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Abstract

Computing a consistent interpretation of the
variables involved in a set of temporal con-
straints is an important task for many areas
of Al requiring temporal reasoning. We focus
on the important classes of the qualitative re-
lations in Nebel and Biirckert's ORD-Horn al-
gebra, and of the metric constraints forming a
STP, possibly augmented with inequations. For
these tractable classes we present three new al-
gorithms for solving the problem of finding a
solution, and an efficient algorithm for deter-
mining the consistency of a STP augmented
with inequations.

1 Introduction

Reasoning about temporal constraints is an important
task in many areas of Al. Allen's Interval Algebra (IA)
[1983] and Vilain and Kautz's Point Algebra (PA) [1986]
are two fundamental models for qualitative temporal rea-
soning, while Dechter, Meiri and Pearl's TCSP [1991] is
a prominent approach for metric temporal reasoning.

Given a set S of temporal constraints, two important
related reasoning problems are determining the consis-
tency of S, and finding a consistent scenario or solution
for the variables involved in S. A consistent scenario is an
ordering of the variables (either points or interval end-
points) in S, which is consistent with the constraints in S.
A solution for S is an interpretation of the point-variables
(interval-endpoint variables) in S which satisfies'the con-
straints in S.

Consistency checking and finding a solution (a consis-
tent scenario), are NP-Hard problems for IA [Vilain and
Kautz, 1986] and TCSP [Dechter et al, 1991], while they
are polynomial for PA [van Beek, 1990] and for some
important restrictions of IA and TCSP. These include
the qualitative interval relations of the ORD-Hbrn class
[Nebel and Burckert, 1995], and the metric constraints
of a "simple temporal constraint satisfaction problem"
(STP) [Dechter et al., 1991]. The ORD-Horn class forms
a subalgebra of A, which is the maximal tractable sub-
class of relations in IA containing all the thirteen basic
relations. The constraints of a STP are inequalities of

1460 TEMPORAL REASONING

I'Automazione

Matteo Cristani

Istituto Policattedra
Universita degli studi di Verona

Strada le Grazie, 1-37134 Verona, ltaly
cristani@romeo.sci.univr.it

the form p2 — pl < d, where p1,p2 are point-variables,
and d is any value in a dense time domain.’

STP* is another interesting tractable class, which
subsumes PA and STP. ISTP¥ is an extension of STP
to include inequations, i.e. constraints of the form
p2 - pl # & [Koubarakis, 1995; Gerevini and Cristani,
1995]. Koubarakis [1992] proposed a method for check-
ing the consistency of a STP augmented with disjunc-
tions of inequations, whose time complexity reduces to
O(n? + kn?) when the input is a STP¥, where n is the
number of variables and k the number of inequations.

In this paper we are mainly concerned with the prob-
lem of finding a solution for these tractable classes.
While Nebel and Burckert [1995] proved several interest-
ing strong results about their ORD-Horn algebra, they
left open the problem of efficiently finding a consistent
scenario or solution.

Dechter et al. [1991] proposed a simple algorithm for
finding a solution of a given STP which only contains
non strict inequalities, leaving open the important case
in which inequalities can be strict (e.g., p2 — pl < d}.

Concerning STP", we are not aware of any specialized
algorithm for the problem of finding a solution.

We propose three new algorithms for solving these
problems. Also, we investigate the problem of deter-
mining the consistency of a given STP", presenting an
efficient algorithm which improves the complexity bound
of Koubarakis' method. Specifically, we will present:

* a simple algorithm for finding a solution for a set of
ORD-Horn relations. The algorithm requires 0(n?)
time, if the input set of relations is known to be
path-consistent, and 0(n3) time in the general case,
where n is the number of interval-variables.

« An 0(n®) time algorithm for finding a solution for
a given STP including strict inequalities.

« An 0(n3 + k) time algorithm for determining the
consistency of a given STP*.2

'Equality constraints such as p2—pl = d can be expressed
as a pair of inequalities.

