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Abs t rac t 
Many search trees are impractical ly large to ex­
plore exhaustively. Recently, techniques like 
l imi ted discrepancy search have been proposed 
for improving the chance of f inding a goal in a 
l imi ted amount of search. Depth-bounded dis­
crepancy search offers such a hope. The motiv­
at ion behind depth-bounded discrepancy search 
is that branching heuristics are more likely to be 
wrong at the top of the tree than at the bot tom. 
We therefore combine one of the best features of 
l imi ted discrepancy search - the abil i ty to undo 
early mistakes - w i th the completeness of iter­
ative deepening search. We show theoretically 
and experimentally that this novel combination 
outperforms existing techniques. 

1 I n t r o d u c t i o n 
On backtracking, depth-first search explores decisions 
made against the branching heuristic (or "discrepan­
cies"), start ing w i th decisions made deep in the search 
tree. However, branching heuristics are more likely to 
be wrong at the top of the tree than at the bot tom. 
We would like therefore to direct search to discrepancies 
against the heuristic high in the tree - precisely the op­
posite of depth-first search. To achieve this aim, depth-
bounded discrepancy search (or D D S ) combines together 
l imi ted discrepancy search [Harvey and Ginsberg, 1995] 
and iterative deepening search [Korf, 1985]. D D S ap­
pears to perform better than both l imited discrepancy 
search, L D S and the improved version, I LDS [Korf, 1996]. 
Unlike I L D S , D D S does not need an upper l im i t on the 
max imum depth of the tree ( that is, the maximum num­
ber of branching points down any branch). This wi l l be 
an advantage in many domains as we often only have a 
loose l im i t on the max imum depth because of constraint 
propagation and pruning. 

2 Discrepancies 
A discrepancy is any decision point in a search tree where 
we go against the heuristic. For convenience, we assume 
that left branches follow the heuristic. Any other branch 
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breaks the heuristic and is a discrepancy. For conveni­
ence, we call this a right branch. L imi ted discrepancy 
search ( L D S ) explores the leaf nodes in increasing order 
of the number of discrepancies taken to reach them. On 
the i t h i teration, L D S visits all leaf nodes wi th up to 
i discrepancies. The motivat ion is that our branching 
heuristic has hopefully made only a few mistakes, and 
L D S allows a small number of mistakes to be corrected 
at l i t t le cost. By comparison, depth-first search ( D F S ) 
has to explore a significant fraction of the tree before it 
undoes an early mistake. Korf has proposed an improved 

Figure 1: I L D S on a binary tree of depth 4. 

version of L D S called I LDS that uses (an upper l im i t on) 
the maximum depth of the tree. On the ith i teration, 
I L D S visits leaf nodes at the depth l imi t w i th exactly i 
discrepancies. This avoids re-visiting leaf nodes at the 
depth l im i t w i th fewer discrepancies. When the tree is 
not balanced or the l im i t on the max imum depth is loose, 
ILDS re-visits all those leaf nodes above the l im i t . 

Both L D S and lLDS treat all discrepancies alike, irre­
spective of their depth. However, heuristics tend to be 
less informed and make more mistakes at the top of the 
search tree. For instance, the Karmarkar-Karp heuristic 
for number part i t ioning [Korf, 1996] makes a fixed (and 
possibly incorrect) decision at the root of the tree. Near 
to the bot tom of the tree, when there are 4 or less num­
bers left to part i t ion, the heuristic always makes the op­
t imal choice. Given a l imi ted amount of search, it may 
pay to explore discrepancies at the top of the tree be­
fore those at the bot tom. This is the mot ivat ion behind 
depth-bounded discrepancy search. 
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3 Dep th -bounded discrepancy search 
Depth-bounded discrepancy search ( D D S ) biases search 
to discrepancies high in the tree by means of an iterat-
ively increasing depth bound. Discrepancies below this 
bound are prohibi ted. On the Oth iteration, D D S ex­
plores the leftmost branch. On the i+ Hh iteration, D D S 
explores those branches on which discrepancies occur at 
a depth of i or less. As wi th I L D S , we are careful not 
to re-visit leaf nodes visited on earlier iterations. This is 
surprisingly easy to enforce. At depth i on the i -f 1th 
i teration, we take only r ight branches since left branches 
would take us to leaf nodes visited on an earlier itera­
t ion. At lesser depths, we can take both left and right 
branches. And at greater depths, we always follow the 
heuristic left. Search is terminated when the increasing 
bound is greater than the depth of the deepest leaf node. 
As the z 4- 1th i teration of DDS on a balanced tree with 
branching factor b explores branches, the cost of 
each i teration grows by approximately a constant factor. 

