
D e p t h - b o u n d e d Discrepancy Search

Toby Walsh*
APES Group, Department of Computer Science

University of Strathclyde, Glasgow Gl 1XL. Scotland
tw@cs.strath.ac.uk

Abs t rac t
Many search trees are impractical ly large to ex­
plore exhaustively. Recently, techniques like
l imi ted discrepancy search have been proposed
for improving the chance of f inding a goal in a
l imi ted amount of search. Depth-bounded dis­
crepancy search offers such a hope. The motiv­
at ion behind depth-bounded discrepancy search
is that branching heuristics are more likely to be
wrong at the top of the tree than at the bot tom.
We therefore combine one of the best features of
l imi ted discrepancy search - the abil i ty to undo
early mistakes - w i th the completeness of iter­
ative deepening search. We show theoretically
and experimentally that this novel combination
outperforms existing techniques.

1 I n t r o d u c t i o n
On backtracking, depth-first search explores decisions
made against the branching heuristic (or "discrepan­
cies"), start ing w i th decisions made deep in the search
tree. However, branching heuristics are more likely to
be wrong at the top of the tree than at the bot tom.
We would like therefore to direct search to discrepancies
against the heuristic high in the tree - precisely the op­
posite of depth-first search. To achieve this aim, depth-
bounded discrepancy search (or D D S) combines together
l imi ted discrepancy search [Harvey and Ginsberg, 1995]
and iterative deepening search [Korf, 1985]. D D S ap­
pears to perform better than both l imited discrepancy
search, L D S and the improved version, I LDS [Korf, 1996].
Unlike I L D S , D D S does not need an upper l im i t on the
max imum depth of the tree (that is, the maximum num­
ber of branching points down any branch). This wi l l be
an advantage in many domains as we often only have a
loose l im i t on the max imum depth because of constraint
propagation and pruning.

2 Discrepancies
A discrepancy is any decision point in a search tree where
we go against the heuristic. For convenience, we assume
that left branches follow the heuristic. Any other branch

*The author is supported by EPSRC award GR/K/65706.
I wish to thank members of the APES group for their help.

breaks the heuristic and is a discrepancy. For conveni­
ence, we call this a right branch. L imi ted discrepancy
search (L D S) explores the leaf nodes in increasing order
of the number of discrepancies taken to reach them. On
the i t h i teration, L D S visits all leaf nodes wi th up to
i discrepancies. The motivat ion is that our branching
heuristic has hopefully made only a few mistakes, and
L D S allows a small number of mistakes to be corrected
at l i t t le cost. By comparison, depth-first search (D F S)
has to explore a significant fraction of the tree before it
undoes an early mistake. Korf has proposed an improved

Figure 1: I L D S on a binary tree of depth 4.

version of L D S called I LDS that uses (an upper l im i t on)
the maximum depth of the tree. On the ith i teration,
I L D S visits leaf nodes at the depth l imi t w i th exactly i
discrepancies. This avoids re-visiting leaf nodes at the
depth l im i t w i th fewer discrepancies. When the tree is
not balanced or the l im i t on the max imum depth is loose,
ILDS re-visits all those leaf nodes above the l im i t .

Both L D S and lLDS treat all discrepancies alike, irre­
spective of their depth. However, heuristics tend to be
less informed and make more mistakes at the top of the
search tree. For instance, the Karmarkar-Karp heuristic
for number part i t ioning [Korf, 1996] makes a fixed (and
possibly incorrect) decision at the root of the tree. Near
to the bot tom of the tree, when there are 4 or less num­
bers left to part i t ion, the heuristic always makes the op­
t imal choice. Given a l imi ted amount of search, it may
pay to explore discrepancies at the top of the tree be­
fore those at the bot tom. This is the mot ivat ion behind
depth-bounded discrepancy search.

1388 SEARCH

3 Dep th -bounded discrepancy search
Depth-bounded discrepancy search (D D S) biases search
to discrepancies high in the tree by means of an iterat-
ively increasing depth bound. Discrepancies below this
bound are prohibi ted. On the Oth iteration, D D S ex­
plores the leftmost branch. On the i+ Hh iteration, D D S
explores those branches on which discrepancies occur at
a depth of i or less. As wi th I L D S , we are careful not
to re-visit leaf nodes visited on earlier iterations. This is
surprisingly easy to enforce. At depth i on the i -f 1th
i teration, we take only r ight branches since left branches
would take us to leaf nodes visited on an earlier itera­
t ion. At lesser depths, we can take both left and right
branches. And at greater depths, we always follow the
heuristic left. Search is terminated when the increasing
bound is greater than the depth of the deepest leaf node.
As the z 4- 1th i teration of DDS on a balanced tree with
branching factor b explores branches, the cost of
each i teration grows by approximately a constant factor.

