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Abstract 

A new variant on key feature object recognition is 
presented. It is applied to optimal matching prob­
lems involving 2D line segment models and data. A 
single criterion function ranks both key features and 
complete object model matches. Empirical studies 
suggest that the key feature algorithm has run times 
which are dramatically less than a more general ran­
dom starts local search algorithm. However, they 
also show the key feature algorithm to be brittle: 
failing on some apparently simple problems, while 
local search appears to be robust. 

1 Introduction 
To find an object, recognition algorithms often first seek small 
sets of features which predict the object's presence. This ideas 
is articulated by Roberts [Roberts, 1965] and is the heart of lo­
cal feature focus [Bolles and Cain, 1982]. It suggests the value 
of perceptual organization [Lowe, 1985] and is fundamental 
to the alignment approach [Huttenlocher and Ullman, 1990]. 
It is also a basic component of Geometric Hashing [Lamdan 
et a/., 1990] and continues to be refined [Olson, 1995]. 

Here we present a variant upon this general theme which 
searches for an optimal match by first searching for good 
matches between triples of object model and image features. 
For simplicity, we call this our key feature algorithm since the 
search for a good triple may be thought of as a search for a 
key feature which determines the rest of the match. The key 
feature algorithm uses the same criterion function as our lo­
cal search line matching algorithms [Beveridge et al, 1990; 
Beveridge, 1993; Beveridge et al, 1997] and this enables us 
to report on a set of side-by-side comparisons between the 
two. Since these two algorithms search the space of possi­
ble matches in very different ways, the comparison highlights 
strengths and weaknesses of each. 

*This work was sponsored by the Defense Advanced Research 
Projects Agency (DARPA) Image Understanding Program under 
grants DAAH04-93-G-422 and DAAH04-95-1-0447, monitored by 
the U. S. Army Research Office, and the National Science Founda­
tion under grants CDA-9422007 and IRI-9503366 

The greatest difference between the two algorithms is in 
how they initiate search. The key feature algorithm initiates 
indepdent searches from each of a set of ranked key features. 
Local search starts a number of independent trials from ran­
domly selected matches. The key feature algorithm relies on 
one or more of the key features belonging to the best match. In 
contrast, local search makes no effort to find consistent initial 
matches and instead relies upon iterative improvement guided 
by updated global alignment to move search from the random 
match to one which is good. Randomness is important to local 
search because the probability of failing to find a good solu­
tion over multiple trials drops exponentially as the number of 
trials increases. This same random sampling methodology has 
been used in the RANSAC algorithm to find consistent sub­
sets of object model and image features [Fischler and Bolles, 
1987]. 

We begin by reviewing our formulation of 2D line segment 
matching as a combinatorial optimization task which has as its 
goal finding matches such as the one shown in Figure 1. Next 
the random-starts local search and key feature algorithms are 
described and their performance is compared on the example 
just shown as well as on a series of controlled test problems. 

measures how well the model fits the data. E0m(c) 
measures how much of the model is omitted from the match. 
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Figure 1: Optimal match to fragmented data, a) aerial photograph, 
b) segments [Burns et al., 1986], c) model, d) best match. 

To evaluate E, a 2D similarity transformation best fitting 
the model to the data is computed. The fitting criterion is a 
weighted sum of integrated perpendicular distance between 
infinitely extended model lines and their corresponding data 
line segments: ERes(c) is a normalized function of the resid­
ual error after fitting. The best fit for any c, neglecting under-
constrained cases, is computed by solving a quadratic polyno­
mial. Eom(c) is computed by transforming the model to the 
best-fit configuration and measuring how well the data covers 
the model. The weighting term a dictates how far a data seg­
ment can be from a model segment and still be included in an 
optimal match. If, for instance, then the data may be 
up to 3 pixels from the model. 

