Qualitative Temporal Reasoning with Points and Durations
Isabel Navarrete and Roque Marin*
Departamento de Informatica y Sistemas
Universidad de Murcia
30.071-Espinardo, Murcia, Spain
e-mail:inava@dif.um.es

Abstract

We present here a qualitative temporal reason-
ing system that takes both points and durations
as primitive objects and allows relative and in-
definite information. We formaly define a point
duration network, as a structure formed by two
point algebra (PA) networks separately but not
independently, since ternary constraints are in-
troduced for relating point and duration infor-
mation. We adapt some of the concepts and
reasoning techniques developed for the point al-
gebra networks, such as consistency and mini-
mality. We prove that the problem of determin-
ing consistency in a point duration network is
NP-complete. A simpler and polynomial-time
decision problem is introduced for a restricted
kind of point duration networks. Finally we
suggest how to determine consistency and find
minimal point duration network in the general
case.

1 Introduction

Representing and reasoning about temporal knowledge is
essential for many areas of Artificial Intelligence. Several
constraint-based systems for temporal reasoning have
been proposed, mainly concentrated on two kinds of for-
malisms: qualitative approaches [Allen, 1983; Vilain and
Kautz, 1986] and quantitative or metric systems [Dean
and McDermott, 1987; Dechter et a/., 1991]. Later ef-
forts [Meiri, 1991; Kautz and Ladkin, 1991] have been
done on integrating both qualitative and quantitative
information between time points and intervals in a sin-
gle constraint-based computational model for temporal
reasoning. Systems supporting duration reasoning have
been proposed as well. Allen [1983] has designed a du-
ration reasoning system that allows relative information
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(e.g. interval | took longer than interval J) and repre-
senting uncertainty. Duration information is encoded in
a network orthogonal to the interval relationship net-
work, but total consistency of this network is not guar-
anteed. Temporal constraints on durations are not usu-
ally managed in point-based formalims. Barber [1993]
presented a duration-based temporal model with metric
constraints. But this model is restricted in the sense that
no disjunctive qualitative constraints are allowed.

We present here a qualitative temporal reasoning sys-
tem that takes both points and durations as primitive ob-
jects and allows relative and indefinite information. We
formaly define a point duration network, PDN for short,
as a structure formed by two PA networks separately
but not independently, since ternary constraints are in-
troduced for relating point and duration information. In
section 2 we adapt some of the concepts developed for
the point algebra networks, such as consistency and min-
imality, for the new point-duration model. In section 3
we propose some reasoning task for PD networks and
prove that the problem of determining consistency in a
PDN is NP-complete. A simpler and polynomial-time
decision problem is introduced for a restricted kind of
PD networks. Finally we suggest how to determine con-
sistency and find minimal network with an exponential-
time algorithm for the general case.

2 Definitions

In this section we review Vilain and Kautz's [1986] point
algebra (PA) and PA networks for representing qualita-
tive relations between points. Then we will see how we
can augment PA networks with additional variables that
represent durations (or elapsed time) between any two
points of time, and additional relations expressing re-
lative information concerning durations (e.g. duration
between temporal points #; and #; is less than duration
between points X, and x,).

The point algebra (PA) is a relation algebra [Tarski,
1941] whose elements are the possible subsets of T =
{<,>»,=}, where T is the set of (mutually exclusive)



primitive or basic qualitative temporal relations that can
be hold between any two points of time.

A PA network is a network of binary relations [Mon-
tanari, 1974] where the variables x1,... , X, represent
time points having the same domain, that may be, for
example, the set Q of rational numbers, and the binary
relations between variables are of the form R; , where
Rj is a relation of the point algebra that constraints the
possible values for variables x4 and X;

2.1 Point Duration Networks (PDN)
We define a point duration network, PDN for short, as a
struture Lpp = {Np, Np, Rel{ P, D)} formed by two PA
networks Np and ND and a set of ternary constraints
relating points and durations together, where
* Np is determined by aset P = {x;,... , x,] of point
variables that take values over the rational numbers
and a set

Rel(P} = {Ri; €27 |1 <i,j < n}
of binary relations between points of time.
« ND is given by a set D = {d;; | 1< i< j< n} of

duration variables, again over the rationals, and a
set

Rel(D) = {Rijam €27 |1 €4, j,k,m < n }

of binary relations between durations.

o Rel(P,D) = {Ai; CQ?|1<4,j < n} such that

Aij - {(X,-,X_,-,D.'j) € QS |Ds'j = |X; _X.fl}

We refer to Rel(P), Rel(D) and Rel(P,D) alto-
gether as Lpp-consiratnis.

