
An Approximate 0-1 Edge-Labeling A lgor i thm for
Constrained Bin-Packing Problem

Ho Soo Lee and M a r k T r u m b o
I B M Thomas J. Watson Research Center

P.O. Box 218, Yorktown Heights, New York 10598
hslee@watson.ibm.com and trumbo@watson.ibm.com

Abs t rac t
This paper describes a constrained bin-packing
•problem (CBPP) and an approximate, anytime
algor i thm for solutions. A CBPP is a con­
strained version of the bin-packing problem, in
which a set of items allocated to a bin are or­
dered in a way to satisfy constraints defined
on them and achieve near-optimality. The al­
gor i thm for CBPP uses a heuristic search for
labeling edges w i th a binary value, together
w i th a beam search and constraint propaga­
t ion. Some experimental results are provided.
This a lgor i thm has been successfully applied to
industrial-scale scheduling problems.

1 I n t r o d u c t i o n
We can see many instances of the bin-packing problem
(BPP) which is characterized as follows: Given a finite
number of bins whose sizes are the same, and a finite set
of items whose size is no more than the bin size, f ind a
par t i t ion of the items into disjoint subsets such that the
sum of the sizes of the items in each subset is no more
than the b in size, and such that the number of the bins
used is as small as possible. This bin-packing problem is
NP-hard [Garey and Johnson, 1979; Martel lo and Toth ,
1990].

The manufacturing and process industries often need
to create product ion units consisting of subunits that
are identical w i th respect to some criteria. These pro-
duction subunits are normal ly called groups, batches, or
lots [Vollman et a/., 1992]. When creating such groups
we frequently face problems that can be considered par­
t icular instances of the constrained bin-packing problem
(CBPP), which has addit ional restrictions over the bin-
packing problem in that items in each group have to
be sequenced satisfying al l given constraints, creating
ordered groups. In addit ion to satisfying al l the con­
straints, items in each bin should be ordered in a way
to minimize pr imar i ly the number of bins and secondly
aggregate cost.

Consider an example of a production scheduling prob-
lem f rom the steelmaking industry. Given a number of
orders (items) f rom customers, production schedules are

created by grouping the orders by considering many at­
tributes such as chemical composit ion, process rout ing
and delivery due date. At the melt shop large bins called
converters are used to transform molten iron into pur i ­
fied molten steel. A converter typical ly contains a max­
imum of 250 tons. A group of orders in the converter
is called a heat. For the production of the same set of
orders, some groupings require fewer heats to be made
than other groupings due to better ut i l izat ion of the con­
verter. This is desirable because there is a high fixed cost
associated w i th processing a heat that is independent of
the size of the heat. Hence, one of the pr imary goals
in steelmaking scheduling is to minimize the number of
heats at the melt shop required to produce al l of the
given orders. This problem description alone is similar
to BPP.

Yet another issue is the production cost which is in­
curred when producing one order after another. Due to
the characteristics of subsequent processes such as cast­
ing and rol l ing, even for two solutions w i th the same
number of heats, the to ta l cost of producing al l orders
may be different depending on the sequence of orders
w i th in each heat. Therefore, a secondary goal is, for
the same number of heats, to f ind the sequences of or­
ders w i th in indiv idual heats that minimizes the aggre­
gate production cost. W i t h this secondary requirement,
the problem becomes CBPP.

For the exact solution of ordinary (unconstrained)
BPP, very l i t t le can be found in the l i terature [Eilon
and Christofides, 1971; Hung and Brown, 1978], and
they can solve only small size instances. We can find
approximate algorithms of BPP in the l i terature, a few
of which include First F i t , Best F i t , First F i t Decreas­
ing, and Best F i t Decreasing [Garey and Johnson, 1979;
Martel lo and Toth , 1990].

In ordinary BPP, we can choose any i tem to fill a bin
f rom the i tem pool. In contrast, in CBPP, the next i tem
to choose f rom is l imi ted to a subset of the i tem pool
whose elements can feasibly be inserted into the bin.
Whereas many reports on the ordinary BPP algor i thm
are available, to the best of our knowledge, no l iterature
on algorithms regarding the CBPP exists.

