
Applications of the Situation Calculus To Formalizing
Control and Strategic Information: The Prolog Cut Operator

Fangzhen L i n (f l in@cs.ust.hk)
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abs t rac t

We argue that the situation calculus is a nat­
ural formalism for representing and reasoning
about control and strategic information. As a
case study, in this paper we provide a situation
calculus semantics for the Prolog cut operator,
the central search control operator in Prolog.
We show that our semantics is well-behaved
when the programs are properly stratif ied. We
also show that according to this semantics, the
conventional implementation of the negation-
as-failure operator using cut is provably correct
w i th respect to the stable model semantics.

1 I n t r o d u c t i o n
The situation calculus (McCarthy and Hayes [7]) is a for­
malism for representing and reasoning about actions in
dynamic domains. It is a many-sorted predicate calculus
w i th some reserved predicate and function symbols. For
example, to say that block A is ini t ial ly clear, we wri te:

where H is a reserved binary predicate and stands for
"holds", and So is a reserved constant symbol denot­
ing the in i t ia l situation. As an another example, to say
that the action stack(x, y) causes on(x, y) to be true, we
wri te:1

where the reserved function do(a, s) denotes the resulting
situation of doing the action a in the situation s, and
Poss(a, s) is the precondition for a to be executable in
s. This is an example of how the effects of an action can
be represented in the situation calculus. Generally, in
the situation calculus:

1In this paper, free variables in a displayed formula are
assumed to be universally quantified.

• situations are first-order objects that can be quan­
tif ied over;

• a situation carries information about its history,
i.e the sequence of actions that have been per­
formed so far. For example, the history of
the situation do(stack(A, B), do(stack(B, C) , So)) is
[8tack(B,C),stack(A,B]\, i.e. the sequence of ac­
tions that have been performed in the ini t ia l situa­
t ion to reach this situation. As we shall see later,
our foundational axioms wi l l enforce a one-to-one
correspondence between situations and sequences of
actions.

We believe that these two features of the situation cal­
culus make it a natural formalism for representing and
reasoning about control knowledge. For example, in AI
planning, a plan is a sequence of actions, thus isomorphic
to situations. So control knowledge in planning, which
often are constraints on desirable plans, becomes con­
straints on situations (Lin [4]). Similarly, when we talk
about control information in logic programming, we are
referring to constraints on derivations, i.e. sequences of
actions according to (L in and Reiter [6]).

Al though our long term goal is to develop a general
framework for representing and reasoning about control
knowledge in problem solving using the situation calcu­
lus, our focus in this paper is the Prolog cut operator,
the central search control operator in Prolog. We pro­
vide a situation calculus semantics for logic programs
wi th cut, and show that our semantics is well-behaved
when the programs are properly stratif ied. We also show
that according to this semantics, the conventional imple­
mentation of the negation-as-failure operator using cut
is provably correct w i th respect to the stable model se­
mantics of Gelfond and Lifschitz [2]. To the best of our
knowledge, this is the first t ime a connection has been
shown between a declarative semantics of negation and
that of cut.

This paper is organized as follows. Section 2 briefly
reviews the basic concepts in the situation calculus and
logic programming. Section 3 reviews the situation cal-

1412 TEMPORAL REASONING

cuius semantics of (Lin and Reiter [6]) for cut-free logic
programs. For the purpose of this paper, the key prop-
erty of this semantics is that derivations in logic pro-
gramming are identified with situations. Section 4 ex­
tends this semantics to logic programs with cut. This is
done by an axiom on accessible situations, that is, those
situations whose corresponding derivations are not "cut
off" by cut. Section 5 shows some properties of our se­
mantics, and finally section 6 concludes this paper.

2 Logical Pre l iminar ies
2.1 The Situation Calculus
The language of the situation calculus is a many-sorted
second-order one with equality. We assume the follow­
ing sorts: situation for situations, action for actions, flu-
ent for propositional fluents such as clear whose truth
values depend on situations, and object for everything
else. As we mentioned above, we assume that S0 is a
reserved constant denoting the initial situation, H a re-
served predicate for expressing properties about fluents
in a situation, do a reserved binary function denoting the
result of performing an action, and Poss a reserved bi­
nary predicate for action preconditions. In addition, we
assume the following two partial orders on situations:

L IN 1413

Finally, a (definite) program is a finite set of clauses.
The definition of a fluent symbol F in a program P is
the set of clauses in P that have F in their heads.