2Note that when the number of input inequations (k) is
limited to those required to express the qualitative point re-
lations of PA or of the interval relations in the "Pointizable



« An 0(n?® + k) time algorithm for finding a solution
for a given STP*.

2 Finding a solution for ORD-Horn
interval relations

In this section we provide an algorithm for finding a so-
lution of a set of relations over the ORD-Horn interval
algebra ('H.) The time complexity of our algorithm is
0(n?), if the input set of relations is known to be path-
consistent, and 0(n?) in the general case, where n is the
number of interval variables.

The proofs of our claims are based on the following
definitions and facts:

(1) Disjunctions of PA-relations of the form a = 6,
2 < b a#bare called ORD clauses. ORD clauses
containing at most one literal (PA-relation) of the
form a — b or ¢ < b and any number of literals of
the form a # b are called ORD-Horn clauses [Nebel
and Burckert, 1995].

(2) The theory ORD that axiomatizes "=" as an equiv-
alence relation and "<" as a partial ordering over
the equivalence classes is a Horn theory [Nebel and
Burckert, 1995].

(3) Let 8 be a path-consistent set over H. Then
7(8) U ORD gy does not allow the derivation of
new unit clauses by positive unit resolution, where
7{6) denotes the set of ORD-Horn clauses transiat-
ing the relations in 0, and QR D, gy denotes the ax-
ioms of ORD instantiated to all the point-variables
mentioned in 7(8) [Nebel and Biirckert, 1995).

(4) Let © be a set of relations over H. Each clause of
7(©) is either unary or binary [Nebel and Biirckert,
1995).

(5) A temporaliy labeled graph (7TL-graph} is a graph
with at least one vertex and a set of labeled edpges,
where each edge (v, {, w) connects a pair of distinct
vertices v,w. The edges are either directed and la-
beled < ot <, or undirected and labeled 3 [Gerevini
and Schubert, 1995).

(6) A set S of the PA-relations can be represented by
8 TL-graph T such that S is consistent if f T does
not contain any <-cycle, or any <-cycle that has two
vertices connected by an edge with label # [Gerevini
and Schubert, 1995; van Beek, 1990].%

(7) A set S of PA-relations can be translated into a
logically equivalent set of unary ORD-Horn clauses
[Nebel and Biirckert, 1995}, which we will call the
ORD-Horn trensiation of S.

Before introducing our algorithm, we neced to prove
the following lemma:

subciass of IA" [Ladkin and Maddux, 1988], our algorith:n
takes O(n"] time, while Koubarakia's methed requires O(n®)
tima. If k ie larger than O{n?), then the improvement is even
more gignificant.

A =.relation such as x = y is represented as the pair of
edges (z, <,y) and (y, <, 2).

Lemma 1 Let T be the ORD-Horn transiation of a con-
sistent set § of PA-relations, ond = and y two point-
verighles involved in S. If Sentedds xr =y thenz =y s
derivable from T UORDyy by positive unit resolution.

Proof. Suppose that § entails x = g, but z = y cannot
be derived from ZUQRDz) by positive unit resolution.
Then, the set £/ = TU{x # y} is inconsistent, but from
L'UORD 5+ we cannot derive the empty clause by pos-
itive unit resolution (because the only positive unit reso-
lution possible againat x # y is with positive unit clause
r = y). Since I' U ORD is & set of propositional
Horn clauses, this contradicts the fact that positive unit
resolution is refutation-complete for propositional Horn
theories [Henschen and Wos, 1974].

Therefore, if 8§ entails z = y, then £ = y must be
derivable from SUORD 5, by positive unit resolution. 0

Theorem 1 There ezists an O(n?) time algorithm for
finding o consistent scenerio of a path-consistent sel 9
of relations over H, where n is the number of interval
variables involved in O,

Proof (sketch). By Property (4) we have that 7(0) =
£, UZ,, where I is a set of unary Horn clauses and Ip
is a (possibly empty) set of binary Horn clauses, each of
which has at least one #-disjunct {#-relation).$

Let T be the TL-graph representing I,, and P the set
of the positive unit clauses entailed by I,. By properties
{3-4) and Lemma 1, we have that if £ # y is a disjunct
of a clause in Iy, then {z =y) ¢ P.