A directed graph w i th al l of its edges labeled uniquely
determines a solution. Possible labels associated wi th

1402 SEARCH

each edge is binary: 1 (selected) or 0 (discarded). In this
paper, we present an approximate algori thm for CBPP
that finds near-optimal solutions in a reasonable amount
of t ime. We call this algor i thm an approximate 0-1 label­
ing a lgor i thm. Given a directed graph constructed from
a CBPP, the 0-1 labeling algori thm labels al l edges as
either 1 or 0 un t i l exhausted, in an incremental way, re­
sulting in a set of ordered groups. Heuristic information
such as the topological structure of graphs is used in se­
lecting edges to label. This algori thm was developed at
I B M T . J . Watson Research Center as a means to solve
large-scale industry grouping and scheduling problems.
It is currently used in several real-world applications.

The remainder of this paper is organized as follows. In
the next section, the problem statement is given. In Sec­
tion 3 we present an approximate algori thm for CBPP
in detail. We then provide experimental results together
with some analysis.

2 P rob lem Sta tement
The fol lowing is an abstraction of CBPP.

We are given a f inite set of items, each of which
has a size. An ordered group is an ordered sub­
set of those items. The total weight of the or­
dered group cannot exceed the bin capacity. If
two items in and im are adjacent in the bin, we
incur a cost f rom im to i n , which is not nec­
essarily the same as a cost f rom in to i m , and
which may be inf inite, imply ing that the solu­
t ion is infeasible. The pr imary goal is to cre-
ate a feasible solution w i th m in imum number of
ordered groups. When two solutions have the
same number of ordered groups, the one wi th
the m in imum aggregate cost is preferred.

CBPP can be considered a combined version of the
bin-packing problem and the traveling salesman problem
(TSP) because the bins have a fixed capacity, items in a
bin are ordered, and we wish to minimize the aggregate
cost. Furthermore, when an i tem, ik, is assigned to a
bin, only a subset of the unassigned items which could
follow ik can be placed in the same b in.

In general, we can put any number of constraints on
the problem. Some examples of the constraints fre­
quently encountered in industr ial search problems are:

• items of type A can not follow items of type B or
E in a bin

• two different items of type C w i th in a bin should be
separated by some number of items w i th an aggre­
gate size of at least s

• the aggregate size of items of type D in a bin cannot
exceed s

• the number of items of the same type in a bin is
l imi ted to n

Note that the first constraint is a local constraint be­
tween two adjacent items, while the rest are non-local
constraints.

3 An Approx imate A l g o r i t h m for
C B P P

In this section, we present the underlying data struc­
ture, the CBPP graph, a heuristic that aids in solving
the CBPP, and the detailed description of the 0-1 edge-
labeling algori thm, an approximate algorithm for CBPP.

3 .1 C B P P G r a p h s

The problem space of a CBPP can be represented by a
directed graph, G(V, E), where V is a set of vertices and
E is a set of directed edges. Ini t ial ly, each i tem in in
CBPP is mapped to a vertex vn in V. So, the number
of items in CBPP is the same as |V|. A directed edge
e(vi,Vj) in E incidents f rom V i (tai l) to V j (head). Each
directed edge e is assigned a non-negative cost c(e) and
represents a valid path from the tai l vertex to the head
vertex w i th an associated cost. By valid, we mean that
the sum of the sizes of the items associated wi th the
vertices does not exceed the bin capacity, and that the
sequencing from the ta i l vertex to the head vertex does
not violate any constraints defined between the two. In
general, there may be a number of constraints defined
between two vertices, as was seen from the examples of
the constraints in the previous section.

A CBPP graph is usually incomplete, and, in many
cases, it is quite sparse because of many constraints
among the vertices. This is the difference between the
problems we are dealing w i th and the optimizat ion prob­
lems such as the ordinary BPP, which is ful ly connected
wi th uniform cost, and the symmetrical traveling sales­
man problem [Lawler et a/., 1985], where no constraints
are imposed on edges.1

As search (labeling) proceeds, |V| of a CBPP graph
is decreased as a result of concatenation of two vertices,
creating a new vertex (ordered group), as shown in Fig­
ure 1.

Note that a vertex represents either an original atomic
vertex (an item) or an ordered group which is a sequence
of items. An in i t ia l CBPP graph represents a solution
where the number of bins is equal to the number of ver­
tices. Obviously, it is not a good solution. Two adjacent
vertices connected by an edge labeled as 1 are concate­
nated.

