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Abstract 
Localization is the problem of determining the po­
sition of a mobile robot from sensor data. Most ex­
isting localization approaches are passive, i.e., they 
do not exploit the opportunity to control the robot's 
effectors during localization. This paper proposes 
an active localization approach. The approach pro­
vides rational criteria for (1) setting the robot's mo­
tion direction (exploration), and (2) determining the 
pointing direction of the sensors so as to most effi­
ciently localize the robot. Furthermore, it is able to 
deal with noisy sensors and approximative world 
models. The appropriateness of our approach is 
demonstrated empirically using a mobile robot in 
a structured office environment. 

1 Introduction 
To navigate reliably in indoor environments, a mobile robot 
must know where it is. Over the last few years, there has been 
a tremendous scientific interest in algorithms for estimating 
a robot's location from sensor data. A recent book on this 
issue [Borenstein et al, 1996] illustrates the importance of 
the localization problem and provides a unique description of 
the state-of-the-art. 

The majority of existing approaches to localization are pas­
sive. Passive localization exclusively addresses the estimation 
of the location based on an incoming stream of sensor data. 
It rests on the assumption that neither robot motion, nor the 
pointing direction of the robot's sensors can be controlled. 
Active localization assumes that during localization, the lo­
calization routine has partial or full control over the robot, 
providing the opportunity to increase the efficiency and the 
robustness of localization. Key open issues in active localiza­
tion are "where to move" and "where to look" so as to best 
localize the robot. 

This paper demonstrates that active localization is a 
promising research direction for developing more efficient 
and more robust localization methods. In other sub-fields 
of artificial intelligence (such as heuristic search and ma­
chine learning), the value of active control during learning 

and problem solving has long been recognized. It has been 
shown, both through theoretical analysis and practical exper­
imentation, that the complexity of achieving a task can be 
greatly reduced by actively interacting with the environment. 
For example, choosing the right action during exploration 
can reduce exponential complexity to low-degree polynomial 
complexity, as for example shown in Koenig's and Thrun's 
work on exploration in heuristic search and learning control 
[Koenig, 1992; Thrun, 1992]. Similarly, active vision (see 
e.g., [Ballard and Brown, 1982]) has also led to results supe­
rior to passive approaches to computer vision. In the context 
of mobile robot localization, actively controlling a robot is 
particularly beneficial when the environment possesses rela­
tively few features that enable a robot to unambiguously de­
termine its location. This is the case in many office environ­
ments. For example, corridors and offices often look alike for 
a mobile robot, hence random motion or perpetual wall fol­
lowing is often incapable for determining a robot's position, 
or very inefficient. 

In this paper we demonstrate that actively controlling the 
robot's actuators can significantly improve the efficiency of 
localization. Our framework is based on Markov localiza­
tion, a passive probabilistic approach to localization which 
was recently developed in different variants by [Burgard et 
aiy 1996; Kaelbling et al., 1996; Nourbakhsh et al.t 1995; 
Simmons and Koenig, 1995]. At any point in time, Markov 
localization maintains a probability density (belief) over the 
entire configuration space of the robot; however, it does not 
provide an answer as to how to control the robot's actuators. 
The guiding principle of our approach is to control the ac­
tuators so as to minimize future expected uncertainty. Un­
certainty is measured by the entropy of future belief distribu­
tions. By choosing actions to minimize the expected future 
uncertainty, the approach is capable of actively localizing the 
robot. 

The approach is empirically validated in the context of two 
localization problems: 

1. Active navigation, which addresses the questions of 
where to move next, and 

2. Active sensing, which addresses the problem of what 
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sensors to use and where to point them. 

Our implementation assumes that initially, the robot is given 
a metric map of its environment, but it does not know where it 
is. Notice that this is a difficult localization problem; most ex­
isting approaches (see, e.g., [Borenstein et al, 1996]) concen­
trate on situations where the initial robot location is known 
and are not capable of localizing a robot from scratch. Our 
approach has been empirically tested using a mobile robot 
equipped with a circular array of 24 sonar sensors. The key 
experimental result is that the efficiency of localization is im­
proved drastically by actively controlling the robot's motion 
direction and by actively controlling its sensors. 

