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Abstract

Although many formalisms for reasoning about
action exist, surprisingly few approaches have
taken computational complexity into consider-
ation. The contributions of this paper are the
following: a temporal logic with a restriction
for which deciding satisfiability is tractable,
a tractable extension for reasoning about ac-
tion, and NP-completeness results for the unre-
stricted problems. Many interesting reasoning
problems can be modelled, involving nondeter-
minism, concurrency and memory of actions.
The reasoning process is proved to be sound
and complete.

1 Introduction

Although many formalisms for reasoning about action
exist, surprisingly few approaches have taken computa-
tional complexity into consideration. One explanation
for this might be that many interesting Al problems are
(at least) NP-hard, and that tractable subproblems that
are easily extracted, tend to lack expressiveness. This
has led a large part of the Al community to rely on
heuristics and incomplete systems to solve the problems
(see e.g. [Ginsberg, 1996] for a discussion). This holds, in
particular, for the area of reasoning about action, where
the very expressive logical formalisms provide difficult
obstacles when it comes to efficient implementation.

We feel, however, that the tractability boundary for
sound and complete reasoning about action has not yet
been satisfactorily investigated. We prove this by in-
troducing a nontrivial subset of a logic with semantics
closely related to the trajectory semantics of Sandewall
[1994], for which satisfiability is tractable. Our logic can
handle examples involving not only nondeterminism, but
continuous time, concurrency and memory of actions as
well, thus providing a conceptual extension of Sande-
wall's framework. The reader should note that our main
concern is computation, as opposed to modelling.

This paper is organised as follows: Section 2 is an
informal overview ofthe technical results, where also two
examples are presented. In Section 3 we present the
syntax and semantics of the basic temporal logic and the

extension for reasoning about action, and in Section 4,
we present the following: three intractability results for
these formalisms, and the main results: the tractable
subclasses of the temporal logic and its extension’.

2 Overview

In Section 3 we develop a temporal logic, A, which is
syntactically related to the propositional temporal logic
TPTL [Alur and Henzinger, 1989]. The temporal do-
main is the set of real numbers and temporal expressions
are based on relations =, <, <, > and > between linear
polynomials with rational coefficients over a set of tem-
poral variables. The semantics of this temporal logic is
standard. The formalism for reasoning about action is
narrative based, which means that scenario descriptions
are used to model the real world. Scenario descriptions
consist of formulae in the temporal logic (observations)
and action expressions which are constructs that state
that certain changes in values of the features (proposi-
tions, fluents) may occur. We write action expressions
as * = [aje Intl, where 7 is the precondition for the
action, € the effects, a a temporal expression denoting
when the effects are taking place, and Inf 1 is the set of
all features that are influenced by the action. The in-
fluenced features are not subject to the assumption of
inertia, i.e. we allow them, and only them, to change
during the execution of the action.

It turns out that deciding satisfiability is NP-complete,
both for the temporal logic and the scenario descriptions.
Interestingly, the problem is NP-complete for scenario
descriptions that only include Horn clause observations,
unconditional and unary action expressions (this termi-
nology is explained later), and no stated relations be-
tween temporal expressions.

To extract a tractable subset from our formalism we
rely on a recent result in temporal constraint reasoning
by Jonsson and Backstrom in [1996] (also discovered in-
dependently by Koubarakis [1996]). They have identified
a large tractable class of temporal constraint reasoning,
using Horn Disjunctive Linear Relations (Horn DLR's)

"Due to lack of space, proofs of most theorems are omit-
ted. However, they can all be obtained from the authors
(until published).
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which are relations between linear polynomials with ra-
tional coefficients. We make use of their result by re-
stricting formulae in our scenario descriptions to be Horn
and then by encoding scenario descriptions into Horn
DLR's. For the temporal logic this is fairly straightfor-
ward. For the scenario descriptions, it turns out that we
have to put some constraints on the temporal relations
and actions in the scenario descriptions.

We will use the following two examples: Jump into a
Lake with a Hat [Giunchiglia and Lifschitz, 1995] and
Soup Bowl Lifting [Gelfond et a/., 1991]. Below we in-
formally describe the examples.

Example 1 (Jumpintoa lLake with a Hat, JLH) If
you jump into the lake you will get wet. Ifyou have been
in the water at some time point it is unclear if you still
have your hat on. This is an example of nondeterminism
and of memory of actions. O

Example 2 (Soup Bowl Lifting, SBL) Ifwe lift ei-
ther side of a soup bowl at some time points, the content
will be spilled, unless we lift both sides at the same time
point. This is an example of simultaneous concurrency.
W}

Both examples stated above can be handled by the
tractable subset of our formalism. Note that we are
not confined to simultaneous concurrency; actions may
partly overlap.