Consider now choosing a #-disjunct for each of the
clauses in Ly, Let T be the set of inequations selected,
and T° the TL-graph obtained by extending T with the
cdpes representing the relations in 1. Since T is consis-
tent, by Property (6) and construction of T, T" does
not contain any <-cycle. Furthermore, by construction
of £;, Ty and T, if # # y i3 a digjunct in By then T
does not contain a <-cycle crossing = and y (otherwise
we would have that (z = y) € P}. Hence, by Property
(6) ZyU 1 is consistent.

It is easy to see that the endpoints of sll the inter-
val variables involved in & have & corresponding point-
variable in ;U I, and that if we find a solution for ;U
1, then we will also have s solution for 8. In fact, if s is
a solution for £,U I, then, by construction of £,0U 1, the
interpretation of the interval endpoints defined by # do
satisfy 7(©) and O.

A consistent scenario s for a set of PA-relations in-
volving m point-variables can be found in O(m?) time
[van Beek, 1890]. From s we can derive & solution in
O{m) time (e.g., we assign an integer ¢ to the variables
in the first position of s, i + 1 to the variables in the zsec-
ond position, etc.). Since E,U I is a set of PA-relations
invelving 2n variables (those corresponding to the end-
points of the n interval variables of 8), we can find &
solution for £;U I (and for 8) in O(n?) time. O

“m(6) can be computed in O(|B|) time using a table of
868 elements containing the translation of each ORD-Horn
relation.
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Let 7,(8) be the set of unary clauses in 7(8), and
72(0) the set of binary clauses in #(8). Given a set {2 of
relations in H, from the proof of Theorem 1, and the fact
that the consistency of (} can be decided in O{n?} time
by enforcing path-consistency to it [Nebel and Biirckert,
1995), it is easy to see that the following algorithm com-
putes a solution for Q (if it exists) in O(n®) time:

Algorithm 1: QRD-HORN-SOLUTION
Input: a set {} of relations in M.
Qutput: a solution for {3, if one exists; nil otherwise.

1. Determine the conaistency of {2 by enforcing path-
consistency to it. If §1 is not congigtent, then return
nil, otherwise let © be the path-consistent set of
relations equivalent to 2.

2. Run Beek's algorithm {1990] for determining a con-
sistent scenario of a set of PA-relations on m, (8)UD,
where D is a set of #-relations consisting of a #-
disjunct for each clause in m3{(8). Let s be the sce-
nario computed.®

3. Derive from s a solution for © {{}) by assigning
to each interval endpoint of € a number consjstent
with s, (This can be done in O(n) time, as discussed
in the proof of Theorem 1.)

Therefore, we have proved the following theorem:

Theorem 2 Given a set §} of relations in H, ORD-
HORN-S0OLUTION computes a solution for Q) (if it exisia)
in O(n®) time, where n is the number of variables in (1.

Remark. If the input set of relations is known to be
path-consistent, then step 1 can be omitted and the time
complexity of ORD-HORN-8OLUTION reduces to O(n?).

8 Preliminaries on STP and STP#

Most of the terminology introduced in this section is
based on the concept of & Temporal Constraint Network
given in [Dechter et ol., 1991].

A Temporal Conastraint Network (TN) is a directed la-
beled graph where the vertices represent point variables
over a denge tie domain T (e.g., the real numbers), and
the edges connect distinct vertices and are labeled by a fi-
nite set of convex intervals over T. An edge (v,{, w) from
v to w with label {I),]s,...,],} represents the binary
conatraint: Coy = W — v € Ly, where L, = U}, L.

The constraints of a given STP can be represented
by a Simple Temporal Network (STN), which is a TN
where each edge is labeled by exactly one (convex) in-
terval [Dechter et al., 1991).