3 Random Starts Local Search 
Perhaps the simplest algorithm is steepest-descent on a 
'Hamming-distance-T neighborhood. This is so named be­
cause any correspondence mapping c may be represented by 
a bitstring of length n, where n A 'I' V in position j 
of the bitstring indicates that the j t h pair in the set 5 is part 
of the match c. The n neighbors of c are generated by succes­
sively toggling each bit. Hence, the neighborhood contains all 
matches created by either 1) adding a single pair of model-data 
features not already in the match or 2) removing a single pair 
currently in the match. 

Steepest-descent local search using this neighborhood com­
putes E for all n neighbors of the current match c, and moves 
to the neighbor yielding the greatest improvement: the great­
est drop in E. Search terminates at a local optimum when no 

neighbor is better than the current match. 
Because local search often becomes stuck at undesirable lo­

cal optima, it is common practice to run multiple trials. Each 
trial is started from a randomly chosen initial match The 
random selection of is biased to choose, on average, data 
segments for each model segment. Specifically, let hm be the 
number of pairs in S which contain a model segment TO. Each 
of these pairs is included in ci with independent probability 
Our experience suggests = 4 is a good choice, thus binding 
on average 4 data segments to each model segment. 

Over t trials, the probability of failing to find a good match 
drops as an exponential function oft. Let P8 be the probability 
of finding a good solution on a single trial. The probability of 
failing to find a good match in t trials is: 

(5) 

For geometric models, there is often a well defined and known 
best solution and we can characterize algorithm performance 
in terms of the probability P9 of finding the best match in a 
given trial. From P8 , the required number of trials t9 needed 
to solve a particular problem to a preset level of confidence 
Q9 may be derived from equation 5: 

) 

4 Key Feature Matching 
The local search algorithm just presented can be turned into a 
key feature matching algorithm by initializing search from k 
carefully selected key feature matches. Let F be the set of key 
features, and let a specific key feature fi be defined as follows: 

(7) 

The local search neighborhood is modified to consider only 
the addition of pairs. To understand this simplification, con­
sider local search initiated from a key feature fully con­
tained within the optimal match: 

(8) 

Simply by adding pairs local search wil l typically arrive at the 
best match c*. Search is further simplified by noting that each 
match to a key feature constrains where the model is 
placed relative to the data. Thus, search can be carried out in 
a constrained search space which includes only pairs 
consistent with the specific model placement defined by 

As a final step, the top 5 matches found by searching from 
each of the k key features are used to initialize a single trial 
of random starts local search. This final step can both add and 
remove pairs of segments and proves to be important in some 
cases. Without this step, key feature matching can be close to 
the optimal match and still miss it. In principle, this final pass 
of local search could allow the key feature algorithm to find 
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the best match even when no key feature satisfies equation 8. 
However, as a rule of thumb, the key feature algorithm will 
fail to find the optimal match when this condition is not met, 
i.e. no key feature is a subset of the optimal match c*. 

4.1 Choosing Key Features 
A variety of strategies has been suggested for defining sets 
of key features. [Lowe, 1985] strongly advocated broad and 
general perceptual invariants derived from the basic rules of 
physics and imaging. [Huttenlocher and Ullman, 1990] took 
a more model-based approach: predicting which features are 
key in part upon specific object geometry. 

However, both Lowe and Huttenlocher separated the task 
of selecting possible key features from that of matching com­
plete models to image data. In contrast, we use the same cri­
terion function, E, to both rank our selection of possible key 
features and to evaluate the optimality of final matches. 

As in past work, the ability of a key feature to constrain 
the pose of the object is critical. For 2D line matching, where 
models can be rotated, translated and scaled, the two obvious 
choices are pairs of matched segments and triples of matched 
segments. Triples are more reliable predictors of pose. 