Figure 2: D D S on a binary tree of depth 4. 

As an example, consider a binary tree of depth 4. On 
the Oth i terat ion, we branch left wi th the heuristic and 
visit the leftmost leaf node. On the 1st i teration, we 
branch right at the root and then follow the heuristic left. 
On the 2nd i terat ion, we branch either way at the root, 
just r ight at depth 1, and left thereafter. Branching left 
at depth 1 re-visits leaf nodes visited on earlier iterations. 
On the 3rd i terat ion, we branch either way at the root 
and depth 1, just r ight at depth 2, then left thereafter. 
On the 4th and final i terat ion, we branch either way up 
to and including depth 2, and just right at depth 3. This 
takes us to the remaining leaf nodes and completes the 
search of the tree. Note that we did not re-visit any 
leaf nodes. The fol lowing pseudo-code describes D D S 
for binary trees. Note that , unlike I L D S , the maximum 
depth does not need to be given as it is computed during 
search as the second argument returned by P R O B E . 

D D S visits all the leaf nodes of a search tree, but never 
re-visits leaf nodes at the maximum depth. To prove 
this, consider the depth j of the deepest right branch 
on the path to any leaf node at the maximum depth. 
Only the j t h iteration of D D S wil l visit this leaf node. 
D D S re-visits leaf nodes above the maximum depth of the 
tree when the depth bound k exceeds the depth of the 
shallowest leaf node. This typically occurs late in search 
when much of the tree has been explored. Indeed, as 
search is usually l imited to the first few iterations, we 
often do not re-visit any leaf nodes. ILDS also re-visits 
leaf nodes that occur above (the upper l imi t on) the 
maximum depth of the tree. However, ILDS can re-visit 
leaf nodes from the first iteration onwards. For example, 
if the leftmost leaf node is above the maximum depth of 
the tree, it is re-visited on every iteration. 

Given a l imited amount of search, D D S explores more 
discrepancies at the top of search tree than L D S or I L D S . 
At the end of the first iteration of I LDS on a binary tree 
of height d, we have explored branches with at most 
one discrepancy. By comparison, D D S is already on ap­
proximately its log2(d)-th iteration, exploring branches 
with up to \og2(d) discrepancies. And at the end of the 
second iteration of I L D S , we have explored branches with 
at most two discrepancies. D D S is now on approximately 
its 21og2(d)-th iteration, exploring branches with up to 
21og2(d) discrepancies. 

D D S is a close cousin of iterative-deepening search 
[Korf, 1985]. There are, however, two significant dif­
ferences. First, when the depth bound is reached, we do 
not immediately backtrack but follow the heuristic to a 
leaf node. Second, by always going right immediately 
above the depth bound, we avoid re-visiting any nodes 
at the depth bound. 

4 Asympto t i c complex i ty 
For simplicity, we consider just balanced binary trees of 
depth d. The analysis would generalize with l i t t le dif­
ficulty to trees with larger branching rates. Korf has 
shown that in searching the tree completely, L D S vis­
its leaf nodes [Korf, 1996]. By comparison, 
D D S , D F S and ILDS all visit the 2d leaf nodes just once. 
I LDS and D D S are less efficient than D F S as they re-visit 
interior nodes multiple times. However, they have a sim­
ilar overhead. D F S visits _ 1 nodes in searching the 
tree exhaustively. By comparison, ILDS visits approxim-
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ately 2d+2 nodes [Korf, 1996], as does D D S . Let Dos(rf) 
be the number of nodes visited by D D S in searching a 
tree of depth d completely. On the Oth i teration, DDS 
explores the d nodes below the root ending at the leaf 
node on the leftmost branch. On the ith i terat ion, D D S 
explores completely a subtree of depth i— 1. In addit ion, 
D D S branches right at the 2 i -1 nodes at depth t— 1, and 
then left down the (d — i) nodes to a leaf node. Thus, 
for d large, 