Figure 2: D D S on a binary tree of depth 4.

As an example, consider a binary tree of depth 4. On
the Oth i terat ion, we branch left wi th the heuristic and
visit the leftmost leaf node. On the 1st i teration, we
branch right at the root and then follow the heuristic left.
On the 2nd i terat ion, we branch either way at the root,
just r ight at depth 1, and left thereafter. Branching left
at depth 1 re-visits leaf nodes visited on earlier iterations.
On the 3rd i terat ion, we branch either way at the root
and depth 1, just r ight at depth 2, then left thereafter.
On the 4th and final i terat ion, we branch either way up
to and including depth 2, and just right at depth 3. This
takes us to the remaining leaf nodes and completes the
search of the tree. Note that we did not re-visit any
leaf nodes. The fol lowing pseudo-code describes D D S
for binary trees. Note that , unlike I L D S , the maximum
depth does not need to be given as it is computed during
search as the second argument returned by P R O B E .

D D S visits all the leaf nodes of a search tree, but never
re-visits leaf nodes at the maximum depth. To prove
this, consider the depth j of the deepest right branch
on the path to any leaf node at the maximum depth.
Only the j t h iteration of D D S wil l visit this leaf node.
D D S re-visits leaf nodes above the maximum depth of the
tree when the depth bound k exceeds the depth of the
shallowest leaf node. This typically occurs late in search
when much of the tree has been explored. Indeed, as
search is usually l imited to the first few iterations, we
often do not re-visit any leaf nodes. ILDS also re-visits
leaf nodes that occur above (the upper l imi t on) the
maximum depth of the tree. However, ILDS can re-visit
leaf nodes from the first iteration onwards. For example,
if the leftmost leaf node is above the maximum depth of
the tree, it is re-visited on every iteration.

Given a l imited amount of search, D D S explores more
discrepancies at the top of search tree than L D S or I L D S .
At the end of the first iteration of I LDS on a binary tree
of height d, we have explored branches with at most
one discrepancy. By comparison, D D S is already on ap­
proximately its log2(d)-th iteration, exploring branches
with up to \og2(d) discrepancies. And at the end of the
second iteration of I L D S , we have explored branches with
at most two discrepancies. D D S is now on approximately
its 21og2(d)-th iteration, exploring branches with up to
21og2(d) discrepancies.

D D S is a close cousin of iterative-deepening search
[Korf, 1985]. There are, however, two significant dif­
ferences. First, when the depth bound is reached, we do
not immediately backtrack but follow the heuristic to a
leaf node. Second, by always going right immediately
above the depth bound, we avoid re-visiting any nodes
at the depth bound.

4 Asympto t i c complex i ty
For simplicity, we consider just balanced binary trees of
depth d. The analysis would generalize with l i t t le dif­
ficulty to trees with larger branching rates. Korf has
shown that in searching the tree completely, L D S vis­
its leaf nodes [Korf, 1996]. By comparison,
D D S , D F S and ILDS all visit the 2d leaf nodes just once.
I LDS and D D S are less efficient than D F S as they re-visit
interior nodes multiple times. However, they have a sim­
ilar overhead. D F S visits _ 1 nodes in searching the
tree exhaustively. By comparison, ILDS visits approxim-

WALSH 1389

ately 2d+2 nodes [Korf, 1996], as does D D S . Let Dos(rf)
be the number of nodes visited by D D S in searching a
tree of depth d completely. On the Oth i teration, DDS
explores the d nodes below the root ending at the leaf
node on the leftmost branch. On the ith i terat ion, D D S
explores completely a subtree of depth i— 1. In addit ion,
D D S branches right at the 2 i -1 nodes at depth t— 1, and
then left down the (d — i) nodes to a leaf node. Thus,
for d large,

Expanding only r ight nodes at the depth bound con-
tributes significantly to this result. On the last and most,
expensive i terat ion, the depth bound reaches the bot tom
of the tree, yet D D S explores just the out of the 2d

leaf nodes that have not yet been visited. Wi thout this
efficiency, D D S would explore approximately 2d+3 nodes.

