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Abs t rac t 

We argue that the situation calculus is a nat­
ural formalism for representing and reasoning 
about control and strategic information. As a 
case study, in this paper we provide a situation 
calculus semantics for the Prolog cut operator, 
the central search control operator in Prolog. 
We show that our semantics is well-behaved 
when the programs are properly stratif ied. We 
also show that according to this semantics, the 
conventional implementation of the negation-
as-failure operator using cut is provably correct 
w i th respect to the stable model semantics. 

1 I n t r o d u c t i o n 
The situation calculus (McCarthy and Hayes [7]) is a for­
malism for representing and reasoning about actions in 
dynamic domains. It is a many-sorted predicate calculus 
w i th some reserved predicate and function symbols. For 
example, to say that block A is ini t ial ly clear, we wri te: 

where H is a reserved binary predicate and stands for 
"holds", and So is a reserved constant symbol denot­
ing the in i t ia l situation. As an another example, to say 
that the action stack(x, y) causes on(x, y) to be true, we 
wri te:1 

where the reserved function do(a, s) denotes the resulting 
situation of doing the action a in the situation s, and 
Poss(a, s) is the precondition for a to be executable in 
s. This is an example of how the effects of an action can 
be represented in the situation calculus. Generally, in 
the situation calculus: 

1In this paper, free variables in a displayed formula are 
assumed to be universally quantified. 

• situations are first-order objects that can be quan­
tif ied over; 

• a situation carries information about its history, 
i.e the sequence of actions that have been per­
formed so far. For example, the history of 
the situation do(stack(A, B), do(stack(B, C ) , So)) is 
[8tack(B,C),stack(A,B]\, i.e. the sequence of ac­
tions that have been performed in the ini t ia l situa­
t ion to reach this situation. As we shall see later, 
our foundational axioms wi l l enforce a one-to-one 
correspondence between situations and sequences of 
actions. 

We believe that these two features of the situation cal­
culus make it a natural formalism for representing and 
reasoning about control knowledge. For example, in AI 
planning, a plan is a sequence of actions, thus isomorphic 
to situations. So control knowledge in planning, which 
often are constraints on desirable plans, becomes con­
straints on situations (Lin [4]). Similarly, when we talk 
about control information in logic programming, we are 
referring to constraints on derivations, i.e. sequences of 
actions according to (L in and Reiter [6]). 

Al though our long term goal is to develop a general 
framework for representing and reasoning about control 
knowledge in problem solving using the situation calcu­
lus, our focus in this paper is the Prolog cut operator, 
the central search control operator in Prolog. We pro­
vide a situation calculus semantics for logic programs 
wi th cut, and show that our semantics is well-behaved 
when the programs are properly stratif ied. We also show 
that according to this semantics, the conventional imple­
mentation of the negation-as-failure operator using cut 
is provably correct w i th respect to the stable model se­
mantics of Gelfond and Lifschitz [2]. To the best of our 
knowledge, this is the first t ime a connection has been 
shown between a declarative semantics of negation and 
that of cut. 

This paper is organized as follows. Section 2 briefly 
reviews the basic concepts in the situation calculus and 
logic programming. Section 3 reviews the situation cal-
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cuius semantics of (Lin and Reiter [6]) for cut-free logic 
programs. For the purpose of this paper, the key prop-
erty of this semantics is that derivations in logic pro-
gramming are identified with situations. Section 4 ex­
tends this semantics to logic programs with cut. This is 
done by an axiom on accessible situations, that is, those 
situations whose corresponding derivations are not "cut 
off" by cut. Section 5 shows some properties of our se­
mantics, and finally section 6 concludes this paper. 

2 Logical Pre l iminar ies 
2.1 The Situation Calculus 
The language of the situation calculus is a many-sorted 
second-order one with equality. We assume the follow­
ing sorts: situation for situations, action for actions, flu-
ent for propositional fluents such as clear whose truth 
values depend on situations, and object for everything 
else. As we mentioned above, we assume that S0 is a 
reserved constant denoting the initial situation, H a re-
served predicate for expressing properties about fluents 
in a situation, do a reserved binary function denoting the 
result of performing an action, and Poss a reserved bi­
nary predicate for action preconditions. In addition, we 
assume the following two partial orders on situations: 
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Finally, a (definite) program is a finite set of clauses. 
The definition of a fluent symbol F in a program P is 
the set of clauses in P that have F in their heads. 

