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Abs t rac t 
This paper describes a constrained bin-packing 
•problem (CBPP) and an approximate, anytime 
algor i thm for solutions. A CBPP is a con­
strained version of the bin-packing problem, in 
which a set of items allocated to a bin are or­
dered in a way to satisfy constraints defined 
on them and achieve near-optimality. The al­
gor i thm for CBPP uses a heuristic search for 
labeling edges w i th a binary value, together 
w i th a beam search and constraint propaga­
t ion. Some experimental results are provided. 
This a lgor i thm has been successfully applied to 
industrial-scale scheduling problems. 

1 I n t r o d u c t i o n 
We can see many instances of the bin-packing problem 
(BPP) which is characterized as follows: Given a finite 
number of bins whose sizes are the same, and a finite set 
of items whose size is no more than the bin size, f ind a 
par t i t ion of the items into disjoint subsets such that the 
sum of the sizes of the items in each subset is no more 
than the b in size, and such that the number of the bins 
used is as small as possible. This bin-packing problem is 
NP-hard [Garey and Johnson, 1979; Martel lo and Toth , 
1990]. 

The manufacturing and process industries often need 
to create product ion units consisting of subunits that 
are identical w i th respect to some criteria. These pro-
duction subunits are normal ly called groups, batches, or 
lots [Vollman et a/., 1992]. When creating such groups 
we frequently face problems that can be considered par­
t icular instances of the constrained bin-packing problem 
(CBPP), which has addit ional restrictions over the bin-
packing problem in that items in each group have to 
be sequenced satisfying al l given constraints, creating 
ordered groups. In addit ion to satisfying al l the con­
straints, items in each bin should be ordered in a way 
to minimize pr imar i ly the number of bins and secondly 
aggregate cost. 

Consider an example of a production scheduling prob-
lem f rom the steelmaking industry. Given a number of 
orders (items) f rom customers, production schedules are 

created by grouping the orders by considering many at­
tributes such as chemical composit ion, process rout ing 
and delivery due date. At the melt shop large bins called 
converters are used to transform molten iron into pur i ­
fied molten steel. A converter typical ly contains a max­
imum of 250 tons. A group of orders in the converter 
is called a heat. For the production of the same set of 
orders, some groupings require fewer heats to be made 
than other groupings due to better ut i l izat ion of the con­
verter. This is desirable because there is a high fixed cost 
associated w i th processing a heat that is independent of 
the size of the heat. Hence, one of the pr imary goals 
in steelmaking scheduling is to minimize the number of 
heats at the melt shop required to produce al l of the 
given orders. This problem description alone is similar 
to BPP. 

Yet another issue is the production cost which is in­
curred when producing one order after another. Due to 
the characteristics of subsequent processes such as cast­
ing and rol l ing, even for two solutions w i th the same 
number of heats, the to ta l cost of producing al l orders 
may be different depending on the sequence of orders 
w i th in each heat. Therefore, a secondary goal is, for 
the same number of heats, to f ind the sequences of or­
ders w i th in indiv idual heats that minimizes the aggre­
gate production cost. W i t h this secondary requirement, 
the problem becomes CBPP. 

For the exact solution of ordinary (unconstrained) 
BPP, very l i t t le can be found in the l i terature [Eilon 
and Christofides, 1971; Hung and Brown, 1978], and 
they can solve only small size instances. We can find 
approximate algorithms of BPP in the l i terature, a few 
of which include First F i t , Best F i t , First F i t Decreas­
ing, and Best F i t Decreasing [Garey and Johnson, 1979; 
Martel lo and Toth , 1990]. 

In ordinary BPP, we can choose any i tem to fill a bin 
f rom the i tem pool. In contrast, in CBPP, the next i tem 
to choose f rom is l imi ted to a subset of the i tem pool 
whose elements can feasibly be inserted into the bin. 
Whereas many reports on the ordinary BPP algor i thm 
are available, to the best of our knowledge, no l iterature 
on algorithms regarding the CBPP exists. 