Expanding only r ight nodes at the depth bound con-
tributes significantly to this result. On the last and most, 
expensive i terat ion, the depth bound reaches the bot tom 
of the tree, yet D D S explores just the out of the 2d 

leaf nodes that have not yet been visited. Wi thout this 
efficiency, D D S would explore approximately 2d+3 nodes. 

5 A Smal l Imp rovemen t 
By increasing the space complexity of D D S , we can 
avoid most of the interior node overhead. For instance, 
we could search to the depth bound using breadth-first 
search instead of iterative-deepening as present. We can 
then start successive iterations f rom the frontier at the 
depth bound, saving the need to re-visit all the interior 
nodes above the depth boumd. The only overhead now 
is that of re-visit ing the approximately 2d interior nodes 
that lie along the left paths followed beneath the depth 
bound. The dominat ing cost is that of breadth-first 
search which visits approximately 2 d + 1 nodes. Unfortu­
nately, this improvement increases the space complexity 
at the kth i teration f rom O(k) to 0 ( 2 k ) . Provided search 
is l imi ted to the first few iterations, this may be accept­
able and offer improvements in runtimes. We can achieve 
lesser savings but at linear cost in the space complexity 
using recursive best-first search wi th the depth as the 
cost function [Korf, 1993]. This wi l l perform breadth-
first search using space that is only of size 0(k) but 
wi l l re-visit some interior nodes. We might also consider 
searching up to depth bound using I L D S . Such a strategy 
would not explore the tree completely. For example, it 
would not explore the branch which goes left at the root, 
r ight at depth 1, and left thereafter. For completeness, 
we would need to search to the depth bound using L D S . 
But this search strategy would re-visit many more nodes 
than necessary. 

6 A S imple Theore t ica l M o d e l 
To analyse iterative broadening and l imited discrepancy 
search theoretically, Harvey and Ginsberg introduce a 

simple model of heuristic search w i th a fixed probabil­
i ty of a branching mistake [Ginsberg and Harvey, 1992; 
Harvey and Ginsberg, 1995]. Nodes in a search tree are 
labelled "good" and "bad" . A good node has a goal be­
neath i t . A bad node does not. The mistake probabil i ty, 
m is the probabil ity that a randomly selected child of a 
good node is bad. This is assumed to be constant across 
the search tree. See [Harvey, 1995] for some experimental 
justif ication of this assumption. 

The heuristic probabil i ty, p is the probabil i ty that at a 
good node, the heuristic choses a good child first. If the 
heuristic choses a bad child, then since the node is good, 
the other child must be good. If the heuristic makes 
choices at random then p = 1 — m. If the heuristic does 
better than random then p > 1 — m. And if the heuristic 
always makes the wrong choice, p = 1 — 2m. Figure 3, 
adapted slightly from Figure 3.3 in [Harvey, 1995], lists 
what can happen when we branch at a good node, and 
gives the probabilities wi th which each situation occurs. 

Figure 3: Branching at a good node. As the situations 
are disjoint and exhaustive, the probabilities sum to 1. 

In order to simplify the analysis, Harvey and Ginsberg 
assume that p is constant throughout the search tree, 
though they note that it tends to increase wi th depth 
in practice. At the top of the tree, heuristics are less 
informed and have to guess more than towards the bot-
tom of the tree. This simpli fying assumption wi l l bias 
results against D D S . Harvey and Ginsberg also restrict 
their analysis to the first iteration of L D S . The com­
binatorics involved in computing exactly the probabil i ty 
of success of later iterations are very complex and have 
defeated analysis. To study later iterations, we simply 
estimate probabilities by searching an ensemble of trees 
constructed to have a fixed depth and a given heuristic 
and mistake probability. Since search wi l l be l imi ted to 
the first few iterations of the algorithms, the nodes in 
the trees can be generated lazily on demand, 'frees with 
billions of nodes can easily be analysed by this method. 