5 A Smal l Imp rovemen t
By increasing the space complexity of D D S , we can
avoid most of the interior node overhead. For instance,
we could search to the depth bound using breadth-first
search instead of iterative-deepening as present. We can
then start successive iterations f rom the frontier at the
depth bound, saving the need to re-visit all the interior
nodes above the depth boumd. The only overhead now
is that of re-visit ing the approximately 2d interior nodes
that lie along the left paths followed beneath the depth
bound. The dominat ing cost is that of breadth-first
search which visits approximately 2 d + 1 nodes. Unfortu­
nately, this improvement increases the space complexity
at the kth i teration f rom O(k) to 0 (2 k) . Provided search
is l imi ted to the first few iterations, this may be accept­
able and offer improvements in runtimes. We can achieve
lesser savings but at linear cost in the space complexity
using recursive best-first search wi th the depth as the
cost function [Korf, 1993]. This wi l l perform breadth-
first search using space that is only of size 0(k) but
wi l l re-visit some interior nodes. We might also consider
searching up to depth bound using I L D S . Such a strategy
would not explore the tree completely. For example, it
would not explore the branch which goes left at the root,
r ight at depth 1, and left thereafter. For completeness,
we would need to search to the depth bound using L D S .
But this search strategy would re-visit many more nodes
than necessary.

6 A S imple Theore t ica l M o d e l
To analyse iterative broadening and l imited discrepancy
search theoretically, Harvey and Ginsberg introduce a

simple model of heuristic search w i th a fixed probabil­
i ty of a branching mistake [Ginsberg and Harvey, 1992;
Harvey and Ginsberg, 1995]. Nodes in a search tree are
labelled "good" and "bad" . A good node has a goal be­
neath i t . A bad node does not. The mistake probabil i ty,
m is the probabil ity that a randomly selected child of a
good node is bad. This is assumed to be constant across
the search tree. See [Harvey, 1995] for some experimental
justif ication of this assumption.

The heuristic probabil i ty, p is the probabil i ty that at a
good node, the heuristic choses a good child first. If the
heuristic choses a bad child, then since the node is good,
the other child must be good. If the heuristic makes
choices at random then p = 1 — m. If the heuristic does
better than random then p > 1 — m. And if the heuristic
always makes the wrong choice, p = 1 — 2m. Figure 3,
adapted slightly from Figure 3.3 in [Harvey, 1995], lists
what can happen when we branch at a good node, and
gives the probabilities wi th which each situation occurs.

Figure 3: Branching at a good node. As the situations
are disjoint and exhaustive, the probabilities sum to 1.

In order to simplify the analysis, Harvey and Ginsberg
assume that p is constant throughout the search tree,
though they note that it tends to increase wi th depth
in practice. At the top of the tree, heuristics are less
informed and have to guess more than towards the bot-
tom of the tree. This simpli fying assumption wi l l bias
results against D D S . Harvey and Ginsberg also restrict
their analysis to the first iteration of L D S . The com­
binatorics involved in computing exactly the probabil i ty
of success of later iterations are very complex and have
defeated analysis. To study later iterations, we simply
estimate probabilities by searching an ensemble of trees
constructed to have a fixed depth and a given heuristic
and mistake probability. Since search wi l l be l imi ted to
the first few iterations of the algorithms, the nodes in
the trees can be generated lazily on demand, 'frees with
billions of nodes can easily be analysed by this method.

As in Figure 4 of [Harvey and Ginsberg, 1995], Figure
4 gives the probabil i ty of f inding a goal when searching
trees of height 30 wi th a mistake probabil i ty of 0.2 com­
puted from an ensemble of 100,000 trees. Such trees have
approximately a bi l l ion leaf nodes, of which just over
a mi l l ion are goals. W i t h about 1 in 1000 leaf nodes
being goals, such problems are relatively easy. Nev­
ertheless, the probabil i ty of success for D F S rises only
slightly above pd, the probabil i ty that the first branch
ends in a goal. As in [Harvey and Ginsberg, 1995], D F S
is given the highest heuristic probabil i ty in this and all

1390 SEARCH

subsequent experiments but st i l l performs poorly. I LDS ,
which is omi t ted f rom the graphs for clarity, performs
very similarly to L D S . On these small and easy problems,
D D S offers a small advantage over L D S at each value of
p. The discontinuities in the gradients of the graphs for
D D S correspond to increases in the depth bound. They
do not seem to disappear w i th even larger samples.