2 Related Work 

While most research has concentrated on passive localization 
(see e.g., [Borenstein et al, 1996]), active localization has 
received considerably little attention in the mobile robotics 
community. This is primarily because the majority of litera­
ture concerned with robot control (e.g., the planning commu­
nity) assumes that the position of the robot is known, whereas 
research on localization has mainly focused on the estima­
tion problem itself. In recent years, navigation under uncer­
tainty has been addressed by a few researchers [Nourbakhsh 
et al., 1995; Simmons and Koenig, 1995], who developed 
the Markov navigation paradigm. However, both their ap­
proaches do not aim at actively localizing the robot. Local­
ization occurs as a side effect when operating the robot under 
uncertainty. Moreover, as argued by Kaelbling [Kaelbling et 
al.y 1996], there exist conditions under which the approach 
reported in [Simmons and Koenig, 1995] can exhibit cyclic 
behavior due to uncertainty in localization. 

On the forefront of localization driven navigation, [Kuipers 
and Byun, 1981 ] used a rehearsal procedure to check whether 
a location has been visited while learning a map. In [Klein-
berg, 1994] the problem of active localization is treated the­
oretically in finding "critical directions within the environ­
ment" under the assumption of perfect sensors. 

In [Kaelbling et a/., 1995], acting in the environment is 
modeled as a partially observable Markov decision process 
(POMDP). This approach derives an optimal strategy for 
moving to a target location given that the position of the 
robot is not known perfectly. In [Kaelbling et al., 1996] 
this method is extended by actions allowing the robot to im­
prove its position estimation. This is done by minimizing 
the expected entropy after the immediate next robot control 
action. While this approach is computationally tractable, its 
greediness might prevent it from finding efficient solutions in 
realistic environments. For example, if disambiguating the 
robot's position requires the robot to move to a remote lo­
cation, greedy single-step entropy minimization can fail to 
make the robot move there. In our own work [Thrun et al, 
to appear], we have developed robot exploration techniques 
for efficiently mapping unknown environments. While such 

methods give better-than-random results when applied to lo­
calization, their primary goal is not to localize a robot, and 
there are situations in which they wi l l fail to do so. 

3 Active Localization by Entropy 
Minimization 

3.1 Markov Localization 
This section briefly outlines the basic Markov localization al­
gorithm upon which our approach is based. The key idea 
of Markov localization is to compute a probability distri­
bution over all possible locations in the environment. Let 

denote a location. The distribution, denoted 
by Bel(l), expresses the robot's subjective belief for being 
at /. Initially, Bel(l) reflects the initial state of knowledge: 
if the robot knows its initial position, Bel(l) is centered on 
the correct location; if the robot does not know its initial lo­
cation, Bel(l) is uniformly distributed to reflect the global 
uncertainty of the robot—the latter is the case in all our ex­
periments. 

Bel(l) is updated whenever... 

. . . the robot moves. Robot motion is modeled by a condi­
tional probability, denoted by 
denotes the probability that action a, when executed at 
/ ' , carries the robot to /. In the remainder of this sec­
tion, actions a are of the type "Move to a location 1 
meter in front and 2 meters to the right." Applied to 

is centered around the 
expected new location 

is used to update Bel(l) upon robot motion: 

(1) 

In our implementation, is obtained from a 
model of the robot's kinematics. 

. . . the robot senses. Let s denote a sensor reading, and 
P(s | /) the likelihood of perceiving s at I. P(s \ I) 
is usually referred to as map of the environment, since it 
specifies the probability of observations at the different 
locations in the environment. When sensing s, Bel(l) is 
updated according to the following rule: 

(2) 

Here P(s) is a normalizer that ensures that the Bel (I) 
sum up to 1. 