An ordered group for each bin in a CBPP is conceptu­
ally equivalent to a sequence of vertices concatenated
wi th edges, where the total size of an ordered group
should not exceed the bin capacity. Therefore, the CBPP
can be regarded as a search that labels edges so as to
minimize the number of ordered groups w i th the min i ­
mum aggregate cost. The problem is to find a labeling
of edges.

1Note that the CBPP graph is different from the con­
straint graph (or network) usually referred to in A I . In the
constraint graph, each node represents a variable having its
own domain values, and each edge bears a set of constraints
between the two values of the two variables.

LEE & TRUMBO 1403

Figure 1 : C o n c a t e n a t i o n o f t w o ve r t i ces , a n d cre­
a t i o n of an o r d e r e d g r o u p . In (a), i t is assumed that
edge e1 connecting two vertices vi and Vj is selected and
labeled as 1. A new vertex (ordered group) vk in (b)
is created by concatenating vi and Vj. As a result, the
existing edges, e 2 ,e 3 ,e 6 , e7 and e7 are labeled as 0. The
size of ordered group Vk is the sum of those of vi and Vj;
and the cost of vk is the sum of costs of v i, V j and e1.

3.2 H e u r i s t i c s

Finding an opt imal set of ordered groups is computation­
al ly intractable. To cope w i th this problem and to pro­
duce near-optimal solutions search heuristics are used.
Using heuristic informat ion often has a significant im­
pact on the performance of search algorithms. In the
CBPP solution, a heuristic based on topological struc­
ture is used in selecting edges to label. In addit ion, a
beam search and constraint propagation techniques are
exploited to prune the search space.

An abstraction of a search problem is a search tree.
The nodes of the tree represent the states, and the links
of the tree represent the operators. A state represents a
subset of the whole search space. In CBPP, each labeling
of an edge in the graph corresponds to an execution of
an operator, which in tu rn changes one state to another.

The search starts f rom the root node wi th an in i t ia l
CBPP graph. Then, f rom the current CBPP graph, we
collect a l l edges and rank them according to predeter­
mined heuristics. Dur ing the search, an ordered groups
are dynamical ly created by concatenating two vertices
w i th an edge in the current CBPP graph. Opt imal i ty
of the solution is dependent on which edges are selected
and labeled dur ing the search.

The heuristic used for selecting which edges to label is
based on the topological structure of the CBPP graph.
The urgency of edge e(v i , v j) is defined as the smaller of
out-degree(v i) and in-degree(v ;). For example, in Figure

1(a), the urgency of e1(v i, Vj) is 3, which is the smaller of
3 (out-degree of v i) and 4 (hvdegree of Vj). The urgency
represents the possibility that either vertex vi or vj loses
the chance to grow (resulting in a deadlock). Intui t ively,
the fewer e's sibling edges exist, the higher its chance to
be selected would be. This topological heuristic helps
the algori thm to f ind the m in imum number of ordered
groups, where a single i tem is regarded as one ordered
group.

In addit ion to the urgency, we may use other heuris­
tics on both domain-dependent and domain-independent
information.

3 .3 0 -1 E d g e - L a b e l i n g A l g o r i t h m

Ini t ia l ly al l the edges in the CBPP graph are unlabeled,
but they are eventually labeled as either 0 or 1. The
labeling algori thm derives a set of ordered groups by
incrementally labeling a selected edge as 0 (discarded)
or 1 (selected) unt i l al l edges are completely labeled.
When an edge is labeled as 1, we have a new ordered
group concatenating two vertices connected by the edge;
and, the two existing ordered groups being concatenated
are discarded.

From the viewpoint of the search space, labeling an
edge e as either 0 or 1 part i t ions the solution search
space into two: one including solutions w i th e labeled
as 1 and the other including solutions w i th e labeled
as 0. The labeling algor i thm incrementally modifies an
in i t ia l CBPP graph to one w i th more number of edges
labeled. The algori thm is basically a depth-first search.
The detailed procedure of the 0-1 edge-labeling search
follows. In this description, G N (V , E) denotes a CBPP
graph associated wi th search node N.

