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Abs t rac t 
One issue for autonomous mobile robots oper­
at ing in unknown, or part ial ly known, domains 
is how to handle uncertainty in their sensor ob­
servations over t ime. Methods such as probab-
listic belief networks and survivor functions are 
generally unsatisfactory because they require 
explicit models of the robot's interactions w i th 
its environment, including possible contraven­
ing events. This information is difficult to ob­
ta in, and is philosophically incompatible w i th 
reactive behaviors. 
This paper presents an approach which elimi­
nates the need for explicit models and reason­
ing; instead, it relies solely on directly perceiv­
able attr ibutes of the robot, object, and en­
vironment. The attr ibutes qualitatively rate 
whether the robot's current observations are 
f rom an inherently more informed state than 
previous readings (e.g., f rom a better view­
point) . Observations f rom more informed 
states have different rates for the accrual and 
a t t r i t i on of belief than those taken from less 
informed states. This paper describes the im­
plementat ion, focusing on how the informa­
t ion state is computed using fuzzy logic, and 
how the state dynamically adapts a variation 
of Dempster's rule to generate the total belief. 
Data f rom a mobile robot tracking an unknown 
object demonstrates that the reactive compu­
tat ion of belief over t ime performs well for six 
canonical accrual and a t t r i t ion cases. 

1 I n t r o d u c t i o n 
One issue for autonomous mobile robots, and other 
agents, is how to handle uncertainty in its observations 
about an object or scene over t ime. Combining uncer­
tainty over t ime is problematic for formal theories of ev­
idential reasoning, i.e. Bayesian and Dempster-Shafer, 
because the current observation is not independent of 
the previous one. In order to generate a reasonable to­
ta l belief, some means of combining the past belief w i th 
the instantaneous belief must be applied. However, such 

a method must take into account contradictory influ­
ences; for example, older belief tends to be less believable 
[Drainkov and Lang, 1993], but objects tend to persist 
[Dean and Wellman, 1991]. 

Methods such as dynamic belief networks [Dagum et 
al., 1992; Dean and Kanazawa, 1989] and survivor func­
tions [Dean and Wellman, 1991] are unsatisfactory for 
autonomous mobile robots operating in unknown do­
mains, both in theory and in practice. These methods 
assume explicit a priori models of the object's behavior, 
interactions wi th the environment, and possible contra­
vening events in order to update the relationship between 
past and present belief. A robot operating in a part ial ly 
known environment, e.g. Mars, or in unpredictable sit­
uations, e.g., construction of the space stat ion, may not 
have access to correct models. If the robot perceives 
something unusual, it wi l l need to track or continuously 
observe it in order to determine if it is a hallucination 
without necessarily knowing what it is. Also, the adap­
tat ion of a probablistic belief network to a new situation 
involves explicit reasoning on a global level. This is in­
compatible wi th mobile robots which use a reactive or 
a hybrid deliberative/reactive architecture. In these ar­
chitectures, sensing at a reactive level involves only local 
behavior-specific representations (i f any) and rapid up­
date times. At tempt ing to integrate global models and 
reasoning into the behaviors both violates the princi­
ples of the architectures and could slow down execution. 
Therefore, a mechanism is needed which can reactively 
adapt the combination of belief. 

This paper presents an approach to this problem mot i ­
vated by the work on direct perception done by the cog­
nitive psychologist J. J. Gibson [Gibson, 1979]. Gibson 
maintains that there are naturally occurring affordances 
for each activity of an agent. An affordance is a perceiv­
able potential i ty of the environment that supports the 
intended action without requiring memory, inference, or 
interpretation. One well-known example of an affordance 
is the use of optic flows to compute the time-to-contact 
w i th an object wi thout having to identify the object. 

By using direct perception, the combination of be­
lief over t ime eliminates dependence on explicit mod­
els about the object or environment or global reason­
ing about events. Furthermore, it is independent of the 
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recognition process. The application of the principles of 
direct perception to the combination of belief is concep­
tual ly similar to the shift in robotics f rom deliberative 
mechanisms to reactivity, most notably, reactive behav­
iors and reactive planning. 

This paper describes the implementat ion of the direct 
perception approach using a form of Dempster-Shafer 
theory, and fuzzy logic to compute the agent's informa­
t ion state. The paper presents data f rom a mobile robot 
showing that the reactive computat ion of belief over t ime 
follows in tu i t ion for six canonical belief cases captured 
by three scenarios. 