Since a goal is not a situation calculus formulas, we 
need a way to refer to its truth values. Given a goal 

, and a situation term 5, we define 
H(G,S), the truth value of G in the situation 5, to be 
the situation calculus formula 

3 A Logical Semantics 
The cut operator in Prolog plays two roles. As a goal, 
it succeeds immediately. As a search control operator, 
it prevents a Prolog interpreter from backtracking past 
it. Consequently, our semantics for programs with cut 
will come in two stages. First, we consider the "pure 
logical" semantics of the programs when cut is taken to 
be a goal that succeeds immediately. For this purpose, 
we shall use the situation calculus semantics for logic 
programs without cut proposed by Lin and Reiter ([6]). 
For our purpose here, the key of this semantics is that 
program clauses are identified with the effects of actions 
in the situation calculus, so a branch in a search tree 
becomes a sequence of actions, thus isomorphically, a 
situation. This is important because the effect of a cut 
on the search tree can then be modeled by restrictions 
on situations. So our second step in formalizing the cut 
operator is to define a relation call Acc on situations 
so that Acc(s) holds with respect to a logic program if 
the sequence of actions in s corresponds to a successful 
derivation according to the program. 

The rest of this section is basically a review of [6] with 
a minor notational difference: while we reify fluents and 
use the special predicate H, Lin and Reiter [6] treat flu­
ents as predicate symbols. For example, H(broken,s) 
would be written as broken(s) in [6]. 

According to [6], clauses are treated as rules, so that 
the application of such a rule in the process of answering 
a query is like performing an action. Formally, given a 
clause of the form 
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Here le(x,y) means that x is less than or equal to y, and 
1 and 2 are constants. We have the following successor 

4This is a typical example of improper uses of cut. We'll 
return to this point later. 

Therefore query answering in logic programs literally 
becomes planning in the style of (Green [3]) in the situ­
ation calculus. This semantics has some nice properties. 
It is closely related to a recent proposal by Wallace [10], 
and generalizes the Clark completion semantics. Fur­
thermore, in the propositional case, it is equivalent to 
Gelfond and Lifschitz's stable model semantics. For de­
tails, see (Lin and Reiter [6]). 

In the following, we call (7) the successor state axiom 
for F wrt to P. 

Given a logic program P, the set of successor state 
axioms wr t P, together w i th some domain independent 
axioms, is then the "pure logical meaning" of P: 

We now proceed to formalize this informal reading. 
First, notice that we need two ordering relations: one 

on rules for deciding the precedence of rules, and the 
other on situations for defining "the first derivation". 

5 In the following, the terms situations and derivations will 
be used interchangeably. 

Let us call a situation accessible if the derivation cor­
responding to this situation5 is legal, i.e. not ruled out 
by the cut. Our goal in defining a semantics for the cut 
operator is then to characterize the set of accessible sit­
uations. This is what we are going to do in the next 
section. 

From these successor state axioms, it is easy to see that 
performing first B1 (1,2), then A1 (1,2,2) in S0 wi l l result 
in a situation satisfying m a x ( l , 2 , 2 ) . Thus we have the 
following desirable conclusion: 
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this use of cut is not ideal in the sense that it does more 
than search control. 

In general, we say that the cuts in a program P are 
for pure search control if for any goal G, 

Some ramification of this definition for identifying im­
proper uses of cut wi l l be explored further in the ful l 
version7 of this paper. 

5 Some Propert ies 
As we have noticed, the accessibility axiom attempts to 
define Acc recursively. A natural question then is if the 
recursion wi l l yield a unique solution for the predicate. 
In general, the answer is negative. However, if a program 
is properly stratified, then the axiom wi l l yield a unique 
solution. 