In general, Bel(l) can be represented by Kalman filters 
[Smith et al., 1990] or discrete approximation [Burgard et al., 
1996; Nourbakhsh et a/., 1995; Simmons and Koenig, 1995; 
Kaelbling et al., 1996]. P(s | / ) , the map of the environ­
ment, is a crucial component of the update equations. It 
specifies the likelihood of observing s at location /, for any 
choice of s and /. In [Moravec, 1988] and our previous work 
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[Burgard et al., 1996], P{s | I) is obtained from a metric 
model of the environment, and a model of proximity sen­
sors. Whereas our approach is able to exploit arbitrary geo­
metric features of the environment, [Nourbakhsh et al, 1995; 
Simmons and Koenig, 1995; Kaelbling et al.., 1996] first scan 
sensor data for the presence or absence of certain landmarks. 

While our description of Markov navigation is brief, it 
is important that the reader grasps the essentials of the ap­
proach: The robot maintains a belief distribution Bel(l) 
which is updated upon robot motion, and upon the arrival of 
sensor data. Probabilistic representations are well-suited for 
mobile robot localization due to its ability to handle ambi­
guities and to represent degree-of-belief. Recently, Markov 
localization has been employed successfully at various sites. 
However, Markov localization is passive. It does not provide 
means to control the actuators of the robot. 

3.2 Active Localization 
To eliminate uncertainty in the position estimate Bel(l), the 
robot must choose actions which help it distinguish different 
locations. The entropy of the belief, obtained by the follow­
ing formula 

(3) 

measures the uncertainty in the robot position: If H = 0, 
Bel(l) is centered on a single position, whereas H is maximal, 
if the robot is completely uncertain and Bel(l) is uniformly 
distributed. The general principle for action selection can be 
summarized as follows: Actions are selected by minimizing 
the expected future entropy. 

To formally derive the expected future entropy upon exe­
cuting an action a, we have to introduce two auxiliary nota­
tions: Let Bela(l) denote the belief after executing action a, 
and let denote the belief after executing o and sens­
ing s. Both , and can easily be computed 
from Bel(l) using the Markov positioning update equations 
(1) and (2). The expected entropy, conditioned on the action, 
can then be expressed by the following term: 

The expression (6) is obtained from the definition of the 
entropy, by integrating over all possible sensor values a, 
weighted by their likelihood, and by applying the update rule 
(2). This simple, greedy principle—minimizing the expected 
future entropy—is the cornerstone of our active localization 
methods. For example, in active sensing, different actions a 

correspond to different pointing direction of the robot's sen­
sors. Whenever the robot senses, this pointing direction is 
determined by minimizing the expected entropy Ea[H]. 

3.3 Active Navigation 
Active navigation addresses the problem of determining 
where to move so as to best position the robot. At first glance, 
one might use simple motor control actions (such as "move 1 
meter forward") as basic actions in active navigation. How­
ever, just looking at the immediate next motor command is 
often insufficient. For example, a robot might have to move 
to a remote room in order to uniquely determine its loca­
tion, which might involve a long sequence of individual motor 
commands. 

For this reason, we have chosen to consider arbitrary target 
points as atomic actions in active navigation. Target points 
are specified relative to the current robot location, not in abso­
lute coordinates. For example, an action a = move(12m, 2m) 
will make the robot move to a location 12 meter ahead and 2 
meters to the left, relative to its current location and heading 
direction. Additionally we take into account the cost of reach­
ing a target point, which substantially depends on the length 
of the path and the obstacles on the path. The remainder of 
this section specifies the computation of the costs, the cost-
optimal path, and demonstrates how to incorporate costs into 
action selection. 
Occupancy probabilities: Our approach rests on the as­
sumption that a map of the environment is available, which 
specifies which point / is occupied and which one is not. Let 
Pocc(l) denote the probability that location / is blocked by an 
obstacle. The robot has to compute the probability that a tar­
get point a is occupied. Recall that the robot does not know 
its exact location; thus, it must estimate the probability that 
a target point a is occupied. This probability will be denoted 

Simple geometric considerations permit the "trans­
lation" from (in real-world coordinates) t o ( i n 
robot coordinates): 