2 Approach 
Our approach has two central tenets. First , the informa­
tion state of the agent relative to the object should de­
termine the combination of belief about the object over 
t ime. For example, if the agent is moving towards the 
object and is accurately tracking i t , then its current ob­
servation is now inherently more informed than its previ­
ous observations; the belief in the object f rom the current 
information state should count more than previous, less 
informed observations. Note that the term "belief in the 
object" is used to mean belief that the object is what the 
robot thinks it is; i.e., that it is the same object it has 
seen in previous observations. Likewise, if the agent is 
moving away f rom the object or cannot stay focused on 
the object, then it has an inherently less informed van­
tage and so the past should weigh more than the present. 

The informat ion state should impact the rate of decay 
in belief in an object. If the object disappears, and the 
sensors are indeed working, then the agent's total belief 
that the object was there should persist for some period 
of t ime, allowing it to continue its behavior. There are 
many situations where the object might temporari ly dis­
appear but are diff icult to reason about at the reactive 
level: the object may be occluded, the agent may tu rn 
to avoid an obstacle. In many cases, the agent wi l l be 
able to reacquire the object if it continues w i th its be­
havior. Therefore, it is of practical importance to have a 
reasonable decay rate. Our approach assumes that if an 
object disappeared while the agent was at an informed 
state, the belief should persist for longer than if it was 
at an uninformed state. If the agent wasn't sure of what 
it was seeing (low in i t ia l belief), and did not have a par­
t icularly good vantage point , then the belief would start 
low, decay rapidly, and the agent would declare the ob­
ject missing more quickly than if i t started w i th a high 
certainty in the object f rom a good vantage point. 

The second tenet states that the information state can 
be directly observed, independently of the belief about 
the identi ty of the object of interest. For example, an 
extended Kalman Fi l ter (EKF) can be used to track an 
unknown object as long as it has some distinguishable 
features, e.g., color. The extended Kalman Fi l ter has 
some measure of uncertainty, i ts tracking error; this un­
certainty reflects how well the agent is inherently able to 
perceive the object and make a correct identif ication (or 

perform the desired task). Uncertainty about the quality 
of sensing determines the informat ion state of the agent 
relative to the object, while uncertainty in the object 
forms the belief which is combined over t ime based on 
the change in information states. 

3 Imp lemen ta t i on 
[Murphy, 1996] has demonstrated an adaptive rule of 
combination which adapts the belief updat ing process 
based on a contextual weighting parameter, n, which can 
be used to represent the informat ion state of the agent-
relative to the object. However, that work did not ful ly 
develop a mechanism to compute n based solely on di­
rect perception, nor d id it demonstrate the impact of 
the rule for representative characteristic scenarios of be­
lief accrual and a t t r i t ion . In this paper, n represents 
the information state of the agent relative to the object. 
This section summarizes the adaptive rule of combina­
t ion, and describes the computat ion of n using fuzzy 
logic and directly perceivable attr ibutes of an unknown 
object. The reader is directed to [Murphy, 1996] for a 
more detailed discussion of Dempster-Shafer theory and 
the adaptive rule of combination. 

3.1 Adapt ive Rule of Combinat ion 
[Smets, 1991; Wi lson, 1993; Zadeh, 1986] have argued 
that Dempster's rule is only one possible rule for com­
bining Shafter belief functions, representing a set of spe­
cific assumptions. [Murphy, 1996] proposes an alter­
native rule of combination, captur ing different assump­
tions: observations are not independent, missing belief 
should not be an identity funct ion, and the order of com­
binat ion is important . The alternative rule is: 

Note that when n = 1.0, the rule degenerates to 
Dempster's rule of combination. 

This rule has been empirically shown in [Murphy, 
1996] to change the rate of accrual and decay of tota l 
belief f rom old observations compared to current belief 
(new observations) according to the value of n. The 
output of this rule differs f rom Dempster's rule in two 
ways. First , the old observations are no longer treated 
equally w i th the current observation. The value of n 
determines whether the past or the current observation 
dominates the combination of belief. Bu t the rule does 
not just change the relative weighting of the past w i th 
present, as the decay funct ion in [Guan and Bell , 1993] 
would. Instead, it modifies the rate of accrual of belief 
for the object and the rate of a t t r i t i on separately. Lower 
values of n cause the to ta l belief in the landmark to 
accrue support ing observations slowly (past belief domi­
nates or smooths out the accrual rate) but decay quickly 
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Figure 1: Fuzzy set partit ionings/rnembership functions 
for L O C A L I Z A T I O N , V I E W P O I N T , and n. (Dashed 
lines show impact of G E N E R A L L Y hedge). 

in the presence of missing or revising beliefs (current be­
lief dominates decay rate). Values approaching 0.0 pro­
duce pessimistic combinations of belief (tends to believe 
the worst). Values approaching 1.0 are sensitive only 
to support ing observations, accruing belief quickly and 
decaying slowly; this is to be expected since this is con­
verging on Dempster's rule. These high values of n wi l l 
be referred to as optimistic. Values around 0.5 produce 
a conservative or neutral behavior, w i th slow accrual and 
slow decay. 

