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Abs t rac t 

Autonomous robot systems operating in an un­
certain environment have to be reactive and 
adaptive in order to cope w i th changing en­
vironment conditions and task requirements. 
To achieve this, the hybr id control architec­
ture presented in this paper uses reinforcement 
learning on top of a Discrete Event Dynamic 
System (DEDS) framework to learn to super­
vise a set of basis controllers in order to achieve 
a given task. The use of an abstract system 
model in the automatically derived supervisor 
reduces the complexity of the learning problem. 
In addit ion, safety constraints may be imposed 
a pr ior i , such that the system learns on-line in 
a single t r ia l wi thout the need for an outside 
teacher. To demonstrate the applicabil i ty of 
the approach, the architecture is used to learn 
a turn ing gait on a four legged robot platform. 

1 I n t r o d u c t i o n 

Autonomous robot systems operating in an uncertain 
environment have to be able to cope wi th new situa­
tions and task requirements. Important properties of 
the control architecture of such systems are thus that it 
is reactive, allows for flexible responses to novel situa­
tions, and that it adapts to longer lasting changes in the 
environment or the task requirements. 

Al though model-based control techniques have been 
used successfully in a wide variety of tasks, they are very 
sensitive to imprecisions in the model and are often not 
robust w i th respect to unexpected situations. To better 
address the reactivity requirements of autonomous sys­
tems, behavior-based architectures [Brooks, 1986] were 
developed. In this paradigm, system behavior is con­
structed on-line from combinations of elemental, reac­
tive behaviors. The often ad hoc character of these 
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behaviors, however, can lead to an extremely complex 
organization of behavioral elements. In addit ion, the 
resulting policy can be br i t t le w i th respect to rela­
tively minor perturbations including those introduced 
by other behaviors or by changes in control context. 
The control basis approach used here attempts to cir­
cumvent this problem by employing carefully designed 
declarative control primitives to construct overall sys­
tem behavior, and therefore allows predictions about 
the outcome of behavioral sequences. This approach 
has been used successfully in manipulat ion and locomo­
t ion tasks [Grupen et al., 1995; Huber et a/., 1996]. 

Whi le such bottom-up approaches address the issue 
of reactivity, the used composition is in most cases given 
by the designer and very specific to the task at hand. 
In order to render such a system adaptive and allow it 
to adjust its overall behavior to changing task require­
ments, learning techniques have to be employed. In the 
extreme case, this learning has to occur wi thout the d i ­
rect influence of an outside teacher in order to obtain au­
tonomous behavior. Reinforcement learning techniques 
are well suited to such behavior composition tasks since 
they can learn sequences of behavior f rom simple rein­
forcement signals. In most applications, however, these 
techniques have been applied at a very low level, thus 
leading to a very high complexity of the learning task. 
This complexity rendered these approaches inadequate 
for on-line learning in complex systems. 

To address these complexity problems as well as to 
provide a base reactivity to the system, some work has 
been done to combine this learning framework w i th the 
robustness of behavior based control approaches [Maes 
and Brooks, 1990; Mahadevan and Connell, 1992]. Here 
either the problem is decomposed a pr ior i and only sub-
problems are learned, or previously designed behaviors 
are used as elemental actions w i th in a reinforcement 
learning task. Whi le this dramatically reduces the com­
plexity of the state and action spaces for the learning 
problem, the character of the behaviors often restricts 
their applicabil ity to a very l imited domain, potential ly 
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requiring the design of new components whenever the 
task changes. In addit ion, most of these approaches do 
not address safety considerations by allowing the explo­
rat ion to take random actions, thus permitt ing the oc­
currence of catastrophic failures. In autonomous sys­
tems, however, this is not permissible since the system 
can not recover. It is thus necessary that such systems 
can learn in a single t r ia l wi thout the need for outside 
supervision. One way to address this is by using a para­
metric controller which is inherently safe as a basis for 
the learning task [Singh et a/., 1994]. The learning com­
ponent learns thereby only a setting of the parameters 
while the controller assures a baseline performance. The 
use of a single controller, however, increases designer ef­
fort and l imits the scope of the system. 

The approach presented here addresses the complex­
i ty and safety issues by means of a hybrid contin­
uous/discrete control architecture. Behavior is con­
structed on-line f rom a set of stable and convergent con­
t ro l elements. The stable character of these base con­
trollers is then used in a Discrete Event Dynamic Sys­
tem (DEDS) framework [Sobh et a/., 1994] to construct a 
supervisor which provides the structure for the reinforce­
ment learning component. This dramatically reduces the 
complexity of the learning problem by reducing the state 
and action spaces, and supports techniques designed to 
l imi t exploration to safe and relevant areas of the behav­
ior space. Moreover, the system inherits the reactivity 
and stabil i ty of the underlying control basis. 