(7) 

Here fa(l) is the coordinate transformation for transform­
ing a from robot-centered coordinates to global coordinates, 
assuming that the robot is at /. In essence, (7) computes, 
for any /, the point a into real-world coordinates fa(l) then 
considers the occupancy of this point . The ex­
pected occupancy is then obtained by averaging over all loca­
tions J, weighted by the robot's subjective belief of actually 
being there Bel (I). The result is the expected occupancy of a 
point a relative to the robot. 
Cost and cost-optimal paths: Based on POCc(a), the ex­
pected path length and the cost-optimal policy can be ob­
tained through value iteration, a popular version of dynamic 
programming (see e.g., [Littman et al., 1995] for details). 
Value iteration assigns to each location a a value v(a) that 
represents its distance to the robot. Initially, v(a) is set to 0 
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for the location a = (0,0) (which is the robot's location), and 
for all other locations o. The value function v(a) is then 

updated recursively according to the following rule: 

(8) 

Here v(b) is minimized over all neighbors of a, i.e., all 
locations that can be reached from a with a single, atomic 
motor command. (8) assumes that the costs for traversing a 
point a is proportional to the probability that a is occupied 
(Pocc(a)). Iteratively applying (8) leads to the cost function 
for reaching any point a relative to the robot, and hill climbing 
in t; (starting at a) gives the cost-optimal path from the robot's 
current position to any location a. 
Action selection: Armed with the definition of the expected 
entropy and the expected costs, we are ready to set the policy 
for selecting actions in active localization. At every point in 
time, the robot chooses the action a* that maximizes 

(9) 

Here determines the relative importance of certainty 
versus costs. The choice of a depends on the application. In 
our experiments, was set to 1. 

This completes the description of active navigation with 
the purpose of localization. Note that active sensing is 
realized simply by pointing the sensor into the direction 
which minimizes the expected entropy of the action a = 
move(Q,0). To summarize, actions represent arbitrary tar­
get points relative to the robot's current position. Actions are 
selected by minimizing a weighted sum of (1) expected un­
certainty (entropy) and (2) costs of moving there. Costs are 
considered because they may vary drastically between differ­
ent target points. 

3.4 Efficient Implementation 
The active navigation and sensing methods described here 
have been implemented and tested using position probabil­
ity grids [Burgard et ai, 1996]. This technique represents the 
location of the robot by a discrete three-dimensional grid. To 
achieve the level of accuracy necessary for predicting robot 
motion, the resolution of robot orientation is typically in the 
order of 1°, and the resolution of longitudinal information is 
often as small as 10cm. 

While position probability grids are capable of approxi­
mating most probability functions of practical interest, they 
are computationally too expensive for active navigation. The 
complexity of computing the expected entropy is in 0(\L\ * 
|S|), where L denotes the set of grid-cells in the position 
probability grids, and S the set of distinguishable sensations. 
For example, for a mid-size environment of size 100m2, 
\L\ = 3,600,000 for the resolution specified above. If the 
number of possible sensations is large, computing the ex­
pected entropy is infeasible in real-time. 

We have modified the basic algorithm in a variety of ways, 
to ensure all necessary quantities can be approximated in real-

time. Most importantly, instead of integrating over all loca­
tions L, only a small subset of L is considered, assuming that 
L can be approximated by a set Lm of m Gaussian densi­
ties with means The center of the Gaussians are 
computed at runtime, by scanning locations whose probabil­
ity Bel(l) exceeds a certain threshold. Our simplification is 
somewhat justified by the observation that in practice, Bel(l) 
is usually quickly centered on a small number of hypothesis 
and approximately zero anywhere else. Without this modifi­
cation, action selection could not be performed in real-time. 

4 Experimental Results 
The central claim of this paper is that by selecting actions 
thoughtfully, the results of localization can be significantly 
improved. The experiments described in this section were 
carried out using the mobile robot RHINO, an RWI B21 
equipped with 24 sonar sensors. 