A directed graph w i th al l of its edges labeled uniquely 
determines a solution. Possible labels associated wi th 
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each edge is binary: 1 (selected) or 0 (discarded). In this 
paper, we present an approximate algori thm for CBPP 
that finds near-optimal solutions in a reasonable amount 
of t ime. We call this algor i thm an approximate 0-1 label­
ing a lgor i thm. Given a directed graph constructed from 
a CBPP, the 0-1 labeling algori thm labels al l edges as 
either 1 or 0 un t i l exhausted, in an incremental way, re­
sulting in a set of ordered groups. Heuristic information 
such as the topological structure of graphs is used in se­
lecting edges to label. This algori thm was developed at 
I B M T . J . Watson Research Center as a means to solve 
large-scale industry grouping and scheduling problems. 
It is currently used in several real-world applications. 

The remainder of this paper is organized as follows. In 
the next section, the problem statement is given. In Sec­
tion 3 we present an approximate algori thm for CBPP 
in detail. We then provide experimental results together 
with some analysis. 

2 P rob lem Sta tement 
The fol lowing is an abstraction of CBPP. 

We are given a f inite set of items, each of which 
has a size. An ordered group is an ordered sub­
set of those items. The total weight of the or­
dered group cannot exceed the bin capacity. If 
two items in and im are adjacent in the bin, we 
incur a cost f rom im to i n , which is not nec­
essarily the same as a cost f rom in to i m , and 
which may be inf inite, imply ing that the solu­
t ion is infeasible. The pr imary goal is to cre-
ate a feasible solution w i th m in imum number of 
ordered groups. When two solutions have the 
same number of ordered groups, the one wi th 
the m in imum aggregate cost is preferred. 

CBPP can be considered a combined version of the 
bin-packing problem and the traveling salesman problem 
(TSP) because the bins have a fixed capacity, items in a 
bin are ordered, and we wish to minimize the aggregate 
cost. Furthermore, when an i tem, ik, is assigned to a 
bin, only a subset of the unassigned items which could 
follow ik can be placed in the same b in. 

In general, we can put any number of constraints on 
the problem. Some examples of the constraints fre­
quently encountered in industr ial search problems are: 

• items of type A can not follow items of type B or 
E in a bin 

• two different items of type C w i th in a bin should be 
separated by some number of items w i th an aggre­
gate size of at least s 

• the aggregate size of items of type D in a bin cannot 
exceed s 

• the number of items of the same type in a bin is 
l imi ted to n 

Note that the first constraint is a local constraint be­
tween two adjacent items, while the rest are non-local 
constraints. 

3 An Approx imate A l g o r i t h m for 
C B P P 

In this section, we present the underlying data struc­
ture, the CBPP graph, a heuristic that aids in solving 
the CBPP, and the detailed description of the 0-1 edge-
labeling algori thm, an approximate algorithm for CBPP. 

3 .1 C B P P G r a p h s 

The problem space of a CBPP can be represented by a 
directed graph, G(V, E), where V is a set of vertices and 
E is a set of directed edges. Ini t ial ly, each i tem in in 
CBPP is mapped to a vertex vn in V. So, the number 
of items in CBPP is the same as |V|. A directed edge 
e(vi,Vj) in E incidents f rom V i (tai l) to V j (head). Each 
directed edge e is assigned a non-negative cost c(e) and 
represents a valid path from the tai l vertex to the head 
vertex w i th an associated cost. By valid, we mean that 
the sum of the sizes of the items associated wi th the 
vertices does not exceed the bin capacity, and that the 
sequencing from the ta i l vertex to the head vertex does 
not violate any constraints defined between the two. In 
general, there may be a number of constraints defined 
between two vertices, as was seen from the examples of 
the constraints in the previous section. 

A CBPP graph is usually incomplete, and, in many 
cases, it is quite sparse because of many constraints 
among the vertices. This is the difference between the 
problems we are dealing w i th and the optimizat ion prob­
lems such as the ordinary BPP, which is ful ly connected 
wi th uniform cost, and the symmetrical traveling sales­
man problem [Lawler et a/., 1985], where no constraints 
are imposed on edges.1 

As search (labeling) proceeds, |V| of a CBPP graph 
is decreased as a result of concatenation of two vertices, 
creating a new vertex (ordered group), as shown in Fig­
ure 1. 