As in Figure 4 of [Harvey and Ginsberg, 1995], Figure 
4 gives the probabil i ty of f inding a goal when searching 
trees of height 30 wi th a mistake probabil i ty of 0.2 com­
puted from an ensemble of 100,000 trees. Such trees have 
approximately a bi l l ion leaf nodes, of which just over 
a mi l l ion are goals. W i t h about 1 in 1000 leaf nodes 
being goals, such problems are relatively easy. Nev­
ertheless, the probabil i ty of success for D F S rises only 
slightly above pd, the probabil i ty that the first branch 
ends in a goal. As in [Harvey and Ginsberg, 1995], D F S 
is given the highest heuristic probabil i ty in this and all 
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subsequent experiments but st i l l performs poorly. I LDS , 
which is omi t ted f rom the graphs for clarity, performs 
very similarly to L D S . On these small and easy problems, 
D D S offers a small advantage over L D S at each value of 
p. The discontinuities in the gradients of the graphs for 
D D S correspond to increases in the depth bound. They 
do not seem to disappear w i th even larger samples. 

Figure 4: Probabil i ty of success on trees of height 30 and 
mistake probabil i ty, m = 0.2. 

We next consider more difficult search problems. As in 
Figure 5 of [Harvey and Ginsberg, 1995], Figure 5 gives 
the probabi l i ty of f inding a goal when searching trees of 
height 100 w i th a mistake probabi l i ty of 0.1 computed 
from an ensemble of 10,000 trees. Such trees have ap­
proximately 1030 leaf nodes, of which about 1 in 38,000 
are goals. This graph covers the 0th, 1st and part of the 
2nd i teration of L D S . Previously, Harvey and Ginsberg 
restricted their theoretical analysis to the 1st iteration 
of L D S as it is intractable to compute the probabil it­
ies exactly for later iterations. As predicted in [Harvey 
and Ginsberg, 1995], at the start of the 2nd iteration, 
the probabil i ty of success for L D S "rise[s] steadily once 
again" as we explore fresh paths at the top of the search 
tree. However, D D S appears to be more effective at ex­
ploring these paths and offers performance advantages 
over L D S at every value of heuristic probability. 

Figure 5: Probabi l i ty of success on trees of height 100 
and mistake probabil i ty, m = 0.1. 

Finally, we vary the heuristic probability wi th depth. 
In Figure 6, p varies linearly from 1 - m at depth 0 
(i.e. random choice) to 1 at depth d (i.e. always cor­
rect). This may provide a better model for the behavior 
of heuristics in practice. D D S appears to offer greater 
performance advantages over L D S in such situations. 

Figure 6: Probability of success on trees of height 100 
and m = 0.1 with heuristic probability, p varying linearly 
from 1 - m (random choice) at the root to 1 (correct 
choice) at leaf nodes. At depth 

7 Ear ly mistakes 
We attribute the success of D D S to the ease with which 
it can undo early mistakes. Such mistakes can be very 
costly for D F S . For instance, Crawford and Baker identi­
fied early mistakes as the cause of poor performance for a 
Davis-Putnam procedure using D F S on Sadeh's schedul­
ing benchmarks [Crawford and Baker, 1994], On some 
problems, a solution was found almost immediately. On 
other problems, an init ial bad guess would lead to search­
ing a subtree wi th the order of 27 0 nodes. Recent phase 
transition experiments have also identified early mistakes 
as a cause of occasional exceptionally hard problems (or 
ehps) in under-constrained regions. For example, Gent 
and Walsh found ehps in soluble propositional satisfiab­
i l i ty problems [Gent and Walsh, 1994]. They report that 
ehps often occur after an early mistake when the heur­
istic branches into an insoluble and difficult subprob-
lem. Similarly, Smith and Grant found ehps in soluble 
constraint satisfaction problems with sparse constraint 
graphs [Smith and Grant, 1995]. Again they report that 
they often occur after an early branching mistake into 
an insoluble and difficult subproblem. 