In the following, Section 2 briefly introduces the con­
t ro l basis approach before Section 3 describes the dis­
crete event architecture used to automatically synthesize 
admissible control policies, and the reinforcement learn­
ing technique for acquiring a policy for a given task. 
Section 4, finally, shows an example for the overall ar­
chitecture in the walking domain where a turning gait is 
learned on-line in a single t r ia l . 

2 T h e C o n t r o l Basis A p p r o a c h 

The control basis approach constructs behavior on-
line by combining feedback control elements drawn from 
a set of carefully designed basis controllers. Individual 
control elements are thereby largely task and device inde­
pendent and represent solutions to generic robot control 
problems, allowing a small set of these elements to span 
a large range of tasks on a wide variety of platforms. 

In this framework, control is derived on-line by associ­
ating input resources (sensors or sensor abstractions), 
and output resources r (actuators) with feedback control 
laws drawn from the control basis. The resulting con­
trollers can then be activated concurrently accord­
ing to a task dependent composition policy under the 

"subject to" constraint. This constraint restricts 
the control actions of subordinate controllers such that 
they do not counteract the objectives of higher priority 
controllers. The resulting concurrent control policy in­
herits the stability and convergence properties of the ele­
mental control elements. A complete control policy takes 
then the form of a sequence of concurrent controller ac­
tivations of the form shown in Figure 1. Different tasks 
in this framework are achieved by changing composition 
policies over the same set of controllers rather than by 
designing new control elements. 

Figure 1: Control Composition 

This approach has already been used successfully on 
a variety of tasks in the manipulation and locomotion 
domain [Grupen et a/., 1995; Huber et al., 1996]. In 
all these cases, however, composition policies were hand 
crafted, thus requiring the system designer to anticipate 
the exact behavior of the controllers. To achieve more 
autonomous behavior of a robot system, however, the 
system has to be able to adapt to novel situations and 
task contingencies without the need for outside supervi­
sion. In order to achieve this, the architecture presented 
in this paper learns the optimal composition policy in an 
efficient way using the reinforcement learning paradigm. 

3 C o m p o s i t i o n A r c h i t e c t u r e 

Reinforcement learning [Barto et a/., 1993] offers a 
flexible way to acquire control strategies automatically 
and thus to adapt to new contingencies and task require­
ments. Most reinforcement learning systems, however, 
operate at a very low level by directly influencing ac­
tuator commands, easily leading to an explosion in the 
complexity of the learning task. This renders such ap­
proaches impractical for on-line learning in complex sys­
tems. To avoid this problem and to be able to prevent 
catastrophic failures, the architecture presented here at­
tempts to learn a composition policy for the underlying 
controllers. To do so it uses the goal directed character 
of the control modules described in Section 2 to build an 

HUBER & GRUPEN 1367 



abstract description of the system under the influence 
of the basis controllers. Running controllers to conver­
gence, the possible behavior of the system is modeled 
as a DEDS on a symbolic predicate space characterized 
by the individual goals of the control modules. This 
abstract system model is then used as the basis for an 
exploration-based learning system to acquire an optimal 
control strategy for the given task. The DEDS formal­
ism encodes safety constraints in the model and thus 
l imits the exploration to the space of admissible control 
policies. The overall architecture is shown in Figure 2. 

Figure 2: The Control Architecture 

In this approach, al l continuous sensor input and ac­
tuator output is handled by the elements of the control 
basis. Act ivat ion and convergence of these controllers is 
then interpreted as the events used in the abstract DEDS 
model of the system behavior. After imposing safety and 
domain constraints, the DEDS supervisor represents the 
set of al l admissible control policies. Throughout ex­
plorat ion or in a separate system identification phase, 
addit ional t ransi t ion probabilities for this model can be 
acquired, thus improving the quality of the largely task 
independent model. This model allows knowledge of 
system behavior to be generalized across tasks and sup­
ports addit ional off-line learning on the estimated system 
model [Sutton, 1990]. In addit ion to acquiring int r in­
sic structure in the form of transit ion probabilities, this 
hybr id architecture also solves the resource allocation 
problem by learning to assign resources to controllers 
opt imal ly given the current reinforcement structure. 

3.1 D E D S Superv isor 

The feedback control primitives employed as elemen­
ta l actions in this approach act as stable attractors and 

thus form basins of at tract ion in the continuous phys­
ical space. The system may therefore be described at 
an abstract level by means of convergence predicates as­
sociated wi th the underlying controllers. The abstrac­
t ion from continuous state space to discrete predicate 
space represents a dramatic reduction in complexity and 
thus forms a good basis for the reinforcement learning 
task. Since activation and convergence determine the 
progress of the plant in this abstract space, the over­
all system can be modeled as a hybr id DEDS, open­
ing the derivation of a possible supervisor to a large 
body of formal techniques [Ramadge and Wonham, 1989; 
Sobh et a/., 1994]. In part icular, constraints such as 
safety and the absence of deadlock conditions can be 
imposed a pr ior i on the control policy. 

