
P R I S M : A L a n g u a g e f o r S y m b o l i c - S t a t i s t i c a l M o d e l i n g *

Taisuke SATO† and Yoshitaka K A M E Y A ‡

Dept. of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo

Japan 152

Abstract
We present an overview of symbolic-statistical
modeling language PRISM whose programs are
not only a probabil istic extension of logic pro­
grams but also able to learn f rom examples w i th
the help of the EM learning algori thm. As a
knowledge representation language appropriate
for probabil istic reasoning, it can describe var­
ious types of symbolic-statistical modeling for­
malism known but unrelated so far in a sin­
gle framework. We show by examples, to­
gether w i th learning results, that most popular
probabil istic modeling formalisms, the hidden
Markov model and Bayesian networks, are de­
scribed by PR ISM programs.

1 Introduct ion
We can make programs probabilistic by incorporating
probabil istic elements, which is rather obvious. What is
less obvious would be the existence of a general learn­
ing algor i thm for these probabilistic programs. In this
paper, we present an overview of symbolic-statistical
modeling language PRISM (PRogramming In Statistical
Model ing). PR ISM was born as the integration of logic
programming and the general learning algori thm wi th
which programs can change their behaviors, a posteri­
or i , by learning f rom examples. PRISM is a new type of
programming language designed for symbolic-statistical
modeling of complex objects and the real world.

The theoretical basis of PRISM is fixed point (least
model) semantics and probabil i ty theory, but the de­
velopment was spurred by the noticeable success of
H M M (hidden Markov model) in speech recognition (and
their applications to genetic information processing)
[Rabiner 89, Asai et al. 93], a rapid surge of the interest
in statist ical methods in N L P (Natural Language Pro­
cessing) [Charniak 93], well-developed uncertainty han­
dl ing mechanisms in Bayesian networks [Pearl 88] and

*This paper is partly based on a report submitted for
Computational Logic Network news letter.

† email: sato@cs.titech.ac.jp
*email: kame@cs.titech.ac.jp

very encouraging results f rom I LP (Inductive Logic Pro­
gramming) [Muggleton 91]. They are all symbolic sys­
tems able to learn f rom statistical data.

PRISM offers a common vehicle for these diverse re­
search fields in symbolic-statistical modeling, and also
gives us hopes for bui lding even more complex and intel­
ligent systems. This is because PRISM programs can be
arbi t rar i ly complex (no restrict ion on the form or size),
and what is more, regardless of the complexity, there
is, at least in theory, a method for PR ISM programs to
learn from positive/negative examples. To put it differ­
ently, we have the possibility of t ra ining arbi t rar i ly large
programs so that they behave as we desire.

In the rest of paper, we describe PRISM in stages. We
first describe the semantic aspect of PR ISM programs in
Section 2, then move to an example in Section 3 where a
program modeling human blood types is presented. Sec­
t ion 4 explains learning and the EM (Expectat ion Max­
imization) algori thm. PRISM as a programming system
is described in Section 5, followed by examples of the
hidden Markov model and Bayesian networks in Section
6. Section 7 contains related work and Section 8 conclu­
sion.

2 PRISM programs and distr ibut ional
semantics

PRISM programs are roughly defined as logic programs
w i th a probabil i ty d istr ibut ion given to facts. So we can
compute any recursive functions as a special case of non-
probabilistic facts. To capture PRISM programs mathe­
matically however, we need a probabil istic generalization
of fixed point semantics.

A PRISM program DB is a set of definite clauses wr i t ­
ten as DB = FUR where F is a set of facts (uni t clauses)
and R is a set of rules (non-unit clauses). In the theo­
retical sett ing, we always equate clauses w i th the set of
their ground instances, and allow DB to be countably
infinite.

What makes PRISM programs differ from usual logic
programs is a basic joint probability distribution PF given
to F. It means that ground uni t clauses A1 , A 2 , . . . be­
longing in f are probabil istically t rue and the probabil­
ities are determined by the jo in t probabi l i ty d istr ibut ion

1330 PROBABILISTIC REASONING

PF LIKE etc. Here we con­
sider ground uni t clauses as random variables taking 1
(true) or 0 (false).