D D S may undo early mistake at much less cost than 
D F S . TO test this hypothesis, we generated satisfiable 
problems from the constant probability model using the 
same parameters as [Gent and Walsh, 1994]. Each prob­
lem has 200 variables and a ratio of clauses to variables 
of 2.6. Literals are included in a clause with probab­
i l i ty 3/400, giving a mean clause length of approxim­
ately 3. Unit and empty clauses are discarded as they 
tend to make problems easier. This problem class is 
typically much easier than the random 3 -SAT model 
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but generates a greater frequency of ehps [Gent and 
Walsh, 1994]. To solve these problems, we use the Davis-
Putnam procedure, branching on the first l i teral in the 
shortest clause. Table 1 demonstrates that D D S reduces 
the severity of ehps compared to D F S . Other methods 
to tackle ehps include sophisticated backtracking pro-
cedures like conflict-directed backjumping [Smith and 
Grant, 1995] and learning techniques like dependency-
directed backtracking [Bayardo and Schrag, 1996] which 
identify quickly the insoluble subproblems after an early 
mistake. 

mean 
50% 
90% 
99% 

99.9% 
99.99% 

DDS 
7.54 

1 
5 

87 
859 

7,581 

DFS 
> 49,000 

1 
2 

19 
761,095 

> 200,000,000 

Table 1: Mean and percentiles in branches explored by 
the Davis-Putnam procedure on 10,000 satisfiable prob­
lems f rom the constant probabi l i ty model w i th 200 vari­
ables. At the t ime of submission, D F S had searched over 
200,000,000 branches on 2 problems without success. We 
hope to report the f inal result at the conference. 

8 A d d i n g bounded backt rack ing 
Whi ls t early mistakes are not necessarily costly for D D S , 
mistakes deep in the tree wi l l be very costly. Bounded 
backtrack search ( B B S ) allows quick recovery from mis­
takes deep in the tree for l i t t le addit ional cost [Harvey, 
1995]. A backtrack bound of depth / adds at most a 
factor of 2 l to the search cost. For small /, this is likely to 
be cheaper than the cost of addit ional iterations of D D S . 
An alternative view is to consider bounded backtracking 
as strengthening the branching heuristic to avoid choices 
which fai l using a fixed lookahead. 

D D S combines very natural ly w i th BBS to give the al­
gor i thm D D S - B B S . D D S explores early mistakes made 
at the top of the tree whilst BBS identifies failures rap­
idly at the bot tom of the tree. The two search strategies 
therefore jo in together wi thout overlap. Harvey has also 
combined L D S w i th BBS to give L D S - B B S . See the Ap­
pendix for details and for a correction of a small error in 
the specifications of the algor i thm given in [Harvey, 1995; 
Harvey and Ginsberg, 1995]. On the ith i teration, L D S -
B B S re-visits al l those leaf nodes wi th less than i dis­
crepancies. One improvement is to combine I L D S wi th 
B B S SO that the discrepancy search does not re-visit leaf 
nodes. However, even w i th such a modif ication, bounded 
backtracking st i l l re-visits leaf nodes visited on earlier i t ­
erations. By comparison, the bounded backtracking in 
D D S - B B S only visits leaf nodes wi th a greater discrep­
ancy count that have not yet been visited. The following 
pseudo-code describes D D S - B B S for binary trees. 

9 Exper iments 

A phase transition is often seen when we vary the 
constrainedness of randomly generated problems and 
they go from being under-constrained and soluble to 
over-constrained and insoluble [Cheeseman et ai, 1991]. 
Discrepancy search strategies like D D S , L D S and I L D S 
are designed for under-constrained and soluble prob­
lems, where we expect to explore just a small fraction 
of the search tree. Harvey and Ginsberg report that 
such problems are common in areas like planning and 
scheduling [Harvey and Ginsberg, 1995]. Discrepancy 
search strategies offer no advantage on insoluble prob­
lems where the tree must be traversed completely. In­
deed, for a balanced binary tree, our asymptotic results, 
along wi th those of [Korf, 1996], show that we explore ap­
proximately double the number of nodes of D F S . When 
the tree is unbalanced, as a result of constraint propaga­
tion and pruning, the overhead can be even greater. We 
therefore restricted the experiments in this section to 
soluble and under-constrained problems, on which dis­
crepancy search strategies can offer advantages. 