Given n set C of constraints represented by a TN (TN-
constraints) involving the set of variables x,,2s, .., z,,
the set of values iy,1y, ..., i8 a solution of € iff the as-
signment z; = 4,43 = #2,..,Tn = ip satisfies all the

®Note that since #(0) U D is known to be consistent, we
could actually consider only the PA-relations of 7, (©). This
is because any consistent scenario computed by applying van
Beek's algorithm to m(6) is also a consistent scenario for
m(8) U D,
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conatraints in C. A TN is consistent iff the correspond-
ing set of constraints has at least one solution. Two TNs
are equivalent if they have the same set of solutions,

Given two TN-constraints Cp, and C,,, involving
the same pair of variables, Cz, is tighter than C,
(Cey € Ci,) when I, C I, [Dechter et al, 1991].
Given two TN2s § and 7, § is tighter than T (S C T)
if every constraint represented by S is tighter than the
corresponding constraint represented by 7. If § is
tighter than T then the solutions of § are also solu-
tions of 7. The minimal network of & TN T is the
tightest network equivalent to 7 [Dechter et al., 1991;
Montanari, 1974].

A TN T is decomposable [Dechter et a/., 1991; Monta-
nari, 1974] if every locally consistent assignment to any
subset of variables (vertices) of T can be extended to a
solution.®

To prove our results we will also use the following def-
initions and properties from [Dechter et a/., 1991]:

(8) Given a STN S the distance graph of S is a directed
labeled graph with the same vertices as S, and with
an edge from v to w, labeled by the upper bound of
the interval of the label on the edge from v to w in
S and an edge from w to ?;, labeled by -1 times the
lower bound of the interval of the label on the edge
from v to w in S.

(9) A STN is consistent iffits distance graph does not
contain "negative cycles", i.e., cycles where the sum
of the labels on the edges is negative.

(10) Given a STN S the d-graph of S is a directed labeled
graph that has the same vertices as S, and an edge
for each pair of (not necessarily distinct) vertices in
S labeled by the shortest path between those ver-
tices in the distance graph. S is consistent iff its
d-graph does not contain any negative edge from a
vertex to itself (a circular edge).

Note that Property (9) assumes that the intervals of
the labels of the STN are all closed, except the intervals
where the lower bound is —o&¢, or the upper bound is
400 (i.e., in the STP represented by the STN there are
no strict inequalities of the form y-x <d). Such an as-
sumption is made for simplicity in [Dechter et a/., 1991,
p. 64]. When the intervals can be (semi)open (i.e., in
the STP there are strict inequalities), in order to ensure
the consistency of the STN (STP), the absence of neg-
ative cycles in the distance graph corresponding to the
STP can still be a sufficient condition, provided that the
notion of negative cycle is slightly extended to take into
account the presence of the strict inequalities. This can
easily be done by using a method similar to the method
used by Kautz and Ladkin [1991].

The constraints of a STP” can be represented by a
STN augmented with inequations, defined as follow:

€ An assignment of values to a set S of variables is locally
consistent if it satisfies the constraints involving only vari-
ables in S [Dechter et al, 1991].



Definition 1 A STN augmented with inequations
(STN®) is a directed labeled graph where the label on
each edge is a peir {T,E), T is u conver interval that
can be either closed, semi-open or open with the open
bound equel to +00 or —o0, and E is ¢ finite (possibly
empty) set of points of T called excluded points of T,

The label {Tow, Fvw) on an edge (v, (Tuy, Eyw), w)
from v to w of a STN* represents the constraint w—uv €
{Tuw - Euw}-

ASTN* T entails w —v # d (w —v = d) iff v and
w are vertices of 7, and there is no solution for the set
of constraints represented by 7 such that w — v = d
(w — v # d) is satisfied.

Definition 2 Given ¢ STN* T, the STN obtained from
T by substituting [a,b] for any lobel {(a,b],E} of T is
called the relaxed network of T, writien as T7.