Since a goal is not a situation calculus formulas, we
need a way to refer to its truth values. Given a goal

, and a situation term 5, we define
H(G,S), the truth value of G in the situation 5, to be
the situation calculus formula

3 A Logical Semantics
The cut operator in Prolog plays two roles. As a goal,
it succeeds immediately. As a search control operator,
it prevents a Prolog interpreter from backtracking past
it. Consequently, our semantics for programs with cut
will come in two stages. First, we consider the "pure
logical" semantics of the programs when cut is taken to
be a goal that succeeds immediately. For this purpose,
we shall use the situation calculus semantics for logic
programs without cut proposed by Lin and Reiter ([6]).
For our purpose here, the key of this semantics is that
program clauses are identified with the effects of actions
in the situation calculus, so a branch in a search tree
becomes a sequence of actions, thus isomorphically, a
situation. This is important because the effect of a cut
on the search tree can then be modeled by restrictions
on situations. So our second step in formalizing the cut
operator is to define a relation call Acc on situations
so that Acc(s) holds with respect to a logic program if
the sequence of actions in s corresponds to a successful
derivation according to the program.

The rest of this section is basically a review of [6] with
a minor notational difference: while we reify fluents and
use the special predicate H, Lin and Reiter [6] treat flu­
ents as predicate symbols. For example, H(broken,s)
would be written as broken(s) in [6].

According to [6], clauses are treated as rules, so that
the application of such a rule in the process of answering
a query is like performing an action. Formally, given a
clause of the form

1414 TEMPORAL REASONING

LIN 1415

Here le(x,y) means that x is less than or equal to y, and
1 and 2 are constants. We have the following successor

4This is a typical example of improper uses of cut. We'll
return to this point later.

Therefore query answering in logic programs literally
becomes planning in the style of (Green [3]) in the situ­
ation calculus. This semantics has some nice properties.
It is closely related to a recent proposal by Wallace [10],
and generalizes the Clark completion semantics. Fur­
thermore, in the propositional case, it is equivalent to
Gelfond and Lifschitz's stable model semantics. For de­
tails, see (Lin and Reiter [6]).

In the following, we call (7) the successor state axiom
for F wrt to P.

Given a logic program P, the set of successor state
axioms wr t P, together w i th some domain independent
axioms, is then the "pure logical meaning" of P:

We now proceed to formalize this informal reading.
First, notice that we need two ordering relations: one

on rules for deciding the precedence of rules, and the
other on situations for defining "the first derivation".

5 In the following, the terms situations and derivations will
be used interchangeably.

Let us call a situation accessible if the derivation cor­
responding to this situation5 is legal, i.e. not ruled out
by the cut. Our goal in defining a semantics for the cut
operator is then to characterize the set of accessible sit­
uations. This is what we are going to do in the next
section.

From these successor state axioms, it is easy to see that
performing first B1 (1,2), then A1 (1,2,2) in S0 wi l l result
in a situation satisfying m a x (l , 2 , 2) . Thus we have the
following desirable conclusion:

1416 TEMPORAL REASONING

this use of cut is not ideal in the sense that it does more
than search control.

In general, we say that the cuts in a program P are
for pure search control if for any goal G,

Some ramification of this definition for identifying im­
proper uses of cut wi l l be explored further in the ful l
version7 of this paper.

5 Some Propert ies
As we have noticed, the accessibility axiom attempts to
define Acc recursively. A natural question then is if the
recursion wi l l yield a unique solution for the predicate.
In general, the answer is negative. However, if a program
is properly stratified, then the axiom wi l l yield a unique
solution.

Let P be a program, and F a fluent. We say that the
definition of F in P is cut-free if none of the clauses that
are relevant to F contains !. Here a clause is relevant to
F if, inductively, either it 's in the definit ion of F or i t 's
relevant to another fluent that appears in the definition
of F. For example, the definition of le in the max ex­
ample is cut-free. For cut-free fluents, Acc does not play
a role:

P r o p o s i t i o n 1 Let P be a program, and its extended
action theory. If the definition of a fluent F in P is
cut-free, then we have:

Cut-free fluents are the ground case of stratified pro-
grams:

D e f i n i t i o n 7 A program P is stratif iedt/ there is a func­
tion f from fluents in P to natural numbers such that

1. If F is cut-free in P, then f(F) = 0.
2. If F is not cut-free, then f(F) is

appears in the definition of F}.

T h e o r e m 1 Let P be a stratified program, and its
corresponding extended action theory. There is a formula

that does not mention Acc such that

We end this section wi th a theorem that shows the cor­
rectness of the usual implementation of negation using
cut.

Let P be a logic program wi th negation (not) but
without cut. Suppose that for each fluent F in P, F'

7 In preparation. But see http://www.cs.ust.hk/

L IN 1417

the equivalence. This should not be surprising. For ex­
ample, the logical formalization of negation in logic pro­
grams normally requires fixed-point constructions, and
negation is usually implemented by cut.

