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Abs t rac t 
Computing a consistent interpretation of the 
variables involved in a set of temporal con­
straints is an important task for many areas 
of AI requiring temporal reasoning. We focus 
on the important classes of the qualitative re­
lations in Nebel and Biirckert's ORD-Horn al­
gebra, and of the metric constraints forming a 
STP, possibly augmented w i th inequations. For 
these tractable classes we present three new al­
gorithms for solving the problem of finding a 
solution, and an efficient algorithm for deter­
mining the consistency of a STP augmented 
wi th inequations. 

1 Introduction 
Reasoning about temporal constraints is an important 
task in many areas of A I . Allen's Interval Algebra ( IA) 
[1983] and Vi la in and Kautz's Point Algebra (PA) [1986] 
are two fundamental models for qualitative temporal rea­
soning, while Dechter, Meir i and Pearl's TCSP [1991] is 
a prominent approach for metric temporal reasoning. 

Given a set S of temporal constraints, two important 
related reasoning problems are determining the consis­
tency of S, and finding a consistent scenario or solution 
for the variables involved in S. A consistent scenario is an 
ordering of the variables (either points or interval end-
points) in S, which is consistent w i th the constraints in S. 
A solution for S is an interpretation of the point-variables 
(interval-endpoint variables) in S which satisfies'the con­
straints in S. 

Consistency checking and finding a solution (a consis­
tent scenario), are NP-Hard problems for IA [Vilain and 
Kautz, 1986] and TCSP [Dechter et al, 1991], while they 
are polynomial for PA [van Beek, 1990] and for some 
important restrictions of IA and TCSP. These include 
the qualitative interval relations of the ORD-Hbrn class 
[Nebel and Burckert, 1995], and the metric constraints 
of a "simple temporal constraint satisfaction problem" 
(STP) [Dechter et al., 1991]. The ORD-Horn class forms 
a subalgebra of IA , which is the maximal tractable sub­
class of relations in IA containing all the thirteen basic 
relations. The constraints of a STP are inequalities of 

the form where p1,p2 are point-variables, 
and d is any value in a dense t ime domain.1 

is another interesting tractable class, which 
subsumes PA and STP. ! is an extension of STP 
to include inequations, i.e. constraints of the form 

[Koubarakis, 1995; Gerevini and Cristani, 
1995]. Koubarakis [1992] proposed a method for check­
ing the consistency of a STP augmented wi th disjunc­
tions of inequations, whose t ime complexity reduces to 

when the input is a where n is the 
number of variables and k the number of inequations. 

In this paper we are mainly concerned w i th the prob­
lem of f inding a solution for these tractable classes. 
Whi le Nebel and Burckert [1995] proved several interest­
ing strong results about their ORD-Horn algebra, they 
left open the problem of efficiently finding a consistent 
scenario or solution. 

Dechter et al. [1991] proposed a simple algorithm for 
finding a solution of a given STP which only contains 
non strict inequalities, leaving open the important case 
in which inequalities can be strict (e.g., 

Concerning we are not aware of any specialized 
algorithm for the problem of f inding a solution. 

We propose three new algorithms for solving these 
problems. Also, we investigate the problem of deter­
mining the consistency of a given presenting an 
efficient algorithm which improves the complexity bound 
of Koubarakis' method. Specifically, we wi l l present: 

• a simple algorithm for f inding a solution for a set of 
ORD-Horn relations. The algorithm requires 0 ( n 2 ) 
t ime, if the input set of relations is known to be 
path-consistent, and 0(n3) t ime in the general case, 
where n is the number of interval-variables. 

• An 0 ( n 3 ) t ime algorithm for finding a solution for 
a given STP including strict inequalities. 

• An 0(n3 + k) t ime algori thm for determining the 
consistency of a given 

1Equal i ty constraints such as can be expressed 
as a pair of inequalities. 

2Note that when the number of input inequations (k) is 
limited to those required to express the qualitative point re­
lations of PA or of the interval relations in the "Pointizable 
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• An 0 ( n 3 + k) time algorithm for finding a solution 
for a given STP ≠ . 

2 F ind ing a solut ion for O R D - H o r n 
in terva l relat ions 

In this section we provide an algorithm for finding a so­
lution of a set of relations over the ORD-Horn interval 
algebra The t ime complexity of our algorithm is 
0 ( n 2 ) , if the input set of relations is known to be path-
consistent, and 0 ( n 3 ) in the general case, where n is the 
number of interval variables. 