Definition 3 Given ¢ STN* T and two vertices v, of
T such thet I = [I~, 1] is the label of the edge from v
to w in the minimal network of the relazed network of
T, an inequation w — v ¥ d of T i

o convex iffd=f" ord=17J%;

s non-convex iff I~ <d < TT.

4 Finding a solution for STP

In this section we address the problem of finding a se-
lution for a given STP. The consistency of a STP S can
be determined in O{n®) time, where n is the number of
variables in S [Dechter et al., 1991]. If 8 is not consis-
tent, then there are no solutions for it. If § is cohsistent,
then we distinguish two cases: S does not contain strict
inequalities, and S does contain strict inequalities.

In the first case, the following is & solution that can
be computed in O(n®) time [Dechter et al., 1991):

zo=0,2) =01,..., 20 = ls,

where x; (i = 1..n) are the variables of the given STP,
#g is a special additional variable indicating the absolute
starting time and preceding all the other variables (0 <
¥; — g < +00), and L is the lower bound of the interval
labeling the edge from zg to ; in the minimal network
of the given STP.7

If S is consistent and contains strict inequalities, then
we prove that the following algorithm computes a solu-
tion in O(n?) time:

Algorithm 2: STP-SOLUTION
Input: a STP 8 _
Qutput: a solution for §, if it exists; nil, otherwise

0. Check the consistency of 5. If 8 is not cousistent
then return nil and stop.

1. Compute the minimal network M of the STP de-
rived from the original one by relaxing cach strict
inequality of the form y — z < d (d finite) to the
non-strict inequality y — z < d.

"Note that in such a minimal network all the left bounds
on the distance between z¢ and z: are finite.

2. For each interval I labeling an edge of M, if it has
an open and finite left bound I—, then replace it
with the closed bound I~ + ¢, where ¢ is a positive
quantity defined as:8 5

= ———
n? 41

and § is the finite length of the shortest interval
labeling the edges of M, if this exists, or any finite
number if all the intervals of M have —oo or +00 as
one of their bounds. Let us call the resulting relaxed
network M’

3. Compute the minimal network M" of M’

4. Return zg = 0,1y = 1, ...,z, = I, as & solution
for § (M), where I; are the left (closed) bounds of
the intervals labeling the edges from zo to z; in M*
(= l.n).

Theorem 3 STP-CONSISTENCY compuies a solufion
for a given STP (STN) in O(n®) time (if it exists), where
n ia the number of point-variables (vertices).

Proof. It is easy to see that the global time complexity
of STP-s0LUTION is O(n®). Concerning its correctness
we observe that:

(i) all the intervals of M’ with a finite left bound are
closed on the left (by construction of the network).
Hence in M” the left bound of the intervals on the
edges from xp to x; (i = 1..n} will also be closed.

{ii) Al the solutions of M’ are also solutions of M (be-
cause M’ is tighter that M),

(iii} M’ is consistent {provided that the original STP
was consistent).

In order to prove (iii) suppose that step 2 adjusts k
left-open intervals of M to derive M'. Consider now per-
forming each of these perturbations incrementally (in-
stead of all at onee}, according to the following scheme:

1" N =M,

2'. adjust one of the finite left-open bounds I; of N by
increasing it to Iy, +€;

3. M := Minimal network of N;

4'. if M contains a finite open left bound then goto 1’
else return M.

Note that after each iteration in this scheme the num-
ber of intervals in M with a finite open left bound mono-
tonically decreases. So, a sequence of at most & “tuned”
networks is computed at step 2', and at most k£ minimal
networks are computed at step 3. (The actual number
of these networks can be less than k, because the com-
putation of the minima! network of N can make closed
some open left bounds.)