We il lustrate the definitions wi th our max example.
Suppose we use Prolog's search strategy, and order the
actions as:

This is intuit ively right since the only appearance of !
is in the definition of max, and the presence of ! has no
effect on le. For max, we can show:

So the max program indeed defines max correctly. How­
ever since

is a new fluent of the same arity. Let P' be the logic
program obtained by replacing every literal of the form
not in P by and by adding, for each new
fluent F', the following two clauses:

Suppose that for each fluent F, the action AF is ordered
before the action
Theorem 2 Let be the extended action theory of P',
and V the action theory for P as defined in (Lin and
Reiter [6]). For fluent F in P, and any tuple of
terms of sort object, we have iff

Prom this theorem, we conclude that the usual im­
plementation of negation using cut is correct with re­
spect to the semantics given in (Lin and Reiter [6]). As
noted in (Lin and Reiter [6]), the semantics given there
for logic programs with negation yields the same results
as that given in (Wallace [10]), and the latter has been
shown to be equivalent to the stable model semantics of
(Gelfond and Lifschitz [2]) when only Herbrand models
are considered. Therefore we can also conclude that the
usual implementation of negation in terms of cut is cor­
rect with respect to the stable model semantics for logic
programs with negation in the propositional case.

6 Concluding Remarks
We have applied the situation calculus to logic program­
ming by giving a semantics to programs with cut. We
have shown that this semantics has some desirable prop­
erties: it is well-behaved when the program is stratified,
and that according to this semantics, the usual imple­
mentation of negation-as-failure operator by cut is prov-
ably correct with respect to the stable model semantics.

Our more long term goal is to use the situation calcu­
lus as a general framework for representing and reason­
ing about control and strategic information in problem
solving. In this regard, we have made some preliminary
progress in applying the situation calculus to formaliz­
ing control knowledge in planning. As we mentioned in
Section 1, in AI planning, a plan is a sequence of actions,
thus isomorphic to situations. So control knowledge in
planning, which often are constraints on desirable plans,
becomes constraints on situations. Based on this idea,
in (Lin [4]), we formulate precisely a subgoal ordering
in planning in the situation calculus, and show how in­
formation about this subgoal ordering can be deduced
from a background action theory. We also show for both
linear and nonlinear planners how knowledge about this
ordering can be used in a provably correct way to avoid
unnecessary backtracking.

Regarding our situation calculus semantics for the cut
operator, there are many directions for future work.

First of a l l , there is a need to compare our semantics
w i th recent work of [l ; 9]. More important ly, we should
use this semantics to clarify the proper roles of cut in
logic programming, to study the possibility of a better
control mechanism, and to do verifications and syntheses
of logic programs w i th cut.

A c k n o w l e d g e m e n t s

Part of this work was done while the author was w i th the
Cognitive Robotics Group of the Department of Com­
puter Science at the University of Toronto. This work is
also supported in part by grant DAG96/97.EG34 from
the Hong Kong Government.

The author would like to thank Eyal Ami r , Yves
Lesperance, Hector Levesque, and especially Ray Reiter
for helpful discussions relating to the subject of this pa­
per and/or comments on earlier versions of this paper.

References
[l] J. Andrews. A paralogical semantics for the prolog cut.

In Proc. of Int. Logic Programming Symposium, pages
591-605, 1995.

[2] M. Gelfond and V. Lifschitz. The stable model semantics
for logic programming. In Proc. Fifth International Con­
ference and Symposium on Logic Programming, pages
1070-1080, 1988.

[3] C. C. Green. Application of theorem proving to prob­
lem solving. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-69), pages
219-239, 1969.

[4] F. Lin. An ordering on subgoals for planning. An­
nals of Mathematics and Artificial Intelligence. Special
issue in honor of Professor Michael Gelfond, To appear.
http://www.cs.ust.hk/~flin.

[5] F. Lin and R. Reiter. State constraints revisited. Journal
of Logic and Computation, Special Issue on Actions and
Processes, 4(5):655-678, 1994.

[6] F. Lin and R. Reiter. Rules as actions: A situation
calculus semantics for
logic programs. J. of Logic Programming, To appear.
http://www.cs.toronto.edu/~cogrobo/.

[7] J. McCarthy and P. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, Edin­
burgh, 1969.

[8] R. Reiter. The frame problem in the situation calculus:
a simple solution (sometimes) and a completeness re­
sult for goal regression. In V. Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 418-420. Aca­
demic Press, San Diego, CA, 1991.

[9] K. Stroetmann and T. Glab. A declarative semantics for
the prolog cut operator. In Proc. of 5th Int. Workshop on
Extensions of Logic Programming, pages 255-271, 1996.

[10] M. G. Wallace. Tight, consistent, and computable com­
pletions for unrestricted logic programs. Journal of Logic
Programming, 15:243-273, 1993.

1418 TEMPORAL REASONING

TEMPORAL REASONING

Temporal Reasoning 1