P red i ca te Space D e s c r i p t i o n 
In order to allow for the abstraction step and to pro­
vide an efficient way of deriving an abstract model of 
the possible system behavior, the effects and interactions 
between control primitives have to be described symbol­
ically by their possible effects on the set of predicates. 
Characterizations for composite controllers can thereby 
be generated automatically f rom descriptions of the in­
dividual elements of the control basis, thus l imi t ing the 
work of the designer to these control elements. As op­
posed to most DEDS approaches where the designer has 
to provide a complete system model [Stiver et a/., 1996; 
KoSecka and Bogoni, 1994], these simple descriptions al­
low for an automatic generation of a predicate space 
model of all possible system behavior (For details on 
the controller characterization and the construction of 
the system model see [Huber and Grupen, 1996]). This 
model takes the form of a nondeterministic finite state 
automaton, and forms the basis for the supervisor syn­
thesis and reinforcement learning components of the pro­
posed architecture. 

Superv i so r Synthes is 
In the DEDS framework, control is performed by en­
abling and disabling of controllable events in a super­
visor. In the case of the architecture presented here, 
the set of these events corresponds to controller activa­
tions while convergence events are not controllable. To 
allow for safety of a chosen control policy or to ensure 
that no deadlock occurs, the DEDS formalism provides 
methods to automatically impose constraints on the su­
pervisory automaton. Doing so, the system model can 
be pruned a prior i to the set of al l policies which obey the 
given set of constraints [Ramadge and Wonham, 1989; 
Huber and Grupen, 1996]. In the same fashion, addi­
t ional domain knowledge and designer preferences can 
be incorporated into the control system, further reduc­
ing the complexity for the reinforcement learning com­
ponent. Throughout learning and system operation, this 
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discrete supervisor is then used to l imi t exploration to 
admissible parts of the behavior space, and to activate 
controllers according to the policy selected by the learn­
ing system. 

3.2 L e a r n i n g C o m p o n e n t 

Reinforcement learning provides a mechanism for 
adapting to changing environments and tasks without 
external supervision [Mahadevan and Connell, 1992]. In 
this exploration-based paradigm, the system learns a 
control policy which maximizes the amount of reinforce­
ment it receives. A major drawback of this scheme, how­
ever, is its inherent complexity and the need for explo­
ration in order to find better policies. In the architecture 
presented here, these problems are addressed by learning 
controller activations on top of the predicate space model 
defined by the DEDS supervisor, thus reducing the size 
of the action and state spaces considered in the learning 
task, and enforcing safety constraints throughout explo­
ration. In addi t ion, this also facilitates the acquisition 
of transit ion probabilit ies between predicate states and 
thus allows run-t ime experience to improve the predic­
tive power of the abstract model. 

The learning component used here employs Q-
learning [Watkins, 1989], a widely used temporal dif­
ference method that learns a value function over 
state/action pairs in order to represent the quality of a 
given action. Estimates of the future discounted payoff 
of an action, 

are computed, where is the immediate reinforcement 
obtained at this t ime step, and is a discount factor. 
Using this function the control policy is given as the 
action w i th the highest Q-value in the current state. To 
adapt this to the finite state transit ion model used as the 
underlying state space description for learning, this value 
function can be represented in a distributed fashion as 

where p(x,a, y) is the probabil i ty that controller a in 
state x w i l l lead to state y and represents 
the value of the corresponding transit ion. Throughout 
learning this estimate is then updated according to 

where is the learning rate. At the same t ime, frequency 
counts can be used to determine the transit ion probabil­
ities w i th in the nondeterministic supervisor. Together 
this allows the overall architecture to adapt efficiently to 
changing task requirements by on-line acquiring correct 
control policies. 

4 L o c o m o t i o n Examp le 

To demonstrate the applicability of the proposed ar­
chitecture, it has been implemented on a four legged, 
twelve degree of freedom walking robot. The objective 
was to acquire useful policies for turning gaits. It has 
already been shown that hand crafted control gaits for 
such tasks can be derived [Huber et a/., 1996]. The ex­
ample presented here uses the proposed architecture to 
learn solutions autonomously wi th minimal external su­
pervision. To do this, the robot was put in an ini t ia l 
stable configuration onto an even surface and the learn­
ing process was init iated without any further input from 
an outside teacher. 