Note that a vertex represents either an original atomic 
vertex (an item) or an ordered group which is a sequence 
of items. An in i t ia l CBPP graph represents a solution 
where the number of bins is equal to the number of ver­
tices. Obviously, it is not a good solution. Two adjacent 
vertices connected by an edge labeled as 1 are concate­
nated. 

An ordered group for each bin in a CBPP is conceptu­
ally equivalent to a sequence of vertices concatenated 
wi th edges, where the total size of an ordered group 
should not exceed the bin capacity. Therefore, the CBPP 
can be regarded as a search that labels edges so as to 
minimize the number of ordered groups w i th the min i ­
mum aggregate cost. The problem is to find a labeling 
of edges. 

1Note that the CBPP graph is different from the con­
straint graph (or network) usually referred to in A I . In the 
constraint graph, each node represents a variable having its 
own domain values, and each edge bears a set of constraints 
between the two values of the two variables. 
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Figure 1 : C o n c a t e n a t i o n o f t w o ve r t i ces , a n d cre­
a t i o n of an o r d e r e d g r o u p . In (a), i t is assumed that 
edge e1 connecting two vertices vi and Vj is selected and 
labeled as 1. A new vertex (ordered group) vk in (b) 
is created by concatenating vi and Vj. As a result, the 
existing edges, e 2 ,e 3 ,e 6 , e7 and e7 are labeled as 0. The 
size of ordered group Vk is the sum of those of vi and Vj; 
and the cost of vk is the sum of costs of v i, V j and e1. 

3.2 H e u r i s t i c s 

Finding an opt imal set of ordered groups is computation­
al ly intractable. To cope w i th this problem and to pro­
duce near-optimal solutions search heuristics are used. 
Using heuristic informat ion often has a significant im­
pact on the performance of search algorithms. In the 
CBPP solution, a heuristic based on topological struc­
ture is used in selecting edges to label. In addit ion, a 
beam search and constraint propagation techniques are 
exploited to prune the search space. 

An abstraction of a search problem is a search tree. 
The nodes of the tree represent the states, and the links 
of the tree represent the operators. A state represents a 
subset of the whole search space. In CBPP, each labeling 
of an edge in the graph corresponds to an execution of 
an operator, which in tu rn changes one state to another. 

The search starts f rom the root node wi th an in i t ia l 
CBPP graph. Then, f rom the current CBPP graph, we 
collect a l l edges and rank them according to predeter­
mined heuristics. Dur ing the search, an ordered groups 
are dynamical ly created by concatenating two vertices 
w i th an edge in the current CBPP graph. Opt imal i ty 
of the solution is dependent on which edges are selected 
and labeled dur ing the search. 

The heuristic used for selecting which edges to label is 
based on the topological structure of the CBPP graph. 
The urgency of edge e(v i , v j) is defined as the smaller of 
out-degree(v i) and in-degree(v ;). For example, in Figure 

1(a), the urgency of e1(v i, Vj) is 3, which is the smaller of 
3 (out-degree of v i) and 4 (hvdegree of Vj). The urgency 
represents the possibility that either vertex vi or vj loses 
the chance to grow (resulting in a deadlock). Intui t ively, 
the fewer e's sibling edges exist, the higher its chance to 
be selected would be. This topological heuristic helps 
the algori thm to f ind the m in imum number of ordered 
groups, where a single i tem is regarded as one ordered 
group. 

In addit ion to the urgency, we may use other heuris­
tics on both domain-dependent and domain-independent 
information. 

3 .3 0 -1 E d g e - L a b e l i n g A l g o r i t h m 

Ini t ia l ly al l the edges in the CBPP graph are unlabeled, 
but they are eventually labeled as either 0 or 1. The 
labeling algori thm derives a set of ordered groups by 
incrementally labeling a selected edge as 0 (discarded) 
or 1 (selected) unt i l al l edges are completely labeled. 
When an edge is labeled as 1, we have a new ordered 
group concatenating two vertices connected by the edge; 
and, the two existing ordered groups being concatenated 
are discarded. 