We can represent indefinite information both in the
Np and ND networks, since the relations R; and Rjj, «m
are allowed to be a disjunction of primitive relations in
T. Each duration variable d; represents time elapsed
between two temporal points X; and X. It does not
supposes anything about the relative position of points
X; and X;. This information is encoded in the Np net-
work. In order to properly compare the magnitude of
separation between points, we consider durations must
take non-negative values and so we use the euclidean dis-
tance to model durations between points. Consequently,

equations d; = |x; — X;| impose ternary constraints that
show the influence of points over durations and vicev-
ersa. Since d; = \x; - x| = X, - x| = d-- we need

only one duration variable d; (i < j) for representing
time elapsed between any two points x;, and X;. Hence,
variable d; would be redundant and it is not considered
as part of durations set D.

As a consequence of ternary constraints Rel(P, D), the
PA networks Np and ND are not independent of each

other and thus we cannot solve them as independent bi-
nary constraint satisfaction problems (CSP). Note that
we use the term network for a Epp structure although
this is not a network in a strict sense, since &pp does
not describe a binary CSP. Alternatively, we could also
consider the problem represented by Epgp as a general
(nonbinary) and continuous domain CSP whose varia-
bles are V = P U D, the domain of each variable is Q,
and C = Rel(P) U Rel(D) U Rel(P, D) is the set of bi-
nary and ternary constraints. We prefer presenting the
problem as two PA networks Np and ND separately but
not independently since it clearer expresses the different
meaning of point and duration variables and constraints,
and also offers the possibility of borrowing some of the
representation and reasoning techniques developed in the
study of point algebra and binary networks. We follow
an idea suggested by Allen [1983] when he proposes a
duration reasoning system whose duration information
is encoded in a network orthogonal to the interval rela-
tionship network.

2.2 Consistent and Minimal PDN

Given a PD network Tpp = {Np, Np, Rel{P, D)} with
n point variables, a n-tuple of the form

Cr= ((311){1)! R (z,.,X.,))

that denote the assignment X;,...,X, to z1,...z2, re-
spectively, is a n-compound label [Teang, 1993) for point
variables. Similarly, a d-compound label for duration
variables, where d = 221 ig a d-tuple which assigns
d rationals values to d durstion variables, i.e.,

Cp = {{d13, D13}, ... , {din—1)n; Din-1)n})

A pair C = (Cp,Cp) is 8 consistent instaniation of
the PD network Epp if an only if the assignments to
point and duration variables given by Cp and Cp satisfy
all the L pp-constraints, what means that,

VX!"XJ' . (Xl'l xj) € Rij
YD,;, Dim : (Dij, Dvm) € Rijam (1)
VX, X5, Dy - (Xi, X, D.'j) €A

The (n + d)-tuple
§= (Xll LR !Xﬂl Dn: ren !D(I‘l-l)l'l)

satisfiying conditions (1) in a solution tuple of the net-
work Epp.

A PDN is consistent if at least one solution tuple ex-
ists. Otherwise the network is inconsistent. A consistent
PD network Zpp represents a (n + d}-ary relation Zpp-

{n4d}
pCQx...x Qdefined by the set of all solution tuples
of X Ph.
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Semanticaly, a consistent instantation of a network
Epp is adescription of a world where we can map points
to atimeline, in such a way, we not only preserve the rel-
ative position amongst points but also the relative mag-
nitude of separation between them.

Example 1 Let Epp be a PDN with three point varia-
bles, such that 2, < 23, 23 < z3 and dy3 > dap (anyother
variables are unconstrained). One consistent instantation
to this network may be C = (Cp,Cp), where

Cp= ((31,3>, {2, 6}, (""31 7))
Cp = {{d12,3), {dr3, 4}, (dzs, 1))

A PD petwork L3, = (N3, N§, Rel®(P, D)) so that
every constraint from Rel(P) and Rel{D) is a primitive
relation, ie called a simple PDN.