Sampling f rom PF determines the set of true facts F ' ,
and the least model of determines the t ru th of
al l ground atoms appearing in the original program. On
the basis of this observation, we extend Pp to a joint
probabil i ty d ist r ibut ion PDB for al l (ground) atoms ap­
pearing in DB. We define the denotation of DB as PDB

and call it distributional semantics. Formal treatment of
distr ibut ional semantics is found in [Sato 95] where the
existence of a jo int probabi l i ty distr ibut ion for infinitely
many random variables and the measurability of the set
of least models are discussed.

We i l lustrate how we can extend PF to PDB by
giving a small example. Let

be
a program and the associated basic distr ibut ion respec­
tively. Suppose we got a sampling from Pp which was
(A1 = 1, A2 = 0) in vector notat ion i.e. the set of true
facts is {A1}.

sive PRISM programs (see H M M program in Sec­
tion 6.2).

2. b l o o d t y p e / 1 calls genotype/2 which in turn calls
gene/2. First two predicates have probabil i ty dis­
tr ibutions determined from that of gene/2. The
distr ibut ion of gene/2 is arbi t rary but must be such
that for P instanciated to f a t h e r or mother, one of
{gene(P,a) , gene(P,b) , gene(P,o) } is exclusively
true.

3. To let gene/2 predicate have an appropriate
probabil i ty d istr ibut ion, we use a bui l t - in predi­
cate bsw/3, representing a random binary switch.
bsw(ID,N,R) says that sampling a random binary
switch named ID gives the result R (0 or 1) at Nth
sample2. The probabil i ty of b s w (- , - , l) being true is
called a parameter and PRISM programs containing
only bsw/3 predicate as bui l t - in probabilistic pred­
icates are called BS programs3.

4. Sampling all bsw/3 atoms determines which ground
bsw/3 atom is true, thereby determines which
ground gene/2 atom is true. Non-unit clauses to­
gether w i th these true ground atoms joint ly de­
termine the t ru th of the remaining atoms, i.e.
genotype/2 and blood b l o o d t y p e / 1 . In this way,
we get a sampling from the jo int probabil ity distr i­
bution for all ground atoms.

4 Learn ing
The above program is a fai thful representation of ge­
netic knowledge concerning how one's blood type is
determined. It is a computational model (runnable)

2bsw(ID,N,R) is called BS atom in [Sato 95).
3 Currently, we admit only the class of BS programs as

PRISM programs. Expanding the class of BS programs is a
future task.

SATO & KAMEYA 1331

3 A b l o o d t y p e example
As a typical symbolic-statistical model, we present a
blood type program. It is very like a Prolog program
and as usual, variables begin w i th upper case letters. We
hope that the following comments wi l l help the reader
understand the program.

1. This program describes how one's blood type
(b l ood t ype /1) is determined from the genes in­
herited f rom the parents. It happens to be non-
recursive but there is no problem in wr i t ing recur-

and at the same time, a statistical model, i.e. pro­
vides a probability distribution for bloodtype/1. Since
blood type in the real world has a probability dis­
tribution, our learning task is to approximate it in
terms of P D B {b loodtype() = 1}, the distribution for
bloodtype/1 defined by our program, by assigning each
binary switch bsw/3 a suitable parameter value.

Let {bloodtype(a), bloodtype(a), bloodtype(b),
bloodtype (o) , . . . } be our observations of people's blood
types. Parameters associated with bsw/3 are determined
by a maximum likelihood method; they are calculated as
the ones that maximize the probability of the conjunc­
tion of these observed atoms.

An algorithm we use for maximization is the EM (Ex­
pectation Maximization) algorithm [Tanner 93]. It is
an iterative method in statistics for maximizing likeli­
hood and has been used in various fields, in particular in
the Baum-Welch learning algorithm for HMMs in speech
recognition [Rabiner 89].

We successfully combined the EM algorithm with
BS programs to derive a general learning algorithm
for BS programs [Sato 95]. It should be empha­
sized that the derived learning algorithm is valid for
the entire class of BS programs, and second that the
class of BS programs seems fairy large. For exam­
ple, it covers Bayesian networks, HMM and PCFG
(Probabilistic Context FVee Grammar), currently known
as the most powerful symbolic-statistical formalism in
AI . For more details, see [Asai et al. 93, Charniak 93,
Charniak et al. 93, Pearl 88, Poole 93, Rabiner 89].