3 Scenario Descriptions

We introduce a semantics that is a simpler variant of
Sandewall's Features and Fluents Framework [Sande-
wall, 1994], in that the effects of an action can only occur
at one and the same time point for a given action, and
we use only propositional values of features (similar to
the work of Doherty [1994]) However, in some respects
this formalism is more flexible than Sandewall's: we use
a continuous time domain, we allow concurrently execut-
ing actions, and effects of actions can depend on other
states in the history than the state at the starting time
point of the action (this implies memory of actions, in
Sandewall's [1994] terminology). One example of a for-
malism having memory is that of Gustafsson and Do-
herty [1996].

Initially, a basic temporal logic is defined. The compu-
tational properties of this logic will be exploited by the
scenario description logic, i.e. ultimately (in Section 4)
the scenario descriptions will be transformed into formu-
lae of the basic temporal logic.

3.1 Syntax

We begin by defining the basic temporal logic.

We assume that we have a set T of time point vari-
ables intended to take real values, and a set F offeatures
intended to take propositional values.

Definition 3 A signature is a tuple & = {T,F}, where
T is a finite set of time point variables and T is a finite
set of propositional features. A time point expression is
a linear polynomial over T with rational coefficients. We
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denote the set of time point expressions over T by T".
a

Definition 4 Let ¢ = {T,F) be a signature, let o, €
T, feF, Re{=<<2>,d€{AV,— ~} and
define the scenario description language A over o by

Au=T|F|f|laRB|~A]|A & A2 [e]A.

A formula that does not contain any connectives (any
of the constructs A,V,—, —,~ and []) is atemic. If v
is atomic and @ € 7", then the formulae ¥, [a}y, ~,
[@]—y and —[a]y are literals. (A formula [a]y expresses
that at time a, 7 is true.) A literal { is negative iff it
contains — and its corresponding atomic formula v is
not of the form aR3 for R € {<,<,>,>}. A literal
that is not negative is positive. Disjunctions of literals
are clauses. A formula y € A 18 in conjunclive normal
form, CNF, ifl it is a conjunction of clauses. A formula ¢
ia Horn iff it is & clause with at most one positive literal.
A set I’ of formulae is Horn iff every v € ' is Horn.
Syntactical identity between formulae is written =, and
when ambiguity is to be avoided, we denote formulae
TEA by Y.

Let 4 be a formula. A feature f € F occurs freein 4
iff it does not occur within the scope of a [e] expression
iny. & € T* binds f in 7 if a formula [a]$ occurs as a
subformula of v, and f is free in ¢. If no feature occurs
freein v, v is cloaed. If v does not contain any occurrence
of [«] for some a € T*, then ¥ is propesitional. O

Using A, we can thus express propositions being true at
time points, and express relations between time points.
Next we define the extension of the basic temporal logic
by introducing aclion ezpressions, i.e. constructs that
enable modelling of change.

Definition 5 Let o = {T, F) be a signature. An action
expression over ¢ is a tuple A = {a, 7, Infl, e}, x € T*,
7 a closed formula in A, Infl C F, and ¢ a propositional
formula, where all features occurring in ¢ are in Infl. a
is the result time point of A, 7 is the precondition of A,
Infl is the set of influenced features of A, and ¢ is the
effects of A. A is unconditional iff # = T, and unary iff
|Intl] = 1.

For convenience, we write action expressions as
7 = [a]eInfl; for example we have [3]lcaded =
{d)-alive{alive} for an action shoot. If # = T, we
remove it and the = symbol, and if ¢ = T, we re-
move it. An example is an unconditional loading action
[2Hloaded{icaded}, and the aciion of spinning the cham-
ber of a gun {3}{leaded}.

An observation over o is a closed formulain A. O

Next, we combine the concepts defined so far into one.

Definition 6 A scenario description 18 a tuple T =
{7,5¢D, OBs}, where o = (T, F) is a signature, SCD (the
schedule) is a finite set of action expressions over o, and
OBS is a finite set of observations over o. The size of &
scenatio description is defined as the sum of lengths of
all formulae in scD and oBs. O

Now, we formalise the examples from Section 2.