When the combination of belief produces a decay in 
belief for a proposit ion, the discounted belief mass is 
distr ibuted to the other propositions. This produces 
an averaging effect. If the agent is capable of observ­
ing only two propositions (as in the demonstrations), an 
unchecked decay in belief wi l l lead to all propositions 
having a value of 0.5. This condition is equivalent to 
the "vacuous" belief funct ion in Dempster-Shafer the­
ory, where the belief funct ion contains no information. 

3.2 Computat ion of n 
At this t ime, the informat ion state n is computed as a 
function of two directly perceivable influences: LOCAL­
IZATION and VIEWPOINT. L O C A L I Z A T I O N cap­
tures the accuracy of the agent's abil ity to track and 
localize the object using the E K F . V I E W P O I N T indi­
cates whether the agent is in an inherently more in­
formed viewpoint to observe the object. 

Fuzzy logic was chosen to represent and combine in­
fluences for several reasons. Belief f rom real-time sen­
sor observations is well-suited to a fuzzy representation, 
since the absolute value of the belief at any given t ime is 
not cr i t ical , just the t rend. Also, fuzzy logic permits the 
addit ion of other variables and easy modification of the 

rules. Another potential advantage not explored in this 
paper is the use of fuzzy set hedges (very, somewhat) to 
modify the output based on a priori knowledge or mo­
t ivation. For example, if the agent Ls highly motivated 
to find an object, the overall process should be very op­
timistic, resulting in a slow decay rate or a prolonged 
persistence of belief. 

The fuzzy sets for L O C A L I Z A T I O N , V I E W P O I N T , 
and n are shown in Fig. 1. L O C A L I Z A T I O N is part i ­
tioned into GOOD and POOR. The domain for LOCAL­
IZAT ION is the percent error in the E K F compared to 
the field of view of the sensor. If the agent is unable to 
track the object, the region where the object could be 
wil l grow to exceed the field of view of the sensor, e.g., 
100% error. If the expected occurrence of the object 
coincides wi th the actual observation of the object, the 
agents wil l be perfectly tracking the object leading to 0% 
error. In the demonstrations, computer vision was used 
to track an unknown object based on a color histogram. 
The E K F computed the expected locations of the upper 
left and lower right corners of a bounding box. 

The V I E W P O I N T variable consists of three sets: DE­
GRADING, SAME, and I M P R O V I N G . The measure­
ment of the inherent quality of the V I E W P O I N T de­
pends on the sensor(s) and feature extraction algo­
rithms(s), For the sake of simplicity, it was computed in 
the demonstrations, as the change in distance (in feet) 
between the robot and the object since the last observa­
t ion based on shaft encoder data. Other methods (e.g., 
optical flow, stereo range) could have been used to esti­
mate the change in quality of the viewpoint. 

The output of n was divided into three fuzzy sets: 
PESSIMISTIC, N E U T R A L , and O P T I M I S T I C , n Ls 
computed from rules encapsulated in the Fuzzy Asso­
ciated Memory shown below: 

The fuzzy hedge GENERALLY was applied to PES­
SIMISTIC and OPT IMIST IC sets. G E N E R A L L Y dif­
fuses the set, resulting in a more neutral output value 
of n. The rules attempt to express that if the agent 
is moving (viewpoint is not the same) and is unable to 
track the object, it should react conservatively to any 
new observations because the instantaneous belief may 
be the result of temporary occlusions which can disrupt 
tracking. However, if the agent is stationary and st i l l 
cannot track the object, low instantaneous belief could 
be a sign that the wrong object has been acquired or 
higher quality sensors and/or algorithms should be em­
ployed. Therefore, poor localization f rom the same view­
point makes n generally pessimistic. If tracking is good, 
and the agent is moving away from the object, the in­
stantaneous belief wi l l generally get worse due to the 
degrading viewpoint, n is set to be optimistic in order 
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Figure 2: Denning MRV4 robot tracking the object 
(Tweety and Sylvester). 

to smooth out the change in tota l belief by dampening 
the decay rate. Likewise, if the agent is moving towards 
the object and tracking well, n is set to pessimistic in 
order to react to any instantaneous belief that the ob­
ject is not the object that the agent was looking for. In 
the case where the robot is tracking the object but is 
stationary, the generally opt imist ic value of n allows the 
total belief to accrue somewhat due to repeated obser­
vations. Defuzzification of the fuzzy rules is performed 
by the computing the centroid (composite moments) of 
the output sets. 