4.2 Spatially Proximate Triples 
If there are n possible pairings between model and data fea­
tures in the set 5, then there are n3 possible triples. For typ­
ical problems presented below, n 1,000. It is impractical 
to enumerate and rank 1,000,000,000 triples; clearly, some 
filter must be used. We use a very general heuristic: proximal 
lines in a model are likely to be proximal in the data. This idea 
is by no means new, [Lowe, 1985] suggests this approach and 
then dismisses it as too unfocused for his purposes. 

Filtering by spatial proximity will generate on the order of 
n ranked triples. Model and data segments are analyzed in­
dependently to find the nearest neighbors of each. For each 
model line , determine the closest two neighbors 
and m i 2 as defined by Euclidean distance 

Analogous nearest neighbors for each data line 
segment < D are found. 

When matching segments M to D, each pair of segments 
form two spatially proximate triples f\ and f2: 

Since each of the n pairs of model and data segments in S 
leads to 2 triples, there are 2n spatially proximate triples in 
the initial set of key features F. 

In keeping with the assumption that some key features are 
better than others, order the set F from lowest to highest 
match error; 

(9) 

The question arises, 'How deep into the ranked set F should 
we search?'. Past work has typically assumed that it is not 
necessary to go very deep into the set F. Our experiments take 
a conservative approach and use the best n triples. 

5 Comparing Approaches 
We present comparative performance data on two test prob­
lems suites produced by a Monte Carlo problem generator. 
The advantage of this data is that it allows for controlled test­
ing under well specified conditions. We also consider perfor­
mance on the real world problem shown in Figure 1. 

The first set of tests uses the six models shown in Fig­
ure 2a. To create datasets D, model segments are ran­
domly scaled and placed in the data images. In addi­
tion, the model line segments are fragmented, skewed and 
potentially omitted. Finally, random clutter and struc­
tured clutter are added to the data. Structured clutter con­
sists of more highly degraded copies of the same object 
model. Examples are shown in Figures 2b and 2c. This 
dataset and results for it are available through our website 

A second set of tests use data images with 50 randomly 
placed segments. Models are created by randomly drawing 5, 
10,15 or 20 of these segments. This dataset tests the reliabil­
ity of the proximity heuristic as the ratio of model to clutter 
lines varies. 

5.1 Six Corrupted Models 
The models shown in Figure 2a exhibit characteristics known 
to make matching difficult. For example, the Pole is an inter­
esting case for the key feature algorithm because of its sim­
plicity: there exists only one possible model triple for the key 
feature algorithm to exploit. The Dandelion exhibits a 16 fold 
near symmetry; model symmetry complicates matching for 
many well established techniques [Grimson, 1990]. The Leaf 
presents an example where model and data line segments ap­
proximate a curved contour. For this model, a many-to-many 
mapping between model and image features is needed to ac­
count for breakpoints at different positions along the curve. 

A Monte Carlo simulator produces corrupted image data. 
The simulator rotates, translates and scales the model so 
placement and size are unknown. Model segments are also 
fragmented and skewed. In 24 of the problems, 0,10,20 and 
30 additional clutter segments are randomly placed about the 
image. A sampling of this data is shown in Figure 2b. In the 
other 24 problems, 0, 1, 2 and 3 additional corrupted model 
instances are added. A sampling of this data is shown in Fig­
ure 2c. 

The steepest-descent local search algorithm has been run 
for 1,000 trials on all 48 problems. The key feature algorithm 
has been run using the best n triples. The resulting run times 
and quality of results are indicated in Figure 3a. Problem in­
stances are grouped along the x axis by model type, with run 
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Figure 2: Models and data for controlled tests, a) Six stick figure models, b) Random clutter test data, c) Multiple instances test data. 

(a) 

Figure 3: Relative algorithm performance, a) The 48 problems using the six models shown in Figure 2a, b) 40 problems using randomly 
selected models. 

time plotted on the y axis. Those problems where key features 
failed to find the optimal match are indicated in the separated 
band at the top of the plot. 