4.1 Active navigation 
Active navigation was tested by placing the robot in an office 
environment (see Fig. 1). Notice that the corridor in this envi­
ronment is basically symmetric and possesses various places 
that look alike, making it difficult for the robot to determine 
where it is. In this particular case, the robot must move into 
one of the offices, since only here it finds distinguishing fea­
tures. 

Fig. 1. Environment and path of the robot 

In a total of 10 experiments, random wandering and/or wall 
following consistently failed to localize the robot. This is be­
cause our wandering routines are highly unlikely to move the 
robot through narrow doors, and the symmetry of the corri­
dor made it impossible to uniquely determine the location. 
In more than 20 experiment using the active navigation ap­
proach presented here, the robot always managed to localize 
itself in a considerably short amount of time. 

Fig. 1 shows a representative example of the path taken 
during active exploration, and also defines the positions and 
office names (1, 2, 3, A, B, C) used in the text. In this par­
ticular run we started the robot at position 1 in the corridor 
facing south-west. The task of the robot was to determine its 
position within the environment, and then to move into room 
A (so that we could see that localization was successful). Af­
ter about ten meters of robot motion, it reached position 2 
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Fig. 3. Occupancy prob. P0Cc(a) at pos. 2 Fig. 4. Expected 

Fig. 2. Belief Bel(l) at pos. 2 

shown in Fig. 1. Fig. 2 depicts the belief Bel(l) at this point 
in time (more likely positions are darker). The positions and 
orientations of the six local maxima are marked by the six cir­
cles. The expected occupancy probabilities P0cc{a)> obtained 
by (7), are depicted in Fig. 3. High probabilities are shown 
in dark colors. Note that this figure roughly corresponds to 
a weighted overlay of the environmental map relative to the 
different local maxima, where the weights are given by the 
probabilities of the local maxima. Fig. 3 also contains the 
origin of the corresponding coordinate system. In this coor­
dinate system a coordinate (x,y) represents a target point x 
meters in front of the robot and y meters to the left. Fig. 4 
shows the expected entropies of the target points, according 
to (6). As can be seen there, the expected entropy of loca­
tions in rooms is low, making them favorable for localiza­
tion. It is also low, however, for the two ends of the corridor, 
since there the uncertainty can be further reduced. Finally, 
Fig. 5 displays the expected costs for reaching the different 
target points, (c.f., (8)). Based on the entropy-cost trade-off 
c.f. (Fig. 6), the robot decided at first to move to the end of 
the corridor and progressed to position 3. 

At this point it is important to notice that the trajectory to 
the target point cannot be computed off-line. This is due to 
unavoidable inaccuracies in the world model and to unfore­
seen obstacles in populated environments such as our office. 
These difficulties are increased if the position of the robot is 
not known, as is the case during localization. To overcome 
these problems the robot must be controlled by a reactive col­
lision avoidance technique. In our implementation a global 
planning module uses dynamic programming as described in 
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Ea[H] at pos. 2 Fig. 5. Expected costs v(a) at pos. 2 

Fig. 6. Ea[H] + v(a) at pos. 2 

section 3.3 to generate a cost minimal path to the target lo­
cation (see [Thrun and Bucken, 1996]). Intermediate target 
points on this path are sent to our reactive collision avoid­
ance technique described in [Fox et al, 1997]. The collision 
avoidance then generates motion commands to safely guide 
the robot to these targets. An overview of the architecture 
of the navigation system is given in [Buhmann et al., 1995; 
Thrun et al., to appear]. 

Fig. 7. Belief Bel(l) at pos. 3 

After reaching the end of the corridor (position 3) the be­
lief state contained only two local maxima (see Fig. 7). Note 
that this kind of ambiguity can no longer be resolved with­
out leaving the corridor. Accordingly the expected entropy of 
target points in the corridor is high compared to the expected 
entropy of actions which guide the robot into the rooms. Be­
cause of the state of the doors, which only influences the 
cost of reaching target points, the overall payoff (displayed 
in Fig. 8) is maximal for target points in rooms B and C. This 
is why the robot decided to move into the room behind him 



on the right, which in this case turned out to be room B. After 
resolving the ambiguity between the rooms B and C the robot 
moved straight to the target location in room A. Fig. 9 shows 
the belief state at this final target point. 

