 

NLP is another promising area because of the obvi­
ous need for describing statistical correlations between 
syntactic structures and semantic structures. It is also 
noticeable that a large corpus is already available for 
learning. 

Computation power and learning power should be 
unified to give a new dimension to programming. We 
hope that PRISM brings us one step closer to the cross-
ferti l ization of computation and learning. 
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