4 Demonst ra t ions 
In this section, the use of direct perception for combin­
ing belief over t ime is demonstrated w i th a mobile robot 
tracking an object for six canonical cases. The six cases 
represent the spectrum of belief updat ing and revision 
activities following [Dean and Wellman, 1991]): natural 
accretion, natural attrition, causal accretion, causal re-
vision, spontaneous causation, and spontaneous revision. 
The six cases are arranged into three scenarios, pairing 
the cases. 

The demonstrations were performed on a Denning 
MRV4 research mobile robot using a reactive move- to -
goal behavior. The behavior used an onboard camcorder 
and framegrabber to track the goal, a cardboard poster 
of Tweety and Sylvester shown in Fig. 2. The robot was 
presented w i t h the poster; it constructed a color his­
togram model [Swain and Bal lard, 1990] f rom an ini t ia l 
observation, then began to track i t . The Shafer belief 
funct ion representing the belief for the object was com­
puted as the percent intersection of the model histogram 
w i t h the observed histogram (m(P)). The object image 
size was scaled to match the model. The percent empty 
intersection became uncommit ted belief. This was done 
because the robot could not discern whether the mis­
match was due to occlusion, which meant the belief mass 
associated w i t h mismatch should be plausible, or was 

due to seeing features of another object, n was com­
puted using the fuzzy sets described previously. Because 
the demonstrations rely on a real robot operating in real-
t ime, the data may appear to be cluttered and/or mis­
leading. The reader is directed to [Murphy, 1996] where 
the behavior of the adaptive rule for fixed values of n is 
described. Also, the tota l belief using Dempster's rule 
is not shown on the data sets to reduce clutter. In each 
scenario, natural accretion drives the to ta l belief in the 
object to complete belief (1.0) in short order. 

It should be emphasized that the move-to-goal behav­
ior does not rely on a priori models. The robot can be 
ini t ial ly presented w i th any object w i t h a color signature 
distinguishable f rom the walls. The demonstrations have 
been repeated w i th different objects (signs, posters) and 
reacted w i th the same trends in the combination of be­
lief. Also, the color histogram could be substi tuted w i th 
a more rigorous recognition algor i thm; this would change 
the belief in the object, but not affect the direct percep­
t ion of the information state and reactive combination 
of belief over t ime. 

4.1 Natura l Accret ion and A t t r i t i o n 
Natural accretion is the tendency for belief in an object 
to accrue when there is no other source of belief or con­
travening event. For example, if the observer is station­
ary, the object is stationary, and the belief in the object 
at each observation is the same, then a l imi ted increase 
in the total belief is reasonable due to its repeated ob­
servation. The counterpart to accretion is a t t r i t ion . If 
there is no source for belief about an object (e.g., missing 
observations), the tota l belief should decay. 

In this demonstration, bo th the robot and object were 
stationary. The object was ini t ia l ly present (accretion 
phase) for 18 updates, then removed to generate missing 
observations (a t t r i t ion phase) for 5 updates, then rein­
troduced and removed at different intervals. Finally, the 
poster is removed for an extended period of t ime (after 
70 updates). Fig. 3 shows the current belief, the tota l be­
lief, and the value of n computed by the fuzzy controller 
f rom the tracking error and change (delta) in posit ion. 
The variation in the tracking error is f rom sensor noise. 

The graph shows that the tota l belief does accrue 
somewhat, then levels out. It also shows that the to­
ta l belief decays over t ime. In the f inal removal, the 
tracking error grew to 100%, and the belief d id decay to 
0.5, the equivalent of the vacuous belief funct ion for the 
alternative rule of combination [Murphy, 1996]. If the 
belief had been combined w i th Dempster's rule, i t would 
have almost immediately accrued to 1.0 (complete be­
lief) for the object, and any at tempt to revise it would 
have been ignored by the rule of combination. 

4.2 Causal A t t r i t i o n and Accret ion 
Causal accretion and a t t r i t i on is the change in belief 
due to some external contravening event, either favor­
able or otherwise. This scenario dupl icated " tunne l " ex­
periments f rom child psychology, where the object moved 
behind a screen and reappeared on the other side. In the 
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Figure 3: Behavior of belief for natural accretion and 
a t t r i t ion scenario. Tracking error: solid line, delta po­
sition: long dashed line, N: short dashed line, current 
belief: dot ted line, to ta l belief: dash-dot line. 

first demonstrat ion, the robot was stationary to reduce 
the impact of tracking errors due to the combined move­
ments of the object and robot. In the second demon­
strat ion, the robot was allowed to move to the object, 
essentially playing tag w i th i t . Previous work [Murphy, 
1996] has shown that different values of n (not computed 
dynamically) wi l l change the decay rate, thereby chang­
ing whether the robot wi l l abandon the tracking before 
the object emerges on the other side of the screen. The 
purpose of these two demonstration was to show the re­
active computat ion of n and the subsequent impact on 
robot behavior. It should be noted that by the use of di­
rect perception, the robot d id not have to identify that 
a contravening event had occurred in order to combine 
belief in a reasonable manner. 