0-1 E d g e - L a b e l i n g A l g o r i t h m

1. Init ialize solutions and open-nodes to the empty
set and create the root node as node N of the
search tree.

2. Sort all unlabeled edges e E B at GN(V, E) in
terms of edge selection heuristics.

3. Push the best beam-width number of edges onto
best_edges(N).

4. Pop the
the first edge, e (v i , v j) , f rom best-edgesfN), and
label it as i. If best_edges(N) is st i l l non-empty,
then push N onto open-nodes.

5. Create a new search node S, a child node of N,
and generate the new CBPP graph Gs(V, E) f rom
GN(V,E). Label e(vi,vj) in Gs(V, B) as 1.
For the new child node 5:

5a. Concatenate the two items (or ordered
groups) Vi and vj-, creating a new ordered
group. Remove V i and V j f rom 5 and add
the new ordered group (v i , Vj) to 5.

1404 SEARCH

5 b . Each of the edges in the current CBPP graph
Gs(V, E) is evaluated and those which no
longer satisfy al l relevant constraints are la­
beled as 0 and removed2.

5c. If any edges in GS(V,E) are unlabeled, set
N = S and go to Step 2, otherwise continue
w i th Step 6.

6. Induce the solution s f rom S and evaluate. If s
can be considered a member of the set of best
solutions discovered so far, store s in solutions.

7. If open.nodes is not empty and we need a better
solution or addit ional solutions, and if we have
not exceeded the maximum number of search it­
erations, pop the top node N f rom open.nodes and
go to Step 4. Otherwise exit wi th solutions.

N o t e s :

S tep 1 (i n i t i a l i z a t i o n) : Generated solutions (sets of
ordered groups) w i l l be kept in solutions. Intermedi­
ate search tree nodes that can be further expanded
for alternative search branches wi l l be pushed onto
the stack open-nodes.

Step 5a (c r e a t i o n of a new search n o d e) : As an
example, consider Figure 1(a), where edge
is being labeled as l(selected). Then, as can be seen
in (b), vertices Vi and Vj are concatenated and a new
vertex (ordered group) Vk is created.
As a result of this step, the number of ordered
groups in the new search node is always one less
than that of its parent search node. In general, if
we start the search w i th n ordered groups then it is
reduced to n — k at the k-th search level wi th the
level of the root node defined as 0.

S tep 5b (l a b e l i n g i ncons i s ten t edges as 0):
Here, constraint propagation is effectively used in
pruning the search space, and finding the termina­
t ion of the search tree. For example, again consider
Figure 1(b). As a consequence of labeling of e1

as 1, five incident edges and es are la­
beled as 0 (discarded). In addit ion, some of edges

not yet labeled may be labeled
as 0 as a result of constraint checking in this step.

Note that the heuristics employed in the labeling
search focus on the selection of an edge to label, in­
stead of on the selection of a node to expand. Since
the goal state is neither unique nor explicitly given it is
practically impossible to compute a heuristic evaluation
function that estimates of the cost of reaching the goal
state f rom the current search node [Nilsson, 1980].

2 In practice, only those edges topologically connected to
the committed edge, as well as those edges selected using the
topological heuristic, are evaluated.

3.4 M o r e on 0-1 Edge-Labe l ing
The worst case space and t ime complexity of the 0-1
edge-labeling search are 0(n) and respectively,
where b is the branching factor (the beam wid th in our
case) and n is the number of items. Notice that the worst
case depth of the search tree is n — 1. As described in
the algorithm, the algori thm only needs to store a stack
of the nodes on the search path f rom the root to the
current search node; hence, the memory requirement is
only linear in the number of items (or the search depth).
In contrast, in situation where the branching factor is
large, the t ime complexity of the search algor i thm expo­
nentially grows wi th the search level. Therefore, l im i t ing
the branching factor (beam width) is crucial to the per­
formance.

One possible drawback of using beam search is that we
might miss a path in a node expansion which really is the
best choice. As a result, a naive adoption of the beam
search may yield bad solutions [Winston, 1984]. How­
ever, we mitigate this drawback of the beam search in the
proposed edge-labeling algori thm. Using edge-labeling,
we can construct an identical ordered groups (sequence)
in many different ways since the edges included in the
ordered group are consistent and independent one an­
other. For example, there are 5! = 120 different ways
to construct a particular ordered group w i th 6 vertices
(5 edges). In order words, in the situation where even if
the truly second best edge e2, instead of the t ru ly best
edge e1, is selected for some reason at the current search
level, it is highly likely that e1 is selected on the next
level.