From the viewpoint of the search space, labeling an 
edge e as either 0 or 1 part i t ions the solution search 
space into two: one including solutions w i th e labeled 
as 1 and the other including solutions w i th e labeled 
as 0. The labeling algor i thm incrementally modifies an 
in i t ia l CBPP graph to one w i th more number of edges 
labeled. The algori thm is basically a depth-first search. 
The detailed procedure of the 0-1 edge-labeling search 
follows. In this description, G N ( V , E ) denotes a CBPP 
graph associated wi th search node N. 

0-1 E d g e - L a b e l i n g A l g o r i t h m 

1. Init ialize solutions and open-nodes to the empty 
set and create the root node as node N of the 
search tree. 

2. Sort all unlabeled edges e E B at GN(V, E) in 
terms of edge selection heuristics. 

3. Push the best beam-width number of edges onto 
best_edges(N). 

4. Pop the 
the first edge, e (v i , v j ) , f rom best-edgesfN), and 
label it as i. If best_edges(N) is st i l l non-empty, 
then push N onto open-nodes. 

5. Create a new search node S, a child node of N, 
and generate the new CBPP graph Gs(V, E) f rom 
GN(V,E). Label e(vi,vj) in Gs(V, B) as 1. 
For the new child node 5: 

5a. Concatenate the two items (or ordered 
groups) Vi and vj-, creating a new ordered 
group. Remove V i and V j f rom 5 and add 
the new ordered group (v i , Vj) to 5. 
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5 b . Each of the edges in the current CBPP graph 
Gs(V, E) is evaluated and those which no 
longer satisfy al l relevant constraints are la­
beled as 0 and removed2. 

5c. If any edges in GS(V,E) are unlabeled, set 
N = S and go to Step 2, otherwise continue 
w i th Step 6. 

6. Induce the solution s f rom S and evaluate. If s 
can be considered a member of the set of best 
solutions discovered so far, store s in solutions. 

7. If open.nodes is not empty and we need a better 
solution or addit ional solutions, and if we have 
not exceeded the maximum number of search it­
erations, pop the top node N f rom open.nodes and 
go to Step 4. Otherwise exit wi th solutions. 

N o t e s : 

S tep 1 ( i n i t i a l i z a t i o n ) : Generated solutions (sets of 
ordered groups) w i l l be kept in solutions. Intermedi­
ate search tree nodes that can be further expanded 
for alternative search branches wi l l be pushed onto 
the stack open-nodes. 

Step 5a ( c r e a t i o n of a new search n o d e ) : As an 
example, consider Figure 1(a), where edge 
is being labeled as l(selected). Then, as can be seen 
in (b), vertices Vi and Vj are concatenated and a new 
vertex (ordered group) Vk is created. 
As a result of this step, the number of ordered 
groups in the new search node is always one less 
than that of its parent search node. In general, if 
we start the search w i th n ordered groups then it is 
reduced to n — k at the k-th search level wi th the 
level of the root node defined as 0. 

S tep 5b ( l a b e l i n g i ncons i s ten t edges as 0): 
Here, constraint propagation is effectively used in 
pruning the search space, and finding the termina­
t ion of the search tree. For example, again consider 
Figure 1(b). As a consequence of labeling of e1 

as 1, five incident edges and es are la­
beled as 0 (discarded). In addit ion, some of edges 

not yet labeled may be labeled 
as 0 as a result of constraint checking in this step. 

Note that the heuristics employed in the labeling 
search focus on the selection of an edge to label, in­
stead of on the selection of a node to expand. Since 
the goal state is neither unique nor explicitly given it is 
practically impossible to compute a heuristic evaluation 
function that estimates of the cost of reaching the goal 
state f rom the current search node [Nilsson, 1980]. 

2 In practice, only those edges topologically connected to 
the committed edge, as well as those edges selected using the 
topological heuristic, are evaluated. 

3.4 M o r e on 0-1 Edge-Labe l ing 
The worst case space and t ime complexity of the 0-1 
edge-labeling search are 0(n) and respectively, 
where b is the branching factor (the beam wid th in our 
case) and n is the number of items. Notice that the worst 
case depth of the search tree is n — 1. As described in 
the algorithm, the algori thm only needs to store a stack 
of the nodes on the search path f rom the root to the 
current search node; hence, the memory requirement is 
only linear in the number of items (or the search depth). 
In contrast, in situation where the branching factor is 
large, the t ime complexity of the search algor i thm expo­
nentially grows wi th the search level. Therefore, l im i t ing 
the branching factor (beam width) is crucial to the per­
formance. 