Figure 1: PRISM programming system

5 P R I S M Programming System
PRISM programming goes through three phases: pro­
gramming, learning and execution. Since the learning

Figure 2: A PRISM program

phase and the execution phase require rather different
treatment of an original program, PRISM translates it
into two specialized programs, one for execution and the
other for learning. The latter works in the learning phase
cooperating with the built-in EM learning routine to per­
form maximum likelihood estimate.

5.1 Structure of a P R I S M Program
A PRISM program is comprised of three parts, a model,
a utility program and the control declarations (Figure 2).
The model part is just a logic program whose purpose is
to generate possible proof trees of a target atom which
represents our observations. Those trees may or may not
contain special built-in predicate bsw/3. Since bsw/3 is
probabilistic, so can be the target atom, and the problem
is to make the distribution of the target atom as close to
the observed (empirical) distribution as possible. This is
achieved in the learning phase by tuning the parameters
of bsw/3 atoms.

The utility part contains a logic program that makes
use of the distribution PDB with special built-ins such
as learn/0-1 for learning and prob/1-2 and cprob/2-3
for calculation of probabilities. The model part and the
utility part should be conceptually distinguished, but
actually, when combined, they look like just a logic pro­
gram with special built-ins.

The control declarations give information required for
the learning phase. Currently, we have target declara­
tion for specifying a target atom, and data declaration
for specifying a file containing teacher data (randomly
sampled target atoms).

5.2 Learning phase
The learning phase starts with commands learn /0 -1 .
Prior to them, we have to specify a target atom by target
declaration, and the data file by data declaration.

1332 PROBABILISTIC REASONING

Teacher data are expressed as ground literals contain­
ing the target atom. They are henceforth called goals.
What PRISM does in the learning phase is to adjust sta­
tist ical parameters (associated w i th bsw/3) to maximize
the conjunctive probabil i ty of these goals. Presently
for practical reasons, only positive goals are allowed as
teacher data.

PRISM, given the goals in the data file, builds a ta­
ble to keep the records of the correspondence between
a goal and the conjunctions of bsw/3 atoms that ap­
pear in one of the proof trees of the goal. It means that
PRISM computes all solutions, by top-down exhaustive
search, and hence sometimes becomes computationally
inefficient compared to specialized algorithms developed
for specific tasks. Anyway, after completing the table,
PRISM sets random values (between 0 and 1) to sta­
t ist ical parameters associated wi th bsw/3 atoms in the
table. The EM learning routine then starts to update
these parameters iteratively unt i l convergence to attain
the maximum likelihood estimators.

5 .3 E x e c u t i o n p h a s e
After learning, we run the learned program to check how
it learned or how it behaves. There are three execution
modes, i.e. sampling, answer with probability and answer
with formula.

A special command is used to specify the execution
mode. Sampling is done by the command sample/1.
For example, for query I ?- sample (b lood type(X))
the system returns the answer X=a, X=b, X=o or
X=ab according to the distr ibut ion of b l o o d t y p e / 1 .
The commands p r o b / 2 and cprob /3 are used for the
answer w i th probabil i ty mode; for the query I ?-
p r o b (b l o o d t y p e (a) , P r o b) we have Prob=0.4 for in­
stance. In the case tha t the given formula is false wi th
probabil i ty 1 such as b lood type (a) & b loodtype(b)
we have answer no.

The commands p r o o f / 1 and p r o b f / 2 give answers
w i th formula. The formula is a D N F of bsw/3 atoms
which logically explains the given formula. For example,
the answer w i th formula for b lood type(a) is

6 Examples
In this section, we present modeling examples by PRISM
programs, together w i th learning results.

6.1 Blood type
The first one is the blood type program in Section 3.
In case of Japan, the rat io of blood types is A :0 :B :AB
= 4:3:2:1. We art i f icial ly generated random data wi th
this rat io and used them as teacher data for the pro­
gram to estimate the probabil i ty distr ibution of gene/2.
The result is shown in Table 1. Conv shows converged
parameters values of the bsw/3 named ID.