A simple PD network =, = (N7, N3, Rel®(P, D))
is a consistent scenaric of Tpp = (Np, Np, Rel(P, D))
if an only if the following conditions hold,

1. PS=pP and DS=D
2, ¥R;; € Rel( P}, R;?J € ReIS(P) : Rf, C Ry
3. VRU»*“‘ € RQI(D)! %,km € Rd.‘.i’(p) : .'gj,km -

Rfi.km
4. I p is consistent

One consistent instantation C = (Cp,Cp) of a PD
network Epp determines a consistent scenario £3p,. In-
deed, for every two values X;, X; in Cp, just one prim-
itive relation Rf; from T is eatisfied, since primitive
relations are mutually exclusive; so it is the case that
z; R, z; and R{; C Ri; and hence we take Ry} as the
new constraint between variables z; and z; in Rel®(P)
of £3 . In the same way, we take R, ., as the primitive
relation of RelS(D) that is satisfied by the assignment
Dyj, Dem to variables d;;, dym in Cp.

Two PD networks £, = (N3, Nb, Rel'(P, D)) and
T3p = (N}, N}, Rel’(P, D)} with the same variables
are equivalent iff they have the same solutions, what
means that ©},-p = E3,-p. Following Montanari’s
work [1974] on binary CSP, we can define a partial or-
dering among the equivalence class of all PD networks
representing the same {n + d)-ary relation. The ordering
relation, affecting only binary constraints, is defined as
follows,

Tbp € Zhp iff R}; € RY; and RY; 4 € R 4y

for every 1 < 4,j4,k,m < n. As well, we can define the
intersection of two equivalent PD networks T}, and
Lhp a8 a new equivalent PD network Epp = £3,NE%p
whosee binary relations are given by,

Rij= Rilj N R?j and Rijem = Rilj,km N R?i.*m
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for every 1 €1,4,k,m < n.

Given a PDN Epp, there exists a unique PDN, E¥p,
equivalent to Xpp which is minimal with respect to €
(the uniqueness is guaranteed because equivalent net-
works are closed under intersection, proofs can be found
in [Montanari, 1974]). E}‘;‘D is the minimal point du-
ration network representing Epp-g and the binary re-
lations in Ef;‘p are called the minimal relations. Each
binary and primitive relation in E'gp is feasible [Van
Beek, 1992], i.e, we can find a consistent instantation of
E}‘D which satisfies the given relation.

3 Reasoning Task with PD Networks

Given a PDN, some of the reasoning task we can think
about are:

* Determining consistency.

* Find the minimal relation between two point or du-
ration variables.

* Find the minimal network equivalent to a given one.

Van Beek [1992] gives exact algorithms for these pro-
blems in the context of PA networks. But, as we sug-
gested previously in section 2, these algorithms are not
suitable for PD networks. We can see that with a very
simple example.

Example 2 Let Epp be a PDN with three point varia-
bles, such that®y < %3, 2 < &3 and dya < dy3 (anyother
variables are unconstrained). There is no consistent in-
stantation because it must be dys = dia + dus, but since
dag > 0 it is not possible that dya < diz . So Xpp is
inconsistent although Np and ND, considered as inde-
pendent PA networks, are consistent.

3.1 Consistency in PND

From the above PDN reasoning task, the main one is to
determine consistency since we can find a polynomial
transformation from the latest tasks to the first one.
This would be useful if we could check for consistency
in polynomial time. But, unfortunately, this is not pos-
sible, as we show in the next theorem. Let CONS_PDN
be the decision problem of determining if a given PDN
is consistent or not.

CONS.PDN is NP-complete.

Proof: We follow the general procedure described
by Garey and Johnson [1979] for devising an NP-
completeness proof for a decision problem. First we
show CONSJPDN belongs to the class NP. This is easy,
since for a YES instance of the problem, a nondeter-
ministic Turing machine needs only to guess a consis-
tent instantation and check in polynomial time that the
assignments satisfy all the Lpp-constraints. In a sec-
ond stage we must find a polynomial reduction of known
NP-complete problem to CONS.PDN. We use GRAPH

Theorem 1



COLORING for this purpose. An instance of this prob-
lem ie a graph G = (V, E) and an integer k, and the
question is: is there a mapping f: V — {1,2,...,k}
such that (v,w) € E implies f(v) £ f(w) ?