Let Mi,..., Nn be the sequence of networks computed
at step 2' and My, ..., My the sequence of minimal net-
works computed at step 3' {1 € h < k € n?). We can
prove by induction on A that the tuned network Ny is

5The use of appropriate e-guantities ia a known technique
in Linear Programming.
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consistent. This is obvious for A = 1, since M is de-
composable. Suppose now that Nj_ is consistent (and
My_ is minimal), we show that Ny is consistent as well
{Mjy, is minimal). We have that in Mj_; any finite left
bound interval {either open or closed) can be increased
at most to Iy + (b — 1)¢, relevant to its value (I)
in the original network M (by construction of Mh_ﬁ.
While the right interval bound of any interval of My_,
maintains the same value as in the original M. Since by
definition of ¢ we have that s

- hé n?d
T4+l T n241

and by definition of 8 I, + he < If;, we can increase
the (finite) left open bound of any interval in Mj,..; of €,
deriving a new left bound which is still strictly less than
the corresponding right bound in My_,. Hence, since
M), is minimal and decomposable, the tuned network
N; will be consistent.

To conclude, note that the network returned by the
"incremental" algorithm (Mh) is the same as the network
M" computed at step 3 of the "non-incremental" algo-
rithm, and that the existence of € is guaranteed by the
fact that the temporal variables have dense domains. [J

h

5 Checking consistency and finding a
solution for STP#

In this section we first prove that checking the consis-
tency of a STN* can be accomplished in O(n® + k) time
and O(n? + k) space, where n is the number of point-
variables, and & the number of inequations. Then, we
give an algorithm for finding a solution of a given STP¥,
which has the same complexity as consistency checking,

The following proposition is & direct consequence of
property (9) given in Section 3. It will be used in the
proof of Lemma 2, which is the base for proving the
correctness of our algorithm for checking the consistency.

Proposition 1 4 STN* T is consistent iff for each in-
equation w — v # d it 4s possible lo choose one of the two
inequalities w —v < d or v — w < ~d so that the dis-
tance graph obtained by extending the distance graph of
T" with the resulting inegualities does not contain nega-
tive cycles.

Lemama 2 A STN* T is consistent iff 7" does not have
negative cycles in ifs distance graph, and it does not en-
tatl w — v =d for any inequation w—v#din T.

Proof. The “only if” direction is trivial. The “if” di-
rection is proved by induction on the number k of in-
equations of T. We first consider the case in which for
every inequation w ~ v # d, d > 0. When k=0 the ab-
sence of negative cycles in the distance graph guarantees
consistency. Suppose that the property holds for & — 1
inequations and consider a STN* A/ with k — 1 inequa-
tions, whose relaxed network A" does not have any neg-
ative cycles in its distance graph, and does not entall the
equation corresponding to any of the k£ — 1 inequations.
Thus, by the induetion hypothesis A is consistent, and
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Algorithm 3: STN*-CONSISTENCY
Input: a STN* T

Output: true if T is consistent, nil otherwise

1. Compute the d-graph D of the relaxed network of T;
2. if D contains negative circular edges then return nil;
3. for each inequationw —v#din T do
if the label on the edge of D from v to w is d and
the label on the edge from w to v is —d
then return nil;
4.return true.

Figure 1: STN¥_-CONSISTENCY

by Proposition 1 we can extend the distance graph of N’
with one inequality for each inequation of N, obtaining
a graph D without negative cycles.

Consider adding the inequation wt —# # d to N. We
can do that consistently if we can consistently add w -
v<dorv—w < —d to [). Since when there is a path
from v to w in D there is also a path from w to v, and
since D does not contain negative cycles, only one of the
following possibilities can hold:

(a) all the paths connecting v and w are positive paths;

(b) there are negative (and possibly positive) paths
from w to v and only positive paths from v to w;

(c) there are negative (and possibly positive) paths
from v to w and only positive paths from w to v.