4.1 C o n t r o l Basis and D E D S Superv isor 

The control basis used for these tasks was already used 
successfully for dextrous manipulation and locomotion 
tasks [Grupen et al., 1995; Huber et a/., 1996] and con­
sists of solutions to three generic robotics problems, 

Configuration space motion control, 

Contact configuration control, and 

Kinematic conditioning. 

Each of these basis control laws can then be bound to 
subsets of the system resources (legs 0,1,2,3 and posi­
t ion and orientation of the center of mass shown 
in Figure 3. For details on this control basis and the 
resource bindings see [Huber et a/., 1996]. 

Figure 3: Controller and Resource Notation 

For the example presented here, the set of possible 
controllers and controller bindings was l imited in or­
der to allow for a concise notation for the predicate 
space model. The set of controller/resource combina­
tions available to the system consists here of all in­
stances of the contact configuration controller of the form 
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used to construct composite controllers, allowing a total 
of 157 composite controllers or actions in the DEDS and 
learning components. In addition, this choice of candi­
date controllers limits the predicate space to 5 predicates 

corresponding to the convergence of a 
controller/input binding pair in the following way: 

where * is a wildcard and indicates the independence of 
the predicate evaluation from the output resource. 

After automatically constructing the graph of all pos­
sible system behavior in this space, a safety constraint 
for quasistatic walking, namely that the platform has 
to be always stable, can be imposed on the supervisor. 
In terms of the predicates this implies that at least one 
stance has to be stable, or in other words 
has to evaluate true. Furthermore, knowledge about the 
platform can be introduced in the form of domain con­
straints. For the legged platform employed here, for ex­
ample, kinematic limitations do not allow the simultane­
ous stability of two opposing support triangles. Adding 
this knowledge as further reduces 
the size of the supervisor to the one shown in Figure 4 , 

Figure 4: DEDS Supervisor for Rotat ion Task 

where the numbers in the states represent the values of 
the 5 predicates. It should be noted here, that for the 
purpose of i l lustrat ion, the complete supervisor has been 
bui l t a pr ior i in this example. In general, however, this 

could be done incrementally in the course of exploration 
without the violation of any constraints. 

4.2 L e a r n i n g Resu l ts 

The supervisor derived from the control basis repre­
sents all admissible control policies. It does not, however, 
express any task objectives or an opt imal control policy. 
In order to learn these for the counterclockwise rotat ion 
task, a reinforcement schedule has to be present which 
rewards the system whenever it performs the task cor­
rectly. The reinforcement used in this example is 1 if the 
control action led to a counterclockwise rotat ion, -1 i f i t 
led to a clockwise rotat ion, and 0 otherwise. The robot 
system is then put onto a flat surface and the learning 
process is started. 

Several experiments of this form were performed in 
order to investigate the performance of the control and 
learning components. In all these trials the system 
rapidly acquired the correct gait pattern while explo­
ration was slowly decreased from 100% to 10%. This 
minimum level of random actions was maintained to in­
troduce perturbations and thus to learn a more robust 
policy. Figure 5 depicts a typical learning profile for this 
task. 

Cont ro l Steps 

Figure 5: Learning Curve for Counterclockwise Task 

The learning curve shows that a correct turn ing 
gait is learned after approximately 500 learning steps. 
Throughout this entire learning process, which on the 
real robot took approximately 15 minutes, the robot 
platform never entered an unsafe situations due to the 
l imitations imposed by the DEDS supervisor. 

The final control policy is shown in Figure 6. This 
graph shows all possible transitions that can occur while 
following the learned policy. The core of this policy is 
the cycle indicated by bold transit ion arrows which cor­
responds to a stable turn ing gait. Transit ion probabil­
ities wi th in this cycle are > 95%, making it a stable 
attractor for this policy. For this core, the correspond­
ing control actions are indicated on the bot tom of the 
figure. The learned control actions in all other states at­
tempt to lead the system onto this stable cycle, making 
the policy more robust w i th respect to perturbations. 
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Figure 6: Learned Control Policy for Counterclockwise 
Rotation Task 

5 C o n c l u s i o n s 

Reactive and adaptive control architectures for au­
tonomous systems pose many challenges due to the com­
plexity of the task and the l imited amount of supervi­
sion possible. The architecture presented in this paper 
employs a hybr id control architecture wi th a reinforce­
ment learning component in order to address these is­
sues. Continuous reactive control is thereby derived from 
a carefully designed control basis while the composition 
policy is learned on top of an abstract predicate space in 
a DEDS framework. This allows the imposition of safety 
constraints and thus permits new tasks to be learned on-
line in a single t r ia l and wi thout the need for an external 
teacher. In addit ion, it dramatically reduces the com­
plexity of the action and state space, making learning 
feasible even for complex tasks and platforms. 
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