6 .2 H M M

The hidden Markov model (HMM) [Rabiner 89], which
has long been a basic tool for speech recognition, stands
for a class of finite state automata in which transition is
probabilistic and an alphabet is emitted on each transi­
t ion. What we can observe from outside is only an out­
put string consisting of emitted alphabets while the state
transition is not observable, hence the name of H M M .
Figure 3 is an example of H M M that has a state set
{sO, s1, s2} and output alphabets {a,b} . We can see
from the figure that the transit ion probabil i ty from sO
to sO is 0.7 whereas that of sO to s1 is 0.3. We can
also see that on a transition from sO, a is emitted wi th
probabil ity 0.2 and b w i th probabil ity 0 .8 etc.

This H M M is described by a PRISM program on next
page (the ut i l i ty part is not shown). For learning, we
l imi t the length of output strings to 5 and leave all pa­
rameters associated wi th bsw/3 undefined.

A learning experiment was conducted using 500
teacher data4 generated from the H M M in Figure 3. We
then let the program learn the data placed on the file
hmm.dat by the PRISM's built- in EM learning routine.
Convergence is judged when an increment of the loga­
ri thmic likelihood of the conjunction of all hmm/1 atoms
(teacher data) becomes less than 1 0 - 6 . The result is
shown in Table 2 (Smp shows original parameter values).

In PRISM, the probabilities of atoms are com­
puted by p rob /2 predicate and the probabil ity of
p r o (h m m ([a , a , b , a , b]) , ?) is

This experiment exemplifies the expressive power of
PRISM and the learnability of HMMs. It is however

4These data were obtained from running the HMM pro­
gram in sampling mode.

SATO & KAMEYA 1333

not sufficient to claim practical usability of PRISM,
because the practical merit of using H M M s resides in
the availabil i ty of three efficient algorithms for three
basic problems. Namely, the forward-backward algo­
r i t hm [Rabiner 89] for calculating the probabil i ty of a
given str ing, the V i te rb i algori thm [Rabiner 89] for de­
ciding the most l ikely state transit ion sequence for the
given str ing and the Baum-Welch learning algori thm
[Rabiner 89] to estimate the probabil i ty parameters of
an H M M . We expect that since PRISM is a general pro­
gramming language, it w i l l not be very difficult to write
PR ISM programs for these algorithms.

Table 2: Result of H M M learning

" I D
! 1
! 2

3
4
5

Smp
0.60
0.30
0.70
0.20
0.85

Conv
0.574
0.319
0.672
0.198
0.849

6.3 Bayes ian n e t w o r k s

Now we tu rn to Bayesian networks [Pearl 88]. Bayesian
networks are a knowledge representation language to

represent statistical dependencies among random vari­
ables. We confine ourselves to a case where random
variables are binary, i.e. propositions. Dependencies are
expressed as a directed acyclic graph where nodes repre­
sent propositions and links indicate direct probabilistic
dependencies quantified w i th probabil it ies. The graph
as a whole represents a jo int probabi l i ty distr ibut ion of
propositions. For example5, In Figure 4, it holds that

P(Tamering, Fire, Alarm, Smoke, Learning, Report)
= P(Report | Leaving)P(Leaving \ Alarm)

P(Alarm \ Tampering, Fire)P(Smoke \ Fire)
P(Fire) P(Tampering)

Following [Poole 93], we describe this Bayesian net­
work as follows:

1334 PROBABILISTIC REASONING

Table 3: Result of Bayesian learning

An experiment was conducted using 500 teacher data
sampled from the above program wi th parameter values
shown as Smp in Table 3. Convergence is obtained after
two iterations of the EM learning routine and the con­
verged parameter values are shown as Conv in Table 3.