In addition to the apparent savings of computat ional
resources, exploiting beam search enables quick navigat­
ing in the solution space, which is essential to f ind a
near-optimal solution wi th in a l imi ted amount of t ime.
In the tradit ional algorithms for instantiat ing variables,
it is not easy to quickly move around the search space
since they basically rely on backtracking [Knuth, 1975].
Although it is possible to use the beam search in this
kind of search, it is not possible to recover f rom miss­
ing variable assignments once performed. In the edge-
labeling algorithm, however, it is possible wi thout expe­
riencing such a problem. By l im i t ing the beam w id th ,
we can quickly move around the search space. As an ex­
treme case, if we set the beam width to one, each branch
from the root node results in a single solution and every
solution is likely to be different f rom the rest.

4 Exper iments
The 0-1 edge-labeling algori thm for CBPP was imple­
mented in the C + + programming language under A I X
on an RS/6000 39H workstation wi th 256MB of memory.
To test the algori thm, we generated several problems by
varying the number of items and the sparsity of the in i ­
t ia l CBPP graph. The sparsity is defined as the rat io of
the actual number of edges in the graph w i th f inite cost
to the number of edges in a complete directed graph w i th
the same number of vertices. The size of each i tem was

LEE & T R U M B O 1405

set to a positive random value less than the bin size.
The cost incurred when one i tem is placed adjacent to
another was determined by a square matr ix of positive
random values.

For the experiments we used the urgency measure as
the pr imary rule in selecting an edge from among the
unlabeled edges. If mul t ip le edges were chosen based on
this measure, then the cost of the edges was used as a
tie-breaker.

The goal is to f ind the m in imum number of ordered
groups w i th the m in imum aggregate cost. However,
as previously stated, f inding a near-optimal solution in
a reasonable amount of t ime is often more important
than f inding a t ru ly opt imal solution. Accordingly, we
stopped each search after ten minutes elapsed t ime and
examined the set of solutions that had been generated.

To provide an insight on the 0-1 edge-labeling algo­
r i t hm , we also generated results using the best-fit de­
creasing (BFD) algor i thm, which is one of the best ap­
proximate algorithms for BPP [Martello and Toth, 1990].
In the B F D , al l the items are sorted in a decreasing or­
der of size, and an i tem wi th lower index is considered
first. A bin which can accommodate the i tem wi th min i ­
m u m residual capacity is used for packing. Although the
BFD algor i thm is for BPPs we believe that the results of
it can be a reference when evaluating the results of the
0-1 edge-labeling algor i thm. The results are summarized
in Tables 1-5. In those tables, the second column ("bins,
CBPP") denotes the number of bins, and the th i rd col­
umn ("cost, CBPP") denotes the aggregate cost of al l
ordered groups in a solution. Note that a solution wi th
a bigger aggregate cost is better than another solution
w i th a smaller aggregate cost, if the number of bins of
the former is less than that of the latter.

The t ime for the BFD heuristic was negligible and is
not shown. Since the B F D heuristic only attempts to
f ind a feasible solution and does not minimize the aggre­
gate cost, the cost for the B F D solution is not shown.

We note that the 0-1 edge-labeling algori thm found
good solutions to the problem. W i t h respect to the num­
ber of bins used, the 0-1 edge-labeling algor i thm did well
except when the sparsity was unity while the number of
items was large. The reason that BFD's result is better
than that of the 0-1 edge-labeling algori thm in the case
the sparsity is close to uni ty or the number of items is
large is that the run t ime is l imi ted to ten minutes (so,
only a small port ion of the search space is investigated).
On average, the 0-1 edge-labeling algor i thm yielded solu­
tions which used 22% fewer bins than the BFD heuristic.