In cases (a) and (b) we can add w—v < d to JJ without
creating a negative cycle, so that by Proposition 1 NU
{w — v # d} is consistent. For the remaining case (c)
suppose that both the addition of w - v < d and of
v — w < — d create a negative cycle. Then there exists a
negative path of length / (with / < 0) from v to w and a
positive path of length /' (with /' > 0) from w to v such
that d4-/ < 0 and V— d < 0. From these inequalities
we derive / + V < 0. But this means that D contains a
negative cycle, contrary to the construction of D. Hence,
also for case (c) at leastone of w—v <dand v—w < —d
can be consistently added to D. It follows that w—v # d
can be consistently added to N,

The proof can be extended to include inequations
w—v # d (d <0) excluding negative points by an anal-
ogous argument, using induction on the number of such
inequations. In cases (a) and (c) we can consistently add
v-w < —d, while we deal with case (b) in the same way
as we did for case (c) when d >0. D

The previous lemma guarantees that consistency
checking of a STN* (STP”) can be accomplished by
using the algorithm given in Figure 1.

Theorem 4 STN* -CONSISTENCY correctly checks the
consistency of a STN* T in 0(n’+k) time and O(n’+k)
space, where n is the number of the vertices of T and k
is the number of inequations.

Proof (sketch). Property (10) of STNs (see Section 3)
together with Lemma 2 ensure the correctness of STN?
CONSISTENCY. Regarding the complexity, it is sufficient



to observe that: the relaxed network of T can be com-
puted in time linear over the number of the edges of T;
step 1 can be accomplished in 0{n3) time and 0(n?
space [Cormen et al., 1990; Dechter et a/., 1991], step 2
in O(n) time, and step 3 in O(k) time and space. D

We now show that the problem of finding a solution
for a given STP* can be solved by running an algorithm
which hasthesamecomplexityasSTN*-CONSISTENCY.

Theorem 5 A solution for a given STN* (STP*) can
be found in O(n3 + k) time (if it exists), where n is the
number of point-variables (vertices), and k is the number
of the inequations.

Proof (sketch). We can derive an algorithm for comput-
ing a solution for a given STN* (STP”) by modifying
STP-SOLUTION in the following way:

Algorithm 4: STP*-SOLUTION

Input: a STP* T

Output: a solution for T, if it exists; nil, otherwise

0. Check the consistency of T. If T is not consistent
the return nil and stop.

1. Let M be the STN*
steps:

computed by the following

(a) compute the minimal network V of the relaxed
network of T;

(b) add to T" the input inequations which are con-
vex relative T' and compute the minimal net-
work T" of the resulting network;

(c) add to T" the input inequations which are non-
convex relative to T";

2. Same as step 2 of STP-CONSISTENCY, except that 6
is defined as:

«  Min {6;;}, if at least one interval has both the
bounds finite, or the lower bound is finite and
the interval is not convex, i.e, it has at least one
(finite) point excluded;

+ any finite number otherwise,

wherei,j = l..n, i # j and 6,—,— is the length of the
first convex subinterval of the (possibly non-convex)
intervals of M (e.g., for the interval [2, 10] -{3,4}
the length of such a subinterval is 1; while for the
interval (1,5], the relevant subinterval has length 4).

3. Same as step 3 of STP-SOLUTION, except that M"
is the minimal network of the STN resulting from
M’ by omitting all the non-convex inequations.

4. Same asstep4 of STP-SOLUTION.
The proof of the correctness of STP-CONSISTENCY is
similar to the proof of Theorem 3. Concerning the com-
plexity, note that by Theorem 4 step 0 can be computed
in 0fn® + k) time, step 1 in O(n® + k) time, and steps
2-4in 0fn® time. O

6 Conclusions
We have presented three new algorithms for computing a
solution (scenario) for a set of ORD-Horn relations, for a

given STP, and for a STP*. Also, we have presented an
algorithm for checking the consistency of a STP*, which
improves the complexity bound of Koubarakis' method.

Recently Ligozat [1996, personal communication] pro-
ved the tractability of the ORD-Horn algebra by using a
method for deriving a consistent scenario that is based
on iteratively (a) refining a path-consistent network and
(b) imposing path-consistency to it. However, he does
not give a detailed analysis of his method in terms of
time complexity, which appears to be at least one order
of magnitude worse than the complexity of our method.
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