Af ter learning, we can check various probabilities by
using bui l t - in predicates such as p rob /2 and cprob/3 .
For instance, P(Fire \Smoke,-*Alarm), the probabil i ty
of a fire breaking out while smoke is observed but the
alarm is not r inging, is

7 Related work
PRISM is a general programming language wi th the abil­
i ty of learning, and we don't have many predecessors
w i th the same character and power. Probably, most di­
rectly related one is Poole's Probabilistic Horn abduction
[Poole 93]. His semantics however excludes large part
of usual logic programs6. Furthermore probabilities are
considered only for f inite cases (no jo int distr ibution for
inf initely many random variables). Accordingly there is
no way to express Markov chains such as HMMs.

Ng and Subrahmanian proposed Probabilistic Logic
Programming [Ng 92]. Their approach is based on in­
tervals. They assign probabil i ty ranges to atoms in the
program and check, using linear programming technique,
if probabil it ies satisfying those ranges actually exist or
not. The use of linear programming confines their ap­
proach to a finite domain. Neither of Poole's proposal
or Ng and Subrahmanian' proposal mentions learning.

Charniak and Goldman proposed a special lan­
guage F R A I L 3 for construction of Bayesian networks
[Charniak et al. 93]. A l though their rules look much
like definite clauses annotated w i th probabil i ty depen­
dencies, the semantics is not very clear and no learning
mechanism is provided for their programs.

Hashida [Hashida 94] proposed a rather general frame­
work for natura l language processing as probabilistic
constraint logic programming. He assigned probabilities
to between literals and let them denote the degree of the
probabil i ty of invocation. He has shown constraints are
efficiently solvable by making use of these probabilities.

6 This is due mainly to the acyclicity assumption made in
[Poole 93].

8 Conclusion
We have presented PRISM which is a new modeling lan­
guage for symbolic-statistical phenomena. It not only
has general computing power combined w i th probabilis­
tic semantics but also has a general learning mechanism
that enables any PRISM program to learn from exam­
ples. Below are two potential application areas.

PRISM programs can define Markov chains such as
HMMs wi th mathematical rigor. Using this property,
and taking advantage of PRISM's first order expressive­
ness, it looks feasible to describe Markov decision pro­
cesses controlled by complex symbolic reasoning. This
might contribute to modeling agents w i th rich knowl­
edge, interacting and learning one another.

NLP is another promising area because of the obvi­
ous need for describing statistical correlations between
syntactic structures and semantic structures. It is also
noticeable that a large corpus is already available for
learning.

Computation power and learning power should be
unified to give a new dimension to programming. We
hope that PRISM brings us one step closer to the cross-
ferti l ization of computation and learning.

References
[Asai et al. 93] Asai,K., Hayamizu,S. and Handa,K.,

Prediction of protein secondary structure by the
hidden Markov model, CABIOS 9 No.2 p p l 4 M 4 6 ,
1993.

[Charniak 93] Charniak,E., Statistical Language Learn­
ing, The M I T Press, 1993.

[Charniak et al. 93] Charniak,E. and Goldman,R.P., A
Language for Construction of Belief Networks,
IEEE P A M I 15 No 3, ppl96-208, 1993

[Hashida 94] Hashida,K., Dynamics of Symbol Systems,
NGC 12, pp285-310, 1994.

[Muggleton 91] Muggleton,S., Inductive Logic Program­
ming, NGC 8, pp295-318, 1991.

[Ng 92] Ng,R. and Subrahmanian,V.S., Probabilistic
Logic Programming, Information and Computat ion
101, ppl50-201,1992.

[Pearl 88] Pearl,J., Probabilistic Reasoning in Intell i­
gent Systems, Morgan Kaufmann, 1988.

[Poole 93] Poole,D., Probabilistic Horn abduction and
Bayesian networks, Art i f ic ia l Intelligence 64, pp81-
129, 1993.

[Rabiner 89] Rabiner,L.R., A Tutor ial on Hidden
Markov Models and Selected Applications in Speech
Recognition, Proc. of the IEEE 77, No. 2, pp257-
286, 1989.

[Sato 95] Sato,T., A Statistical Learning Method for
Logic Programs wi th Distr ibut ion Semantics, Proc.
of ICLP 95, pp715-729, 1995.

[Tanner 93] Tanner,M., Tools for Statistical Inference
(2nd ed.), Springer-Verlag, 1986.

SATO & KAMEYA 1335

ROBOTICS

ROBOTICS

Robotics 1