Example 7 (JLH) The intended conclusion of the fol-
lowing scenario is that the person is wet at time c4, and
we do not know if the hat is on at time point C,, occur-
ring after the person jumps.

oBsl [0]hat.on A dry A on land

scpl  [ci]-onltand{onland}

scp2 [c;]-onlend = [ey]-dry{dry)
scD3  [cyj-ontand = [ca]{haton})
0854 ¢ > 0)\022(:1 O

Example 8 (SBL) We have two actions: one for lift-
ing the left side of the soup bowl and one for lifting the
right side. Ifthe actions are not executed simultaneously,
the table cloth will no longer be dry. The intended con-
clusion here, is that C, = Cy.

ossl [0ldry

scpl [c; Icﬁup{!eﬂupg

scD2 |ci[-rightup = [c1]~dry{dry}

3cD3  [eqp]rightup{rightup)

scpd  |ep]-leftup =3 [ep]dry{dry}

oBs2 [cgldry

oBS3 ca>0Ag >0 ]

3.2

For the presentation of the semantics we proceed sim-
ilarly to the presentation of the syntax. We begin by
defining the semantics of the basic temporal logic.

Definition 9 Let ¢ = {T,F) be a signature. A state
over is a function from T to the set {T, F} of truth
values. A history over & is a function h from R to the
set of states. A valuation @ is a function from T to R.
It is extended in a natural way (as a homomorphism
from T* to R), giving e.g. ${3t + 4.3) = J{{) + 43. A
development, or interpretation, over & is a tuple [k, )
where h is a history and ¢ is a valuation. O

Definition 10 Let v € A, and iet D = (h, ¢} be a de-
velopment. Define the fruih value of v in D for a time
point ¢ € R, denoted D(v,1), as follows (here we overload
T and F to denote both formulae and truth values). As-
sume f € F, R€ {=,£,<,2,>},a,8€T", 1,6 €A,
& € {A,V,—, —}, and r € {T,F}. Now define
D(rt)=r D(f,1) = K1)(f)
D(aRB,t) = ¢(a)R4(B) D(~y,t) = ~D(1,1)
Diy®é,t)=D(v.t)@ D(5,t) D([a]y,1) = D(y,$(a)).
Two formulae v, and vy, are equivalent iff D{y,1) =
D(v;,1) for all D and t. A set T' C A of formulae is
satsnfiable iff there exists a development D and a time
point ¢ € R such that D{v,t) is true for every v € T.
A development D is a model of a set I' C A of closed
formulae iff D(y,t) is true forevery t € Rand y €. O

Fact 11 For v € A and o € 7, ~{a]y is equivalent to
la]—~y. For a closed formula v, D{7,1) = D(y,1') for any
t,# € R and development D. D

Thus, if v is closed, we can write D(7) instead of D(-;f,t).

Now we define the semantics of the action expressions
based on models for the basic temporal logic. Inertia
(the frame problem) is handled by identifying all time
points where a feature f possibly can change its value.

Semantics

Th.en du_ring every interval where no such change time
point exists, f has to have the same value throughout
the interval.

Definition 12 Let D = (h, ¢} be a development. An
action expression A = {a, v, Infl, ¢} has effects in D iff
D(z) = T. Let f € F, and define Chg(D,scD, f,t) to
be true for & time point ¢ € R iff f € Infl for some
action expression A = (o, w,Infl, ¢} € SCD that has
eflects in D, with ¢(a) = t. Note that we can only have
Chg(D,scp, £,t) true for a finite number of time points
for fixed scp and f.

Let T = {#,5CD, 03} be a scenario description. An
tnlended model of T is a development D = (h, ¢} where

e D is a model of oBs

¢ For each A = (o, x,Infl, ¢} € 5CD that has effects
in D, D¢, ¢(a))=1T
e For each f € F and s,t € R with 8 < ¢ such that
for no t' € (a,t) (open interval), Chg(D,scp, f, ")
holds, we have h(t'){(f) = h(s)(f) for every t' €
(s,1).
Denote by Mod(T) the set of all intended models for a
scensario description T.

A formula -y € A is eniailed by a scenario description
T, denoted T f= v, iff v is true in a}l intended models of
T. T is satisfiable ifft Mod(T) £ 9. O

Fact 13 If T = {&,5CD,0Bs)} is a scenaric description
and ¥ € A aformula, then T k& « iff {#, scD, 0Bs U {~})
is unsatisfiable. O

We comment how this is used in our two examples:

o It is intended that JLH is unsatisfiable adding
the observation {c;]dry, and that neither adding
leg]hat.on nor [¢z]-haton will make it unsatisfi-
able.

o For SBL, adding ¢z # ¢, as an observation will make
the scenario unsatisfiable.