Given an undirected graph G = (V,E) with |V| ==
and an integer k& we show how to construct a PD net-
wotk Epp = (Np, Np, Rel(P, D)) such that Epp has a
consistent instantation if an only if there is a coloring of
G using k colors. The set of point variables is

P={i,...

where each 2444,(5 > 1) correspond to a vertex of V.
‘The set of duration variables is

D={d;|1<i<j<k+n+1)}

11’“‘*4-1} U {zk+31 va ;zk+n+1}

We impose two kinds of constraints between point va-
riables. Fitst, £; < tiy1,¥1 < i < k. Second, for each
vertex v € V associated with variable z:.; we require
that

< Thij
L Tey, V2SiSE (2)
Thtj < leqy

QOur intention is that J¢;,t;41[ is associated with colot i
and just with constraints (2) a vertex v can be mapped
to any of the k colors. Now we must avoid two vertices
connected by and edge being mapped to the same color,
That is why we introduce the following constraints on
duration variables. For each edge (v,w} € E with asso-
ciated variables z44; and Zu4mwe require that

difig1) < Grtj)ktm) VI SISk

The above is clearly a polynomial transformation and
finally we must show the equivalence of both problems.
If there exists a consistent instantation of Xpp, con-
traints on points and durations forces two points v, w
with {v, w) € E not to be assigned values on the same
interval J¢;, t;41[,¥1 < 1 < k. So it must be possible to
map vertex v and w to different colors. Conversely, if the
answer to the instance of GRAPH COLORING problem
is yes, we can find a consistent instantation of Epp. For
example,we taket; = land t; = t,—1 +3, Y1 <i < k+1.
Now ,¥1 < § < k we take dj(j41) = 3. For the rest of
point vansblea, corresponding to vertices of the graph
we calculate the appropriate assignments in the follow-
ing way. For vertices mapped to the same color we can
assign the same value to its corresponding point vari-
ables. Suppose now we have (v, w} € E. Then if zx4;
corresponds to v and ZTy4m corresponds to w, then we
can find apropriate values (even integer ones) from dif-
ferent "color intervals” such that d(ij)+m) > 3 as we
require. Finally we compute the remaining assignments
for duration variebles calculating the distance between
implicated points.

3.2 Consistency in Simple PDN

CONS-PDN so belongs to NP. But, can we really find
a deterministic algorithm that solves this problem?, or
what is the same, is CONSJPDN decidible?. To an-
swer this question we propose a new decision problem
CONSJSIMPLE.PDN: given a simple PDN, is the net-
work consistent? We now show this problem can be
solved in polynomial time.

Theorem 2 CONSSIMPLE.PDN £ P.

Proof: We prove this showing a polynomial time algo-
rithm that for a given simple PD network Eip returns
YES when EiD is consistent and returns NO when Ef,p
is inconsistent. The algorithm basicaly finds a consistent
instantation ofEﬁD if the network is consistent and thus
returns YES, or shows that no such instantation exists
and returns NO. We associate a precedence graph [Meiri
and Pearl, 1990] G¢,p = {Vp, Ep) to the PA network
Np. The set of nodes Vp are labeled with the indices of
point variables and for every two points #;,2; € P,

¢ if z; < z; we add the arc i = j to Ep
o if 2; > x; we add the are j = i to Ep and

e we add both i — j , j = 1 to Ep just in the case
Ty = J:J'..

Now we associate a precedence graph to the PA network
Ni. We take Vp = {ij|1<i<j<n}U{do} Each
node ij is associated with duration dij and the special
node do represents the null duration. The set ED is cal-
culated looking at duration constraints RefS(D), in a
similar way we have done with Ep. And for every dura-
tion variable, it must be d.'_,' 2> dp, by distance properties.
So we include in ED an arc do -> jj for each djj in D. In
what follows it is requiered that z; Rj; 2; 4 zj R,-J-'l zi,
where ~' is the inverse PA operation and always xi, = Xi,.
Similar assumptions are made for relations between du-
rations.