As in [Harvey, 1995], we use the random 3 - S A T model. 
A phase transition occurs for this model at a clause to 
variable ratio, L/N of approximately 4.3 [Mitchell et a/., 
1992]. We generated 10,000 satisfiable problems from the 
soluble region wi th L/N = 3.5 and f rom 50 to 250 vari­
ables. Each problem is solved using the Davis-Putnam 
procedure, branching as before on the first l i teral in the 
shortest clause. Results are given in Table 2. As expec­
ted, on such under-constrained and soluble problems, 
D D S and I L D S are superior to D F S , w i th D D S offering 
an advantage over I L D S especially on larger and harder 
problems. By comparison, on "crit ically constrained" 
problems at L/N = 4.3, D F S gave the best performance, 
wi th l i t t le to chose between I L D S and D D S . 
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N 
50 

100 
150 
200 
250 

DFS 
mean 
14.40 

116.36 
641.50 

3,795.54 
21,816.87 

99.9% 
262 

3,844 
29,224 

201,863 
1,422,539 

ILDS 
mean 
10.81 
28.33 
57.37 

114.37 
239.49 

99.9% 
450 
822 

1,425 
3,621 

10,104 

DDS 
mean 99.9% 
10.65 5 2 0 ] 
24.87 710 
48.85 1.011 
9 9 0 7 2,403 

198.30 6,081 

Table 2: Branches explored by the Davis-Putnam pro­
cedure on 10,000 satish'able random 3-SAT problems at 
L/N = 3.5. Best results in each row are underlined. 

10 Re la ted work 
L D S was proposed by Harvey and Ginsberg in [Harvey, 
1995; Harvey and Ginsberg, 1995]. They showed that it 
outperformed existing strategies like D F S and iterative 
sampling on large, under-constrained scheduling prob­
lems. ILDS, Korf 's improved version of L D S appeared 
in [Korf, 1996]. A r i Jonsson (personal communication 
reported on page 94 of [Harvey, 1995]) has proposed 
a related search strategy to D D S in which we perform 
iterative-deepening search followed by bounded back­
tracking from nodes at the depth bound. Like L D S , such 
a strategy re-visits leaf nodes mult ip le times. For ex­
ample, the leftmost leaf node is visited on every iteration 
of the search. By comparison, D D S visits only half the 
nodes at the depth bound, and never re-visits any leaf 
node at the max imum search depth. 

11 Conclusions 
For many problems, the search tree is too large to explore 
completely. As a consequence, we often want to increase 
the chance of f inding a solution in a l imited amount of 
search. We have shown both theoretically and experi­
mentally that depth-bounded discrepancy search is an 
effective means of exploring large and under-constrained 
search trees. By focusing on branching decisions at the 
top of the search tree, where heuristics are most likely 
to be wrong, depth-bounded discrepancy search outper­
forms depth-first and l imi ted discrepancy search. 
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Appendix 

L D S - B B S is specified by the following pseudo-code: 
func t ion LDS-BBS(7) 

for k — 0 to max depth 
{goal, height) = PROBE(root,k,l) 
if goal NIL re tu rn goal ≠ 

re tu rn NIL 

There is a small error in the specifications that appear 
in [Harvey, 1995; Harvey and Ginsberg, 1995] as the 7th 
line of PROBE was " i f k > 0 and i = 0 then k' = k - 1 
else k' = k". This error allows k' can be set to - 1 . This 
prevents bounded backtracking from terminating in the 
previous line when the bound, / is reached. As a con­
sequence, many more nodes are searched than intended. 
For example, the Oth iteration explores completely the 
subtree to the left of the root, irrespective of the back­
tracking bound, h. 
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