Figure 4: Probabil i ty of success on trees of height 30 and
mistake probabil i ty, m = 0.2.

We next consider more difficult search problems. As in
Figure 5 of [Harvey and Ginsberg, 1995], Figure 5 gives
the probabi l i ty of f inding a goal when searching trees of
height 100 w i th a mistake probabi l i ty of 0.1 computed
from an ensemble of 10,000 trees. Such trees have ap­
proximately 1030 leaf nodes, of which about 1 in 38,000
are goals. This graph covers the 0th, 1st and part of the
2nd i teration of L D S . Previously, Harvey and Ginsberg
restricted their theoretical analysis to the 1st iteration
of L D S as it is intractable to compute the probabil it­
ies exactly for later iterations. As predicted in [Harvey
and Ginsberg, 1995], at the start of the 2nd iteration,
the probabil i ty of success for L D S "rise[s] steadily once
again" as we explore fresh paths at the top of the search
tree. However, D D S appears to be more effective at ex­
ploring these paths and offers performance advantages
over L D S at every value of heuristic probability.

Figure 5: Probabi l i ty of success on trees of height 100
and mistake probabil i ty, m = 0.1.

Finally, we vary the heuristic probability wi th depth.
In Figure 6, p varies linearly from 1 - m at depth 0
(i.e. random choice) to 1 at depth d (i.e. always cor­
rect). This may provide a better model for the behavior
of heuristics in practice. D D S appears to offer greater
performance advantages over L D S in such situations.

Figure 6: Probability of success on trees of height 100
and m = 0.1 with heuristic probability, p varying linearly
from 1 - m (random choice) at the root to 1 (correct
choice) at leaf nodes. At depth

7 Ear ly mistakes
We attribute the success of D D S to the ease with which
it can undo early mistakes. Such mistakes can be very
costly for D F S . For instance, Crawford and Baker identi­
fied early mistakes as the cause of poor performance for a
Davis-Putnam procedure using D F S on Sadeh's schedul­
ing benchmarks [Crawford and Baker, 1994], On some
problems, a solution was found almost immediately. On
other problems, an init ial bad guess would lead to search­
ing a subtree wi th the order of 27 0 nodes. Recent phase
transition experiments have also identified early mistakes
as a cause of occasional exceptionally hard problems (or
ehps) in under-constrained regions. For example, Gent
and Walsh found ehps in soluble propositional satisfiab­
i l i ty problems [Gent and Walsh, 1994]. They report that
ehps often occur after an early mistake when the heur­
istic branches into an insoluble and difficult subprob-
lem. Similarly, Smith and Grant found ehps in soluble
constraint satisfaction problems with sparse constraint
graphs [Smith and Grant, 1995]. Again they report that
they often occur after an early branching mistake into
an insoluble and difficult subproblem.

D D S may undo early mistake at much less cost than
D F S . TO test this hypothesis, we generated satisfiable
problems from the constant probability model using the
same parameters as [Gent and Walsh, 1994]. Each prob­
lem has 200 variables and a ratio of clauses to variables
of 2.6. Literals are included in a clause with probab­
i l i ty 3/400, giving a mean clause length of approxim­
ately 3. Unit and empty clauses are discarded as they
tend to make problems easier. This problem class is
typically much easier than the random 3 -SAT model

WALSH 1391

but generates a greater frequency of ehps [Gent and
Walsh, 1994]. To solve these problems, we use the Davis-
Putnam procedure, branching on the first l i teral in the
shortest clause. Table 1 demonstrates that D D S reduces
the severity of ehps compared to D F S . Other methods
to tackle ehps include sophisticated backtracking pro-
cedures like conflict-directed backjumping [Smith and
Grant, 1995] and learning techniques like dependency-
directed backtracking [Bayardo and Schrag, 1996] which
identify quickly the insoluble subproblems after an early
mistake.

mean
50%
90%
99%

99.9%
99.99%

DDS
7.54

1
5

87
859

7,581

DFS
> 49,000

1
2

19
761,095

> 200,000,000

Table 1: Mean and percentiles in branches explored by
the Davis-Putnam procedure on 10,000 satisfiable prob­
lems f rom the constant probabi l i ty model w i th 200 vari­
ables. At the t ime of submission, D F S had searched over
200,000,000 branches on 2 problems without success. We
hope to report the f inal result at the conference.