The proofs of our claims are based on the following 
definitions and facts: 

(1) Disjunctions of PA-relations of the form a = 6, 
are called ORD clauses. ORD clauses 

containing at most one literal (PA-relation) of the 
form a — b or and any number of literals of 
the form a b are called ORD-Horn clauses [Nebel 
and Burckert, 1995]. 

(2) The theory ORD that axiomatizes " = " as an equiv­
alence relation and as a partial ordering over 
the equivalence classes is a Horn theory [Nebel and 
Burckert, 1995]. 
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A TN T is decomposable [Dechter et a/., 1991; Monta-
nari, 1974] if every locally consistent assignment to any 
subset of variables (vertices) of T can be extended to a 
solution.6 

To prove our results we wi l l also use the following def­
initions and properties from [Dechter et a/., 1991]: 

(8) Given a STN S the distance graph of S is a directed 
labeled graph wi th the same vertices as S, and wi th 
an edge from v to w, labeled by the upper bound of 
the interval of the label on the edge from v to w in 
S and an edge from w to ?;, labeled by -1 times the 
lower bound of the interval of the label on the edge 
from v to w in S. 

(9) A STN is consistent iff its distance graph does not 
contain "negative cycles", i.e., cycles where the sum 
of the labels on the edges is negative. 

(10) Given a STN S the d-graph of S is a directed labeled 
graph that has the same vertices as S, and an edge 
for each pair of (not necessarily distinct) vertices in 
S labeled by the shortest path between those ver­
tices in the distance graph. S is consistent iff its 
d-graph does not contain any negative edge from a 
vertex to itself (a circular edge). 

Note that Property (9) assumes that the intervals of 
the labels of the STN are all closed, except the intervals 
where the lower bound is or the upper bound is 

(i.e., in the STP represented by the STN there are 
no strict inequalities of the form y-x <d). Such an as­
sumption is made for simplicity in [Dechter et a/., 1991, 
p. 64]. When the intervals can be (semi)open (i.e., in 
the STP there are strict inequalities), in order to ensure 
the consistency of the STN (STP), the absence of neg­
ative cycles in the distance graph corresponding to the 
STP can st i l l be a sufficient condition, provided that the 
notion of negative cycle is slightly extended to take into 
account the presence of the strict inequalities. This can 
easily be done by using a method similar to the method 
used by Kautz and Ladkin [1991]. 

The constraints of a STP≠ can be represented by a 
STN augmented with inequations, defined as follow: 

6 An assignment of values to a set S of variables is locally 
consistent if it satisfies the constraints involving only vari­
ables in S [Dechter et al., 1991]. 
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A l g o r i t h m 3: CONSISTENCY 
Input: a 
Output : t r u e i f T is consistent, n i l otherwise 

1. Compute the d-graph D of the relaxed network of T; 
2. if D contains negative circular edges t h e n return n i l ; 
3. fo r each inequation in T do 

if the label on the edge of D from v to w is d and 
the label on the edge from w to v is —d 
t h e n r e t u r n n i l ; 

4 . r e t u r n t r u e . 

Figure 1: -CONSISTENCY 

by Proposition 1 we can extend the distance graph of Nr 

wi th one inequality for each inequation of N, obtaining 
a graph D wi thout negative cycles. 

Consider adding the inequation to N. We 
can do that consistently if we can consistently add w -

Since when there is a path 
from v to w in D there is also a path from w to v, and 
since D does not contain negative cycles, only one of the 
following possibilities can hold: 

(a) all the paths connecting v and w are positive paths; 

(b) there are negative (and possibly positive) paths 
from w to v and only positive paths from v to w; 

(c) there are negative (and possibly positive) paths 
from v to w and only positive paths from w to v. 