In addition to runs in our real office environment we did ex­
tensive testing in simulated hallway environments taken from 
[Kaelbling et al., 1996]. Our active navigation system suc­
cessfully localized the robot in every case by automatically 
detecting junctions of hallways and openings as crucial points 
for the localization task, and was uniformly superior to pas­
sive localization. The exact results are omitted for brevity. 

4.2 Active Sensing 
Our positive results were confirmed in the context of active 
sensing. Here we placed the robot in the corridor shown in 
Fig. 10. This corridor ( 23m x 4.5m, all doors closed) is 
symmetric except for a single obstacle on its side. Thus, to 
determine its location, the robot has to sense this obstacle. 

Fig. 10. Corridor of the department 

To simulate active sensing, we allowed the robot to read 
only a single sonar sensor at any point in time. As a passive 
method, we chose a sensor at random (a new sensor was cho­
sen randomly for every reading, which was the best passive 

approach out of a number of alternatives that we tried). This 
passive method was compared to our active approach, where 
sensors are chosen by minimizing entropy. 

Fig. 11. Entropy of belief states 

The results are depicted in Figures 11 and 12. Fig. 11 plots 
the entropy of Bel(l) as a function of the number of sensor 
measurements, averaged over 12 runs, along with their vari­
ances (bars). As can be seen here, the entropy (uncertainty) 
decreases much faster when sensors are selected actively. Of 
course, minimizing entropy alone is not an indicator of suc­
cessful localization; even a low-entropy estimate could be 
wrong. 

Fig. 12. Estimation error 

Fig. 12 plots the error in localization (measured by the L1 
norm, weighted by Bel (I)) for both approaches as a function 
of the number of sensor measurements. Here, too, the active 
approach is more efficient than the passive one. These results 
demonstrate the benefit of active localization. 

5 Conclusions 
This paper advocates a new, active approach to mobile robot 
localization. In active localization, the robot controls its var­
ious effectors so as to most efficiently localize itself. Based 
on Markov localization [Burgard et ai, 1996; Kaelbling et al., 
1996; Nourbakhsh et a/., 1995; Simmons and Koenig, 1995; 
Smith et a/., 1990], a popular passive approach to mobile 
robot localization, this paper describes an approach for deter­
mining the robot's actions during control. In essence, actions 
are generated by minimizing the future expected uncertainty, 
measured by entropy. This basic principle has been applied 
to two active localization problems: active navigation, and 
active sensing. In the case of active navigation, an exten­
sion has been developed that incorporates expected costs into 
the action selection, and also determines cost-optimal paths 
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under uncertainty using a modified version of dynamic pro­
gramming. Both approaches have been verified empirically 
using an RWIB21 mobile robot. 

The key results of our experiments are: 

1. The efficiency of localization is increased when actions 
are selected by minimizing entropy. This is the case for 
both active navigation and active sensing. In some cases, 
the active component enabled a robot to localize itself 
where the passive counterpart failed. 

2. The relative advantage of active localization is particu­
larly large if the environment possesses relatively few 
features that enable a robot to unambiguously determine 
its location. 

Despite these encouraging results, there are some limitations 
that deserve future research. One of the key limitations arises 
from the algorithmic complexity of the entropy prediction. 
While a Mixed-Gaussian approximation made the computa­
tion of the entropy feasible for the type environments studied 
here, more research is needed to scale the approach to envi­
ronments that are significantly larger (e.g., lOOOmx 1000m). 
A second limitation arises from the greediness of action selec­
tion. In principle, the problem of optimal exploration is NP 
hard, and there exist situations where greedy solutions wi l l 
fail. However, in none of our experiments we ever observed 
that the robot was unable to localize itself using our greedy 
approach, something that often happens using only random 
motion during localization. 
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