8 A d d i n g bounded backt rack ing
Whi ls t early mistakes are not necessarily costly for D D S ,
mistakes deep in the tree wi l l be very costly. Bounded
backtrack search (B B S) allows quick recovery from mis­
takes deep in the tree for l i t t le addit ional cost [Harvey,
1995]. A backtrack bound of depth / adds at most a
factor of 2 l to the search cost. For small /, this is likely to
be cheaper than the cost of addit ional iterations of D D S .
An alternative view is to consider bounded backtracking
as strengthening the branching heuristic to avoid choices
which fai l using a fixed lookahead.

D D S combines very natural ly w i th BBS to give the al­
gor i thm D D S - B B S . D D S explores early mistakes made
at the top of the tree whilst BBS identifies failures rap­
idly at the bot tom of the tree. The two search strategies
therefore jo in together wi thout overlap. Harvey has also
combined L D S w i th BBS to give L D S - B B S . See the Ap­
pendix for details and for a correction of a small error in
the specifications of the algor i thm given in [Harvey, 1995;
Harvey and Ginsberg, 1995]. On the ith i teration, L D S -
B B S re-visits al l those leaf nodes wi th less than i dis­
crepancies. One improvement is to combine I L D S wi th
B B S SO that the discrepancy search does not re-visit leaf
nodes. However, even w i th such a modif ication, bounded
backtracking st i l l re-visits leaf nodes visited on earlier i t ­
erations. By comparison, the bounded backtracking in
D D S - B B S only visits leaf nodes wi th a greater discrep­
ancy count that have not yet been visited. The following
pseudo-code describes D D S - B B S for binary trees.

9 Exper iments

A phase transition is often seen when we vary the
constrainedness of randomly generated problems and
they go from being under-constrained and soluble to
over-constrained and insoluble [Cheeseman et ai, 1991].
Discrepancy search strategies like D D S , L D S and I L D S
are designed for under-constrained and soluble prob­
lems, where we expect to explore just a small fraction
of the search tree. Harvey and Ginsberg report that
such problems are common in areas like planning and
scheduling [Harvey and Ginsberg, 1995]. Discrepancy
search strategies offer no advantage on insoluble prob­
lems where the tree must be traversed completely. In­
deed, for a balanced binary tree, our asymptotic results,
along wi th those of [Korf, 1996], show that we explore ap­
proximately double the number of nodes of D F S . When
the tree is unbalanced, as a result of constraint propaga­
tion and pruning, the overhead can be even greater. We
therefore restricted the experiments in this section to
soluble and under-constrained problems, on which dis­
crepancy search strategies can offer advantages.

As in [Harvey, 1995], we use the random 3 - S A T model.
A phase transition occurs for this model at a clause to
variable ratio, L/N of approximately 4.3 [Mitchell et a/.,
1992]. We generated 10,000 satisfiable problems from the
soluble region wi th L/N = 3.5 and f rom 50 to 250 vari­
ables. Each problem is solved using the Davis-Putnam
procedure, branching as before on the first l i teral in the
shortest clause. Results are given in Table 2. As expec­
ted, on such under-constrained and soluble problems,
D D S and I L D S are superior to D F S , w i th D D S offering
an advantage over I L D S especially on larger and harder
problems. By comparison, on "crit ically constrained"
problems at L/N = 4.3, D F S gave the best performance,
wi th l i t t le to chose between I L D S and D D S .

1392 SEARCH

N
50

100
150
200
250

DFS
mean
14.40

116.36
641.50

3,795.54
21,816.87

99.9%
262

3,844
29,224

201,863
1,422,539

ILDS
mean
10.81
28.33
57.37

114.37
239.49

99.9%
450
822

1,425
3,621

10,104

DDS
mean 99.9%
10.65 5 2 0]
24.87 710
48.85 1.011
9 9 0 7 2,403

198.30 6,081

Table 2: Branches explored by the Davis-Putnam pro­
cedure on 10,000 satish'able random 3-SAT problems at
L/N = 3.5. Best results in each row are underlined.