4 Complexity Results

4.1 Basic Results

It is no surprise that deciding satisfiability for the basic
temporal logic is NP-hard. Proofs of NP-completeness,
on the other hand, depend on the tractability results.

Proposition 14 Deciding satisfiability of a set T € A
is NP-hard.
Proof: Propositional logic is a subset of A. O

Corollary 15 Deciding whether a scenario description
is satisfiable is NP-hard. B

That these problems are in NP, and thus are NP-
complete, is proved in Theorem 22 and Theorem 23.

Interestingly, we can strengthen the result consider-
ably.

Theorem 16 Deciding whether a scenario description
is satisfiable is NP-hard, even if action expressions are
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unconditional and unary, only Horn observations are al-
lowed, and no relations between time points may be
stated.

Proof (sketch): A reduction from 3SAT. O

We now present the key to tractability, which is a linear-
programming approach to temporal constraint reason-
ing, by Jonsson and Backstrom [1996].

Definition 17 Let & and # be linear polynomials with
rational coefficients over some set X of variables. Then
a disjunctive linear relation, DLR, is a disjunction of one
or more expressions of the forma =8, a # B, a < 8,
a < B. A DLRis Hom iffit contains at most one disjunct
with the relation =, < or <.

An assigment m of variables in X to real numbers is
a model of a set T of DLR's iff all formulae in T are true
when taking the values of variables in the DLR's. A set
of DLR's is satisfiable iff it has a model. O

The following result is the main result of Jonsson and
Backstrom [1996].

Proposition 18 Deciding satisfiability of a set of Horn
DLR's is polynomial. O

Now we restrict the scenario description language and
the form of actions. Furthermore, a structural restriction
on scenario descriptions, verifiable in polynomial time, is
imposed. We shall define an encoding function that takes
a Horn scenario description T and returns a set I' of Horn
DLR’s such that I is satisfiable iff T is satisfiable.

4.2 Satisfiability of Horn Formulae is
Tractable

First, we code Horn formulae as Horn DLR's.

Definition 19 Let [ be a closed literal, and assume the
existence of fresh, unique time point variables ¢S for each

f € Fand e €7 Then C(I) is defined as follows, as-
suming R € {=,€,<,2,>} and f€ F.

CT)=0=0" CFY="0£0"
C{aRf) = aRf" Cloa=p)="a#f
Clra<f)="a>f Cla<Bf="a2f
Clra2f)="acf Clra>p)="agf
C([nlaRB) = C(aRB) C([e]f)="t§ =0"

C(-laly) = Cllal~y) Cllal~)) =15 #0
Let ¥ €-A be a closed Horn formula, and let ¥ be ob-
tained from ¥ by simplifying away occurrences of T.and
F. Now v = V,li. Then define C(y) to be the DLR
6 =V, C(I). Note that § is always a Horn DLR.
Let I' C A be a set of closed Horn formulae, and 7" the

set of all time point expressions occurring in F. Then
C(T') is defined by

() = {C(p)ly € TIU
{C(lalf VB # aVIBNIf € F a,fET).

The second set is called the correspendence equations.
Note that the argument of ' in a correspondence equa-
tion is equivalent to [a]f A =a — [Flf. D

The following result is crucial.
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Theorem 20 Let T & A be a set of closed Horn formu-
lae. Then T is satisfiable iff C(T) is satisfiable.

Proof (sketch): Straightforward: the key is to use the
correspondence equations. &

Corollary 21 Deciding satisfiability of sets of closed
Horn formulae is polynomial.

Proof: It is clear that the transformation C is polyno-
mial. The result follows from Proposition 18.

Now we have the results for the proofs of membership in
NP for the satisfiability problems of A and of scenario
descriptions.

Theorem 22 Deciding satisfiability of a set I' € A is
NP-complete.

Proof (sketch): By Proposition 14, it remains to prove
that the problem is in NP. This is done by letting the set
of all literals used in T which are true in a model serve as
a polynomial representation of the model. Furthermore,
satisfiability of such a set is polynomial, by Corollary 21.
o

Theorem 23 Deciding whether a scenario description
is satisfiable is NP-complete.