Figure 2 shows the progression of the 0-1 edge-labeling
algor i thm for a graph w i th 64 items and sparsity 0.500.
The t ime for the 0-1 edge-labeling algor i thm is the t ime
when the indicated solution was generated. The 0-1
edge-labeling algor i thm found, after 11 seconds, a so­
lu t ion that used 10 bins which is already better than
the 11 bin solution found using the BFD heuristic. Be­
tween 11 and 12 seconds, the 0-1 edge-labeling algor i thm
found a lower cost solution using 10 bins and then a so­
lu t ion w i th 9 bins. Between 12 and 40 seconds, the algo-

sparsity

0.050
0.100
0.500
1.000

bins,
CBPP

10
6
4
3

cost,
CBPP

687
690
387
377

bins,
BFD

17
13
6
3

Table 1: Results for 32-item CBPP

sparsity

0.005
0,010
0.050
0.100
0.500
1.000

bins,
CBPP

43
33
14
10
8
7

cost,
CBPP

575
1185
1181
1028
529
790

bins,
BFD

49
43
26
17
10
7

Table 2: Results for 64-item CBPP

I sparsity

0.001
0.005
0.010
0.050
0.100
0.500
1.000

bins,
CBPP

107
79
58
23
19
18
17

cost,
CBPP
1154
2232
2280
2344
1318
885

2169

bins,
BFD
119
95
86
38
28
21
17

Table 3: Results for 128-item CBPP

sparsity

0.001
0.005
0.010
0.050
0.100

bins,
CBPP

205
109
73
41
40

C08t,
CBPP
2351
5099
5430
2956
1613

bins,
BFD
229
158
126
65
51

Table 4: Results for 256-item CBPP

Table 5: Results for 512-item CBPP

1406 SEARCH

Figure 2: Progression of the 0-1 edge-labeling algorithm.
It is an anytime algor i thm and it is shown that bin us­
age and aggregate cost are further optimized as search
proceeds.

r i t hm reduced the path cost at 9 bins from 441 to 367.
This anyt ime [Dean and Boddy, 1988] behavior of the
0-1 edge-labeling algor i thm is very useful in industrial
problem solving.

5 Conclusion

We have defined a class of problems called constrained
bin-packing problems which characterizes many fre­
quently encountered industrial scheduling problems. Be­
cause no known existing techniques can effectively solve
this class of problems, we have developed a CBPP al­
gor i thm which is based on an approximate 0-1 edge-
labeling.

We believe that this technique meets most of the in­
dustrial requirements in term of t ime, space and quality.
For diff icult search problems, many near-optimal solu­
tions can be found where previously even a single solu­
t ion was considered diff icult, if not impossible, to obtain,
and most important ly, the algori thm can find these near-
opt imal solutions in a reasonable amount of t ime.

However, as w i th any technique, there is a l imi t to the
scope of its application. We consider the CBPP solution
technique inappropriate for unconstrained problems such
as the simple traveling salesman problem for which there
exist other techniques that yield better solutions in less
t ime.

The approximate 0-1 edge-labeling algorithm for
CBPP described in this paper has been successfully ap­

plied to industrial grouping and scheduling problems.

Acknowledgments

We would like to thank Jayant Kalagnanam and Richard
Goodwin for their valuable comments on the draft of this
paper.

References
[Garey and Johnson, 1979] Michael Garey and David

Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[Knuth, 1975] D. Knuth, Estimating the efficiency of
backtracking programs, Mathematics of Computation
29, N o . 129, pages 121-136, 1975.

[Dean and Boddy, 1988] T. Dean and M. Boddy, An
analysis of time-depending planning, Proceedings of
the 1th National Conference on Artificial Intelligence,
pages 49-54, 1988.

[Lawler et al, 1985] E. Lawler, J. Lenstra, A. Rinnooy
and D. Shmoys, The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization, John
Wiley and Sons, 1985.

[Martello and Toth, 1990] S. Martel lo and P. To th ,
Knapsack Problems: Algorithms and Computer Im­
plementations, John Wiley & Sons, 1990.

[Eilon and Christofides, 1971]
S. Eilon and N. Christofides, The loading problem,
Management Science 17, pages 259-267, 1971.

[Hung and Brown, 1978] M. Hung and J. Brown, An
algorithm for a class of loading problems, Naval Re-
search Logistics 25, pages 289-297, 1978.

[Nilsson, 1980] N. Nilsson, Principles of Artificial Intel­
ligence, T i o g a Press, 1980.

[Winston, 1984] P. Winston, Artificial Intelligence (sec-
ond edition), Addison-Wesley, 1984.

[Vollman et al, 1992] T. Vol lman, T. Berry and D.
Whybark, Manufacturing Planning and Control Sys­
tems, I rwin, 1992.

LEE & TRUMBO 1407

TEMPORAL REASONING

TEMPORAL REASONING

Temporal Reasoning Distinguished Paper