10 Re la ted work
L D S was proposed by Harvey and Ginsberg in [Harvey,
1995; Harvey and Ginsberg, 1995]. They showed that it
outperformed existing strategies like D F S and iterative
sampling on large, under-constrained scheduling prob­
lems. ILDS, Korf 's improved version of L D S appeared
in [Korf, 1996]. A r i Jonsson (personal communication
reported on page 94 of [Harvey, 1995]) has proposed
a related search strategy to D D S in which we perform
iterative-deepening search followed by bounded back­
tracking from nodes at the depth bound. Like L D S , such
a strategy re-visits leaf nodes mult ip le times. For ex­
ample, the leftmost leaf node is visited on every iteration
of the search. By comparison, D D S visits only half the
nodes at the depth bound, and never re-visits any leaf
node at the max imum search depth.

11 Conclusions
For many problems, the search tree is too large to explore
completely. As a consequence, we often want to increase
the chance of f inding a solution in a l imited amount of
search. We have shown both theoretically and experi­
mentally that depth-bounded discrepancy search is an
effective means of exploring large and under-constrained
search trees. By focusing on branching decisions at the
top of the search tree, where heuristics are most likely
to be wrong, depth-bounded discrepancy search outper­
forms depth-first and l imi ted discrepancy search.

References
[Bayardo and Schrag, 1996] R. Bayardo and R. Schrag.

Using CSP look-back techniques to solve exceptionally
hard SAT instances. In Proceedings of CP-96, 1996.

[Cheeseman et al, 1991] P. Cheeseman, B. Kanefsky,
and W . M . Taylor. Where the really hard problems
are. In Proceedings of the 12th IJCAI, pages 331-337,
1991.

[Crawford and Baker, 1994] J .M. Crawford and A.B.
Baker. Experimental Results on the Application of
Satisfiabil ity Algor i thms to Scheduling Problems. In
Proceedings of the 12th AAAI, 1092-1097, 1994.

[Gent and Walsh, 1994] LP. Gent and T. Walsh. Easy
problems are sometimes hard. Artificial Intelligence,
335-345, 1994.

[Ginsberg and Harvey, 1992] M. L. Ginsberg and W. D.
Harvey. Iterative broadening. Artificial Intelligence,
55(2-3):367-383, 1992.

[Harvey and Ginsberg, 1995] W. D. Harvey and M. L.
Ginsberg. Limited discrepancy search. In Proceedings
of 14th IJCAI, 1995.

[Harvey, 1995] W. D. Harvey. Nonsystematic Backtrack­
ing Search. PhD thesis, Stanford University, 1995.

[Korf, 1985] R. Korf. Depth-first iterative deepening: an
optimal admissible tree search. Artificial Intelligence,
27(1):97-109, 1985.

[Korf, 1993] R. Korf. Linear -space best-first search. Ar­
tificial Intelligence, 62(l):43-78, 1993.

[Korf, 1996] R. Korf. Improved l imited discrepancy
search. In Proceedings of 13th AAA I 1996.

[Mitchell el a/., 1992] D. Mitchell, B. Selman, and
H. Levesque. Hard and Easy Distributions of SAT
Problems. In Proceedings of 10th AAAI, 459-465,
1992.

[Smith and Grant, 1995] B.M. Smith and S. Grant.
Sparse Constraint Graphs and Exceptionally Hard
Problems. In Proceedings of 14th IJCAI, 1995.

Appendix

L D S - B B S is specified by the following pseudo-code:
func t ion LDS-BBS(7)

for k — 0 to max depth
{goal, height) = PROBE(root,k,l)
if goal NIL re tu rn goal ≠

re tu rn NIL

There is a small error in the specifications that appear
in [Harvey, 1995; Harvey and Ginsberg, 1995] as the 7th
line of PROBE was " i f k > 0 and i = 0 then k' = k - 1
else k' = k". This error allows k' can be set to - 1 . This
prevents bounded backtracking from terminating in the
previous line when the bound, / is reached. As a con­
sequence, many more nodes are searched than intended.
For example, the Oth iteration explores completely the
subtree to the left of the root, irrespective of the back­
tracking bound, h.

WALSH 1393

SEARCH

Search 2: Bin Packing