We show in figure 1 a function for determinig consis-
tency in a simple PDN, named ConsJSimple and use two
auxiliary functions Same SCC(SCCp,i,j) that return
true if vertices i andj are in the same strongly connected
component  Gg.p Same SCC(SCCp, ij, km) t
do the same with vertices ij, km of G<,p. A third func-
tion ExistJSolution is used to find a consistent instan-
tation if possible and returns true, otherwise returns
false. For simplicity we just show the algorithms for
ConsJSimple and ExistJSolution. Lines 1 to 3 just check
if the PA network ,Nﬁ is consistent and we adapt here
Meiri and Pearl's consistency algorithm [1990]. We can
say the same with lines 8 to 10 with respect to the PA
network Ng. The idea is that if two vertices are in the
same SCC this forces correspondig variables to be equal,
otherwise Eﬁb would not satisfy Rel(P) or Rel(D) and
thus the PDN would be inconsistent.
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1. 8CCp := strongly connected components in G'¢ p;

. for each 4, j € Vp such that Same SCC(SCCp,i, )
do begin

if Rij #” = ” then return (NO);
for each (k € Vp) and (k £ 4, j) do
if Run g #" =" then return (NO);
Ep := Ep U {ij = dy}
end;

L]

SCCp := strongly connected components in G p;

.for each ifkm € Vp such that
Same SCC(SCCp, ij, km) do

10.  if Aijem # " =" then return(NQ);

11. for each ij € Vp such that Same SCC(SCCp, if, do)
do begin

12.  if Ry # " =" then return (NO});

13. for each (k € Vp) and (k # 4,7} do

14, if Rix jx # " =" then return (NO});

15. end;

18. if Exist.Solution{(E3p,SCCp,SCCp) then return
(YES);

17. else return (NO);

b I R

Figute 1: Function Cons_Simple (£3,,G¢ p,G< p)

If N§ and N§ are, we can say "independently con-
sistent”, we must finally prove if there is a consistent
instantation that satisfies not only Rel(P) or Rel(D),
but also relations in Rel(P, D)}). Lines 4 to 6 check two
metric properties that must obey any two points vari-
ables that are equal. First if z; = z; obviously for every
other different point zx it must be di; = |z; — 24| =
|£j — 2&| = djs. And second if #; = z; then d;; = 0 and
so di; must be forced to be in the same SCC that null
duration dp. And conversely, if d;; = 0 then z; = z; and
dix = djs {lines 11 to 14).

Next we gshow the code for Exist.Sclution in figure
2. By the construction of G¢,p and G p and since all
the relations between points and durations variables are
primitive, the topological orders we calculate after find-
ing the strongly connected components (lines 1,2), are
always unique. Because of this, we can assign values to
duration variables arbitrarily but according to the con-
straints in Rel(D) (line 4). Then we calculate values for
point variables such that for every z;, z;, d;; it is the case
that diy = |z; — 24| {line 7), so Rel(P, D) are satisfied.
Notice there is no matter which z; is taken in line 7,
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1. Let Dy < Dy < -+ < Dy, be the topological order
from SCCp;

2. Let Py < P, < --- < P, be the topological order
from SCCp;

.fork=0tomdo

for each ij in Dy let di; := k;
for each i in P, let 2; :=1;
. fork=2to ¢ do

for each § in Py let 2; := z; + d;; /* such that j
isin Pe_y ¥/

8. for every z;,z; € P do
9. if not z; Rij 2; then return false;

10, return true;

N oo o e

Figure 2: Function Exist-Solution{Epp,SCCp,SCCp)

due to the check we do in line 5 of ConsJSimple. Indeed,
it must be di; = dij+ for each j,§' € Px~1., Finally we
must prove if the instantiation we have calculated for
point variables satisfies constraints in Rel(P) (lines 8
and 9). If the function returns true then a consistent in-
stantiation has been found. Otherwise, no solution exists
when the function returns false. Although the function
Exist .Solution only return true or false we could easily
modify the code to return also the solution tuple if it
required.

Hence, Cons-Simple correctly check for consistency in
a simple PDN and this is done in polynomial time. In
fact, Cons-Simple is @(d?), where d is the number of
duration variables. This time is due mainly to the cost
of computing SCCsG¢,pwhich O{|Vp|+{Ep|) fwe
use Tarjan's algorithm [1972]. Since G<,p is a complete
graph O{|Vp|+{Ep|) = O(d?). The topological order in
line 1 can be computed with a depth-first search on the
directed acyclic graph with SCCD as the set of vertices,
with cost O{d?} in the worst case. B

Once we know how to determine consistency in a sim-
ple PDN, we could devise an algorithm for the same
task with a general PDN. We have to examine each
simple PDN extracted from the general one and apply
ConsJSimple until one consistent scenario is found. Of
course this algorithm is exponential in the worst case,
when the network is inconsistent. Another exponential-
time algorithm could be developed to find the minimal
network using the result of the next theorem.