Proof (sketch): By Corollary 15, it remains to prove
that the problem is in NP. As a polynomial representa-
tion of a model, we use the set of literals used in the
scenario description that are true in it, and additional
atomic formulae expressing temporal relations. Then
checking satisfiability of such sets will be polynomial,
like in Theorem 22. O

4.3 Tractable Scenario Descriptions

Using Corollary 21, we see that if we can code scenario
descriptions into sets of Horn formulae, we will have
a polynomial algorithm for reasoning with scenario de-
scriptions. In order to obtain such a result, we need to
restrict what scenario descriptions are allowed.

The strategy can briefly be described as follows: we
identify all observation time points which bind a feature
value and all time points where an action expression pos-
sibly can change a feature value. Then we connect bound
literals with biconditionals, between time points where
the literal value should not change. E.g. if some action
expression changes the value of the feature / at time
point &, there exists a ¥ € OBS which binds / at a time
point 8, & < B, and no changes of the value of / occurs
between a and B, then [a]f « [8]f should be added
to the theory. This formula can be rewritten in Horn
form. The example represents one of the six cases (case
3). The other cases are similar.

The restrictions are basically two: First we will have to
represent action expressions as Horn formulae (restricted
action expressions). Second, the scenario descriptions
must be ordered, we could, e.g., not remove the restric-
tion @ < B in the example above.

Definition 24 Let T = {(o,5cD,0B5) be a sce
nario description. For each f € F, define

= {o|{a,7,Intl,e} € 5cD A f € Infl} and
C; = {ajabinds finyly € O}, for O = oBS U



{x|{e’,x,Xnfl, ¢} € SCD}. E} is orderediff for o, 8 € Ey,
exactly one of @« < 8, 0 = f and o > 8 is consistent
with? oBs. For a, 8 € Ey, E; ordered, we define o <y B
iff @ < B is consistent with oBS, —oo ~y a iff for no
A € E;, § < a i8 consistent with oBs, and & =<z oo iff
for no # € Ey, a < § is consistent with oBs.

Let o € Ey, B € T*, and define o« €; il a < g
is consistent with OBS, & > 8 is inconsistent with OBS,
and for every ¥ € E;, o < ¥ € # is inconsistent with
088. Also define —co €y B iff for every a € Eja<pg
is inconsistent with oBs.

If for all f € F, E} is ordered, and for all w € Cy.
a € w for some o € E; U {—occ}, then T is ordered.
The last condition says that for each observation of a
feature f, there is a unique change of f which sets its
value, or it precedes all changes of f. O

Proposition 25 Testing if a scenario description T is
ordered is polynomial, if 0BS is Horn. O

Definition 26 Let A = {a,7,Infl,¢) be an action ex-
pression. Then A is restricted iff either of the following
holds:

e 7 is T and ¢ is a conjunction of propositional Horn
formulae

¢ 7 is a disjunction of negative literals, and ¢ is either
T, or a conjunction of negative literals.

An ordered scenario description T = {7, SCD, OBS) is re-
siricted iff every action expression in SCD is restricted
and oBs is Horn. A restricted scenario description is
normal iff it is ordered, and for every action expression
A € 5cD, the following holds:

e 7w 18 T and ¢ is a propositional Horn formula

® 7 is a negative literal and ¢ is either T or a negative
literal.

0

Both the examples previously stated (Example 7 and
Example 8) are restricted, which ia easy to verify.

The following result will make the forthcoming proofs
easjer,

Proposition 27 Let T be a restricted scenario descrip-
tion. Then we can in polynomial time construct an
equivalent normal scenario description T’.

Proof (sketch}: It is easy to replace the action ex-
pressions of T by normal action expressions which are
equivalent. O

Thus, we can assume that our restricted scenario de-
scriptions are normal. Next, we define the function ®
which transforms scenario descriptions into sets of Horn
formulae.
Definition 28 First let 4 = (a, 7, In?1,¢) be a normal
action expression. We have three cases for &:

¢ If # = Tand ¢ = h for h =V, ; propositional Horn,

then define $(A4) = {V,{o)}j}

25 formula 4 is consistent with a set [' iff T U {7y} is sat-
isfiable.

o If x ==l and € = T, then define $(A) =

elf # = —l and ¢ = =~m, then define ®{A4) =
{i v {a]-m}.

The restriction to normal action expressions should be
clear; it itnplies that ®(A) is Horn. For a set § of action
expressions, define ®(S) = | J,. s #(A).

Let T = {0, sCD, 0BS) be a restricted scenario descrip-
tion with ¢ = {7,F), and without loss of generality,
asgumme that each feature in F occurs in $cD or oBS.
Alsc let b be a fresh time point variable (b standing for
“beginning” ), and for each f € ¥, add a new feature f".
A few construction steps {basically corresponding to the
possible relations between time points in Ey and Cy) are
necessary. We provide the intuitions of the constructions
in connection to them.