In cases (a) and (b) we can add without 
creating a negative cycle, so that by Proposition 

is consistent. For the remaining case (c) 
suppose that both the addit ion of w - v < d and of 
v — w < — d create a negative cycle. Then there exists a 
negative path of length / (wi th / < 0) from v to w and a 
positive path of length /' (wi th /' > 0) from w to v such 
that d 4- I < 0 and V — d < 0. From these inequalities 
we derive / + V < 0. But this means that D contains a 
negative cycle, contrary to the construction of D. Hence, 
also for case (c) at least one of w — v < d and v — w < —d 
can be consistently added to D. It follows that w — v ≠ d 
can be consistently added to N, 

The proof can be extended to include inequations 
w — v ≠ d (d < 0) excluding negative points by an anal­
ogous argument, using induction on the number of such 
inequations. In cases (a) and (c) we can consistently add 
v - w < —d, while we deal w i th case (b) in the same way 
as we did for case (c) when d > 0. D 

The previous lemma guarantees that consistency 
checking of a STN ≠ (STP ≠ ) can be accomplished by 
using the algori thm given in Figure 1. 

T h e o r e m 4 STN≠ -CONSISTENCY correctly checks the 
consistency of a STN≠ T in 0(n3+k) time and 0(n2+k) 
space, where n is the number of the vertices of T and k 
is the number of inequations. 
P r o o f (sketch). Property (10) of STNs (see Section 3) 
together w i th Lemma 2 ensure the correctness of STN ≠ 

CONSISTENCY. Regarding the complexity, it is sufficient 
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to observe that: the relaxed network of T can be com­
puted in t ime linear over the number of the edges of T; 
step 1 can be accomplished in 0{n3) t ime and 0(n2) 
space [Cormen et al., 1990; Dechter et a/., 1991], step 2 
in 0(n) t ime, and step 3 in O(k) t ime and space. D 

We now show that the problem of finding a solution 
for a given STP≠ can be solved by running an algorithm 
which has the same complexity as S T N ≠ - C O N S I S T E N C Y . 

T h e o r e m 5 A solution for a given STN≠ (STP≠) can 
be found in 0 ( n 3 + k) time (if it exists), where n is the 
number of point-variables (vertices), and k is the number 
of the inequations. 
P r o o f (sketch). We can derive an algorithm for comput­
ing a solution for a given STN≠ (STP≠ ) by modifying 
STP-SOLUTION in the following way: 

A l g o r i t h m 4: STP≠-SOLUTION 
Input: a STP≠ T 
Output: a solution for T, i f i t exists; n i l , otherwise 

0. Check the consistency of T. If T is not consistent 
the return n i l and stop. 

1. Let M be the STN ≠ computed by the following 
steps: 

(a) compute the minimal network V of the relaxed 
network of T; 

(b) add to T" the input inequations which are con­
vex relative T' and compute the minimal net­
work T" of the resulting network; 

(c) add to T" the input inequations which are non-
convex relative to T " ; 

2. Same as step 2 of STP-CONSISTENCY, except that 6 
is defined as: 

• Min if at least one interval has both the 
bounds finite, or the lower bound is finite and 
the interval is not convex, i.e, it has at least one 
(finite) point excluded; 

• any finite number otherwise, 

where i, j = l . .n , i ≠ j and is the length of the 
first convex subinterval of the (possibly non-convex) 
intervals of M (e.g., for the interval [2, 10] - { 3 , 4 } 
the length of such a subinterval is 1; while for the 
interval (1,5] , the relevant subinterval has length 4). 

3. Same as step 3 of STP-SOLUTION, except that M" 
is the minimal network of the STN resulting from 
M' by omit t ing all the non-convex inequations. 

4. Same as step 4 of S T P - S O L U T I O N . 
The proof of the correctness of S T P - C O N S I S T E N C Y is 
similar to the proof of Theorem 3. Concerning the com­
plexity, note that by Theorem 4 step 0 can be computed 
in 0{n3 + k) t ime, step 1 in 0(n3 + k) t ime, and steps 
2-4 in 0{n3) t ime. 

6 Conclusions 
We have presented three new algorithms for computing a 
solution (scenario) for a set of ORD-Horn relations, for a 

given STP, and for a STP ≠ . Also, we have presented an 
algorithm for checking the consistency of a STP ≠ , which 
improves the complexity bound of Koubarakis' method. 

Recently Ligozat [1996, personal communication] pro­
ved the tractabil i ty of the ORD-Horn algebra by using a 
method for deriving a consistent scenario that is based 
on iteratively (a) refining a path-consistent network and 
(b) imposing path-consistency to i t . However, he does 
not give a detailed analysis of his method in terms of 
time complexity, which appears to be at least one order 
of magnitude worse than the complexity of our method. 
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