One possible drawback of using beam search is that we 
might miss a path in a node expansion which really is the 
best choice. As a result, a naive adoption of the beam 
search may yield bad solutions [Winston, 1984]. How­
ever, we mitigate this drawback of the beam search in the 
proposed edge-labeling algori thm. Using edge-labeling, 
we can construct an identical ordered groups (sequence) 
in many different ways since the edges included in the 
ordered group are consistent and independent one an­
other. For example, there are 5! = 120 different ways 
to construct a particular ordered group w i th 6 vertices 
(5 edges). In order words, in the situation where even if 
the truly second best edge e2, instead of the t ru ly best 
edge e1, is selected for some reason at the current search 
level, it is highly likely that e1 is selected on the next 
level. 

In addition to the apparent savings of computat ional 
resources, exploiting beam search enables quick navigat­
ing in the solution space, which is essential to f ind a 
near-optimal solution wi th in a l imi ted amount of t ime. 
In the tradit ional algorithms for instantiat ing variables, 
it is not easy to quickly move around the search space 
since they basically rely on backtracking [Knuth, 1975]. 
Although it is possible to use the beam search in this 
kind of search, it is not possible to recover f rom miss­
ing variable assignments once performed. In the edge-
labeling algorithm, however, it is possible wi thout expe­
riencing such a problem. By l im i t ing the beam w id th , 
we can quickly move around the search space. As an ex­
treme case, if we set the beam width to one, each branch 
from the root node results in a single solution and every 
solution is likely to be different f rom the rest. 

4 Exper iments 
The 0-1 edge-labeling algori thm for CBPP was imple­
mented in the C + + programming language under A I X 
on an RS/6000 39H workstation wi th 256MB of memory. 
To test the algori thm, we generated several problems by 
varying the number of items and the sparsity of the in i ­
t ia l CBPP graph. The sparsity is defined as the rat io of 
the actual number of edges in the graph w i th f inite cost 
to the number of edges in a complete directed graph w i th 
the same number of vertices. The size of each i tem was 
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set to a positive random value less than the bin size. 
The cost incurred when one i tem is placed adjacent to 
another was determined by a square matr ix of positive 
random values. 

For the experiments we used the urgency measure as 
the pr imary rule in selecting an edge from among the 
unlabeled edges. If mul t ip le edges were chosen based on 
this measure, then the cost of the edges was used as a 
tie-breaker. 

The goal is to f ind the m in imum number of ordered 
groups w i th the m in imum aggregate cost. However, 
as previously stated, f inding a near-optimal solution in 
a reasonable amount of t ime is often more important 
than f inding a t ru ly opt imal solution. Accordingly, we 
stopped each search after ten minutes elapsed t ime and 
examined the set of solutions that had been generated. 

To provide an insight on the 0-1 edge-labeling algo­
r i t hm , we also generated results using the best-fit de­
creasing (BFD) algor i thm, which is one of the best ap­
proximate algorithms for BPP [Martello and Toth, 1990]. 
In the B F D , al l the items are sorted in a decreasing or­
der of size, and an i tem wi th lower index is considered 
first. A bin which can accommodate the i tem wi th min i ­
m u m residual capacity is used for packing. Although the 
BFD algor i thm is for BPPs we believe that the results of 
it can be a reference when evaluating the results of the 
0-1 edge-labeling algor i thm. The results are summarized 
in Tables 1-5. In those tables, the second column ("bins, 
CBPP" ) denotes the number of bins, and the th i rd col­
umn ("cost, CBPP") denotes the aggregate cost of al l 
ordered groups in a solution. Note that a solution wi th 
a bigger aggregate cost is better than another solution 
w i th a smaller aggregate cost, if the number of bins of 
the former is less than that of the latter. 

The t ime for the BFD heuristic was negligible and is 
not shown. Since the B F D heuristic only attempts to 
f ind a feasible solution and does not minimize the aggre­
gate cost, the cost for the B F D solution is not shown. 