Let P be a program, and F a fluent. We say that the 
definition of F in P is cut-free if none of the clauses that 
are relevant to F contains !. Here a clause is relevant to 
F if, inductively, either it 's in the definit ion of F or i t 's 
relevant to another fluent that appears in the definition 
of F. For example, the definition of le in the max ex­
ample is cut-free. For cut-free fluents, Acc does not play 
a role: 

P r o p o s i t i o n 1 Let P be a program, and its extended 
action theory. If the definition of a fluent F in P is 
cut-free, then we have: 

Cut-free fluents are the ground case of stratified pro-
grams: 

D e f i n i t i o n 7 A program P is stratif iedt/ there is a func­
tion f from fluents in P to natural numbers such that 

1. If F is cut-free in P, then f(F) = 0. 
2. If F is not cut-free, then f(F) is 

appears in the definition of F}. 

T h e o r e m 1 Let P be a stratified program, and its 
corresponding extended action theory. There is a formula 

that does not mention Acc such that 

We end this section wi th a theorem that shows the cor­
rectness of the usual implementation of negation using 
cut. 

Let P be a logic program wi th negation (not) but 
without cut. Suppose that for each fluent F in P, F' 

7 In preparation. But see http://www.cs.ust.hk/ 
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the equivalence. This should not be surprising. For ex­
ample, the logical formalization of negation in logic pro­
grams normally requires fixed-point constructions, and 
negation is usually implemented by cut. 

We il lustrate the definitions wi th our max example. 
Suppose we use Prolog's search strategy, and order the 
actions as: 

This is intuit ively right since the only appearance of ! 
is in the definition of max, and the presence of ! has no 
effect on le. For max, we can show: 

So the max program indeed defines max correctly. How­
ever since 



is a new fluent of the same arity. Let P' be the logic 
program obtained by replacing every literal of the form 
not in P by and by adding, for each new 
fluent F', the following two clauses: 

Suppose that for each fluent F, the action AF is ordered 
before the action 
Theorem 2 Let be the extended action theory of P', 
and V the action theory for P as defined in (Lin and 
Reiter [6]). For fluent F in P, and any tuple of 
terms of sort object, we have iff 

Prom this theorem, we conclude that the usual im­
plementation of negation using cut is correct with re­
spect to the semantics given in (Lin and Reiter [6]). As 
noted in (Lin and Reiter [6]), the semantics given there 
for logic programs with negation yields the same results 
as that given in (Wallace [10]), and the latter has been 
shown to be equivalent to the stable model semantics of 
(Gelfond and Lifschitz [2]) when only Herbrand models 
are considered. Therefore we can also conclude that the 
usual implementation of negation in terms of cut is cor­
rect with respect to the stable model semantics for logic 
programs with negation in the propositional case. 

6 Concluding Remarks 
We have applied the situation calculus to logic program­
ming by giving a semantics to programs with cut. We 
have shown that this semantics has some desirable prop­
erties: it is well-behaved when the program is stratified, 
and that according to this semantics, the usual imple­
mentation of negation-as-failure operator by cut is prov-
ably correct with respect to the stable model semantics. 

Our more long term goal is to use the situation calcu­
lus as a general framework for representing and reason­
ing about control and strategic information in problem 
solving. In this regard, we have made some preliminary 
progress in applying the situation calculus to formaliz­
ing control knowledge in planning. As we mentioned in 
Section 1, in AI planning, a plan is a sequence of actions, 
thus isomorphic to situations. So control knowledge in 
planning, which often are constraints on desirable plans, 
becomes constraints on situations. Based on this idea, 
in (Lin [4]), we formulate precisely a subgoal ordering 
in planning in the situation calculus, and show how in­
formation about this subgoal ordering can be deduced 
from a background action theory. We also show for both 
linear and nonlinear planners how knowledge about this 
ordering can be used in a provably correct way to avoid 
unnecessary backtracking. 

Regarding our situation calculus semantics for the cut 
operator, there are many directions for future work. 

First of a l l , there is a need to compare our semantics 
w i th recent work of [ l ; 9]. More important ly, we should 
use this semantics to clarify the proper roles of cut in 
logic programming, to study the possibility of a better 
control mechanism, and to do verifications and syntheses 
of logic programs w i th cut. 
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