The results of the first demonstration are shown in 
Fig. 4. The data shows the object moving but being vis­
ible for 20 cycles, then disappearing behind the screen 
for 7 updates, reappearing and then disappearing behing 
the screen permanently. Al though the noise in the track­
ing error makes this graph more difficult to read, it can 
be seen tha t the to ta l belief decays significantly when 
the poster disappears, but not so much that it gives up 
tracking. If the object remains hidden, as at the end of 
the scenario, the to ta l belief wi l l reach 0.5 or vacuous, 
and the robot wi l l terminate the behavior. 

The results of the second demonstration are shown in 
Fig. 5. The robot was presented w i th a new, smaller 
object (a green poster board target) to allow it to get 
closer to the target before stopping due to looming. The 
robot is able to successfully track the object each time 
it reappears on the other side of the screen, because the 
total belief persists. 

Figure 4: Behavior of belief for causal a t t r i t ion and ac­
cretion scenario, robot stationary, object moving. 

Figure 5: Behavior of belief for causal a t t r i t ion and ac­
cretion scenario, both robot and object moving. 

4.3 Spontaneous Causa t i on and Rev i s i on 
Spontaneous causation and revision occur when the be­
lief improves or degrades without a contravening event, 
in effect, due to the normal progress of the activity. In 
the demonstration shown in Fig. 6, the robot moved to­
ward a sign w i th a color histogram similar to the Tweety 
and Sylvester poster. As it moves toward i t , the current 
belief should be going up since the the histograms should 
have a better match. This improvement in viewpoint is 
shown on the graph, and as per the fuzzy rules, drives 
the value of n pessimistic (low). Therefore, the lack of 
improvement in current observations actually serves to 
decrease the total belief in the object being Tweety and 
Sylvester to the vacuous state, and the robot correctly 
terminates the move-to-goal behavior and turns to search 
for the poster. Note that the combination of belief al­
lowed the robot to determine that it was being fooled 
even though at each instant, the current belief was fair ly 
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Figure 6: Behavior of belief for spontaneous a t t r i t ion 
scenario. 

good. 
The case of spontaneous accretion, where the robot is 

able to maintain high belief as it recedes f rom an ob­
ject, is not shown here, because the noise in the tracking 
errors make the graph hard to read. 

5 Summary and Conclusions 
This paper has shown how two affordances (e.g., local­
ization error and viewpoint) can be used to estimate the 
change in the informat ion state of belief of object ob­
served by an autonomous mobile robot. This change 
in information state modifies the rate of belief accretion 
and a t t r i t i on , as calculated w i t h a variant of Dempster's 
rule of combination. This method eliminates the need for 
explicit, a priori models of the object's projected behav­
ior over t ime, the sensitivity of the robot's sensors, and 
the impact of the environment on perception. Another 
advantage of the direct perception approach is that it is 
reactive. As demonstrated w i th a mobile robot, it can 
be used in real-t ime w i th a behavior relying only on local 
representation of the object (i.e., a color histogram). 

The use of affordances allows belief updat ing and re­
vision for objects which have never been seen before, 
and so have unknown properties. Furthermore, since 
the method uses direct perception, it does not require 
any reasoning about possible contravening events intro­
ducing sudden changes in belief (e.g., occlusion, sensor 
fai lure, etc.). Instead, the belief combination process in­
corporates the impact of the belief (e.g., low or missing 
belief). If the contravening event persists, the tota l be­
lief w i l l either improve or degrade over t ime. This tota l 
belief is used by the robot to determine what to do next; 
if necessary, the robot can switch f rom a reactive control 
mode to a deliberative regime. 

Current work is concentrating on an integrated im­
plementation w i t h the NASA/JSC robot simulator, pro­
viding more behaviors, more sensors, and scenarios. We 
are also examining the use of fuzzy set hedges to repre-

sent other external factors influencing the combination 
of belief, such as the mot ivat ion of the robot. A l though 
this method has been demonstrated only for the domain 
of an autonomous mobile robot operating in unknown, 
or part ial ly known, environments, we believe it can be 
extended to other instances of situated agents. 
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