1. Ty =oBs U®(scp} U {b < ala € E;UCy, f € F}.
The observations, the transformed action expressions,
and an initial time point, are added.

2. Ty = {~[df V), [alf v ~fBlflf € Fa €
Cy,—oo €y a}.

No action expression influences f before o where it is
bound by an observation, therefore f should have the
same value at b as at . Note that the members of 'y
can be rewtitten to {o]f — {5]f.

3. Ta={Hlajf VSIS [elf v-[BlfIf € Fac Ef,B €
Cra&, 8 }

f is influenced at o and bound by an observation at a
later time point 8. No actions have effects between o
and 8, therefore f should have the same value at g as it
had at a.

4. Ty = {~af v B [elf v ~BIfIf € Foo €
Ey,—oo <4 o}

This case resembles case 2, with the difference that f is
influenced at o. Therefore, we introduce a new feature
symbel f* which has the same value at a as f has at
b. The new symbols will be handled properly below, in
case B.

5. Ts = {-falf v[8f, [alf v -[Biflf € F,o,8 €
Ep o<y 6}

This relates to case 3, as case 4 relates to case 2.

6. Since E} is ordered, we can form equivalence classes
T} of time points for a € £ by

T7 = {# € Ey|la = 8 is consistent with oBs}.

For each a € EY, define

P = {=|{B, 7, Intl, e} ESCDA fEInLLIA S € Tf}.
Now set I's =

{VP; Vv -lalfv[af .,V P§ V-lelf Vialfla € Er}.
Fitst note that this set is equivalent to the set
{(~VP? = ((a)f ~ [a]f)la € By}

Here we ensure that when actions do not have effects, f
will have the same value as it had the last time it was
changed. This value is held by the feature f.

Now set ®(T} = |J; [i. It is clear that the transfor-
mation performed by ¢ is polynomial. O

Theorem 29 Let T be a restricted scenario description,
and set T = C(®(T})). Then T is satisfiable iff ' is
satisfiable.
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Proof (sketch): The key is that the sets T, force
features to have values being satisfied in any intended
model, and vice versa. O

Theorem 30 Deciding satisfiability (and entailment)
for restricted scenario descriptions is polynomial. O

5 Discussion

One piece of related work is the approach by Schwalb
et al. [1994] to reasoning about propositions being true
at time points. Their choice for obtaining an algorithm
is to code both propositions and temporal relations into
propositional logic, whereas we do the opposite. How-
ever, their tractable inference algorithm is not complete,
and they define no measure on when the correct infer-
ences will be obtained, so it is very difficult to relate it to
our approach. Furthermore they cannot handle inertia
adequately: there, propositions may always change when
actions are performed, but certainly this is undesirable
if actions which do not affect all features are used.

In this paper our concern has been computational
complexity for reasoning about action. It is important
to note that although we have provided polynomial al-
gorithms for the reasoning tasks, these can hardly be
considered efficient. The important results, however,
are that there exist polynomial algorithms; the next
obvious step is to also make them fast. For efficient
implementation, there is one direction we are partic-
ularly interested in investigating: since the technique
used for achieving tractability can be described as an
encoding of our logic as temporal constraints for which
there is a tractable algorithm for determining satisfi-
ability, it should be possible to do something similar
for other tractable temporal algebras, for example those
identified in the papers [Drakengren and Jonsson, 1996;
1997]. Also, an algorithm for a purely qualitative sce-
nario description language (i.e. not involving metric
time) would probably have a faster satisfiability-checker.

We have shown that satisfiability of scenario descrip-
tions is NP-complete within our formalism. We feel that
it would be a mistake to interpret this negatively. On
the contrary, one could argue (in lines with [Gottlob,
1996]) that this would imply that many approximations,
powerful heuristics and non-trivial tractable subsets of
problems for reasoning about action remain to be found.
This paper is a step on the way in this endeavour.

6 Conclusions

We have presented a temporal logic and an extension
for reasoning about action from which tractable subsets
have been extracted. This has been done with an en-
coding of the logic to Horn DLR's. The formalism is
narrative based with continuous time, and the world is
modelled with scenario descriptions consisting of action
expressions and observations. It is possible to model
nondeterminism, concurrency and memory of actions.
Time is represented with linear polynomials with ratio-
nal coefficients over real valued variables.
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