Theorem 3 Giten Epp = (Np, Np, Rel(P, D)), the
network £Lp, = (NE,NE, RelT(P, D)) with the same



variables and binary relations given by,

H"I?;.km = URI"S.;,*M

where the union is over all the consistent scenarios Eﬁn
of Epp, is the minimal network equivalent to Tpp

We omit the proof since a similar one can be found in
[Dechter et al., 1991]. This theorem shows we can obtain
the minimal network E}‘D and minimal binary relations
by generating all the simple PDN from £pp, checking
for consistency with Cons-Simple and taking the union
of primitive and feasible relations.

4 Conclusion

We have presented a qualitative temporal reasoning sys-
tem that takes both points and durations as primitive
objects and allows relative and indefinite information.
We have formally defined a PDN as a structure formed
by two interconnected PA networks. This allows us to
borrow and adapt some of the concepts developed for
the point algebra networks, such as consistency and min-
imality. We have proved that the problem ofdetermining
consistency in a PDN is NP-complete and a simpler and
polynomial-time decision problem for a restricted kind
of PD networks has been introduced which is useful for
cheking consistency and finding minimal network in the
general case.

Despite the intractability of reasoning tasks with gen-
eral PD networks, we think these tasks may be useful
in several areas such as scheduling and planning sys-
tems. The analysis of such systems requires the ability
to specify and prove relations between critical states or
actions and their durations. So, several strategies may
be adopted to put this PD reasoning model to work in
practical systems. One may be, for instance, to reach
minimality both in Np and ND independently, and con-
secuently, accept its incompleteness. Or better, find how
to restrict the information in a PDN so that we can
obtain polynomial-time reasoning algorithms. The re-
stricted model, however, may be expressive enough to
work well in practice. Actually we are working in this di-
rection and have found how restricting just the relations
between points may lead to polinomial-time problems.
We are also investigating how to integrate qualitative
and metric information between points and durations
and the possible aplications of these new models.

References

[Allen, 1983] J.F. Allen. Maintaining knowledge about
temporal intervals. Comm. ACM, 26(11):832-843,
1983.

[Barber, 1993] F.A. Barber. A metric time-point and
duration-based temporal model. SIGART Bulletin,
3:30-49, 1993.

[Dean and McDermott, 1987] T.L. Dean and D.V Mc-
Dermott. Temporal data base management. Art. In-
tell., 32:1-55, 1987.

[Dechter et a/., 1991] R. Dechter, I. Meiri and J. Pearl.
Temporal constraint networks. Art. Intell, 49:61-
95, 1991.

[Garey and Johnson, 1979] M. Garey and D. Johnson.
Computers and Intractability: A Guide to the The-
ory of NP-Completeness. Freeman, San Francisco,
CA, 1979.

[Kautz and Ladkin, 1991] H. Kautz and P.B . Ladkin.
Integrating metric and qualitative temporal reason-
ing. In Proceedings of AAAI-91, 1991.

[Meiri, 1991] I. Meiri. Combining qualitative and quan-
titative constraints in temporal reasoning.In Pro-
ceedings of AAAI- 91, pages 260-267, 1991.

[Meiri and Pearl, 1990] I. Meiri and J. Pearl. Faster con-
straint satisfaction algorithms for temporal reason-
ing. Tech. Rept. R-151, Computer Science Depar-
tament, University of California, Los Angeles, CA,
1990.

[Montanari, 1974] U. Montanari. Networks of con-
straints: fundamental properties and applications
to picture processing. Information Science, 7:95-
132, 1974.

[Tarjan, 1972] R.E. Tarjan. Depth-first search and lin-
ear graph algorithms. SIAM J. Comput., 1:745-750,
1972.

[Tarski, 1941] A. Tarski. On the calculus of relations. J
Symbolic Logic, 6:73-89, 1941.

[Tsang, 1993] E. Tsang. Fundattons of Constraint Sat-
isfaction. Academic Press, San Diego, CA, 1993.

[Van Beek, 1992] P. Van Beek. Reasoning about qualita-
tive temporal information. Art. Intell, 58:297-326,
1992.

[Vilain and Kautz, 1986] M. Vilain and H.Kautz. Con-
straint propagation algorithms for temporal reason-
ing. In  Proceedings of AAAI-86, pages 377-382,
1986.

NAVARRETE & MARIN 1459