We note that the 0-1 edge-labeling algori thm found 
good solutions to the problem. W i t h respect to the num­
ber of bins used, the 0-1 edge-labeling algor i thm did well 
except when the sparsity was unity while the number of 
items was large. The reason that BFD's result is better 
than that of the 0-1 edge-labeling algori thm in the case 
the sparsity is close to uni ty or the number of items is 
large is that the run t ime is l imi ted to ten minutes (so, 
only a small port ion of the search space is investigated). 
On average, the 0-1 edge-labeling algor i thm yielded solu­
tions which used 22% fewer bins than the BFD heuristic. 

Figure 2 shows the progression of the 0-1 edge-labeling 
algor i thm for a graph w i th 64 items and sparsity 0.500. 
The t ime for the 0-1 edge-labeling algor i thm is the t ime 
when the indicated solution was generated. The 0-1 
edge-labeling algor i thm found, after 11 seconds, a so­
lu t ion that used 10 bins which is already better than 
the 11 bin solution found using the BFD heuristic. Be­
tween 11 and 12 seconds, the 0-1 edge-labeling algor i thm 
found a lower cost solution using 10 bins and then a so­
lu t ion w i th 9 bins. Between 12 and 40 seconds, the algo-

sparsity 

0.050 
0.100 
0.500 
1.000 

bins, 
CBPP 

10 
6 
4 
3 

cost, 
CBPP 

687 
690 
387 
377 

bins, 
BFD 

17 
13 
6 
3 

Table 1: Results for 32-item CBPP 

sparsity 

0.005 
0,010 
0.050 
0.100 
0.500 
1.000 

bins, 
CBPP 

43 
33 
14 
10 
8 
7 

cost, 
CBPP 

575 
1185 
1181 
1028 
529 
790 

bins, 
BFD 

49 
43 
26 
17 
10 
7 

Table 2: Results for 64-item CBPP 

I sparsity 

0.001 
0.005 
0.010 
0.050 
0.100 
0.500 
1.000 

bins, 
CBPP 

107 
79 
58 
23 
19 
18 
17 

cost, 
CBPP 
1154 
2232 
2280 
2344 
1318 
885 

2169 

bins, 
BFD 
119 
95 
86 
38 
28 
21 
17 

Table 3: Results for 128-item CBPP 

sparsity 

0.001 
0.005 
0.010 
0.050 
0.100 

bins, 
CBPP 

205 
109 
73 
41 
40 

C08t, 
CBPP 
2351 
5099 
5430 
2956 
1613 

bins, 
BFD 
229 
158 
126 
65 
51 

Table 4: Results for 256-item CBPP 

Table 5: Results for 512-item CBPP 
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Figure 2: Progression of the 0-1 edge-labeling algorithm. 
It is an anytime algor i thm and it is shown that bin us­
age and aggregate cost are further optimized as search 
proceeds. 

r i t hm reduced the path cost at 9 bins from 441 to 367. 
This anyt ime [Dean and Boddy, 1988] behavior of the 
0-1 edge-labeling algor i thm is very useful in industrial 
problem solving. 

5 Conclusion 

We have defined a class of problems called constrained 
bin-packing problems which characterizes many fre­
quently encountered industrial scheduling problems. Be­
cause no known existing techniques can effectively solve 
this class of problems, we have developed a CBPP al­
gor i thm which is based on an approximate 0-1 edge-
labeling. 

We believe that this technique meets most of the in­
dustrial requirements in term of t ime, space and quality. 
For diff icult search problems, many near-optimal solu­
tions can be found where previously even a single solu­
t ion was considered diff icult, if not impossible, to obtain, 
and most important ly, the algori thm can find these near-
opt imal solutions in a reasonable amount of t ime. 

However, as w i th any technique, there is a l imi t to the 
scope of its application. We consider the CBPP solution 
technique inappropriate for unconstrained problems such 
as the simple traveling salesman problem for which there 
exist other techniques that yield better solutions in less 
t ime. 

The approximate 0-1 edge-labeling algorithm for 
CBPP described in this paper has been successfully ap­

plied to industrial grouping and scheduling problems. 
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