Two critical types of information are conveyed by this plot. 
First, over 1,000 trials, the random starts algorithm never 
failed to find the optimal match at least once. Conversely, the 
key feature algorithm failed in 7 out of the 48 cases. Sec­
ond, the key feature algorithm is dramatically more efficient 
in terms of run time, typically taking less than l /10th of the 
time required by the random starts local search algorithm. 

The key feature algorithm fails on the simpler object mod­
els: the pole and rectangle ]. Two factors may explain these 
failures. First, simulator fragments model line segments with 
a fixed probability per unit length. Hence, longer segments 
fragment more. The rectangle and pole have the longest indi-

1On symmetric models such as the rectangle and building in Fig­
ure 1, symmetric matches are treated as equivalent. 

vidual segments, and therefore the highest degree of fragmen­
tation. Too much fragmentation prevents the proximal triples 
algorithm from finding triples which participate in the best 
match. The second factor is that there are fewer total features 
on the simpler models, further reducing the opportunities for 
the algorithm to find a good key feature. 

The statement that the local search algorithm did not fail 
requires some elaboration. Based upon the 1,000 trials, the 
probability of success has been estimated for each individ­
ual problem. Using these estimates, it is more proper to say 
that the required number of trials to find the best match with 
95% confidence, from equation 6, never exceeds 1,000. 

Actually, far fewer than 1,000 trials are required for most 
of the problems in the test suite. Less than 100 trials are re­
quired for 33 out of the 48 problems, and only 3 problems re­
quire more than 500 trials. Likewise for the key feature al­
gorithm, it is typically not necessary to consider all n triples. 
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The run times shown in Figure 3a are intentionally conserva­
tive, making no assumption that there is a priori knowledge 
of how hard a specific problem is to solve. 

Looking at the actual work needed per problem, the key fea-
ture algorithm finds the best match from the first ranked triple 
in 26 out of the 48 cases. There are 7 cases where a triple 
in the top 50 leads directly to the best match. Finally, in the 
8 remaining cases, simply running the steepest-descent algo­
rithm where only pairs are added misses the best match. How­
ever, in these cases, the final application of random starts local 
search locks onto the globally best match. This is counted as 
a success for the key feature algorithm. 

(c) E = 0.059 (d)E = 0.100 

Figure 4: Examples of the key feature algorithm missing the best 
match, a) best match, b) best found by key feature, c) best match, d) 
best found by key feature. 

It is interesting to observe how the key feature algorithm is 
lead astray. Figure 4a shows the optimal match found by ran­
dom starts local search for the three rectangles problem. Fig­
ure 4b shows the best match found by the key feature algo­
rithm. This is the 2nd best match found by the local search 
algorithm. Figure 4c shows the optimal match found by ran­
dom starts local search for the case of 20 random clutter lines. 
Figure 4d shows the best match found by the key feature al­
gorithm: again, it is the 2nd best match found by local search. 
This case is interesting because the coincidently placed long 
clutter line creates a 'false' rectangle which traps the key fea­
ture algorithm. 

5.2 Randomly Placed Lines 

The probability that the key feature algorithm will succeed 
depends upon the likelihood that a triple f in F belongs to 

the best match c*. This likelihood, in turn, depends upon the 
probability that the two segments closest to a data segment co­
incide with the two closest segments in the model. As the re-
sults above suggest, this is a good but not perfect heuristic. 

One way to think about this likelihood is to consider how 
the ratio of clutter to model features varies as more or fewer 
segments are drawn from a fixed size set of data segments. To 
illustrate, a set of 40 test problems has been generated, each 
with 50 randomly placed non-intersecting line segments. Ten 
distinct sets of 50 random segments are used, and models are 
created by randomly selecting 5,10,15 or 20 from each set. 

The results for these 40 problems are shown in Figure 3b. 
They support the hypothesis that a higher clutter ratio causes 
the key feature algorithm to become unreliable. The key fea­
ture algorithm fails on 8 out of 10 of the 5-segment models, 
while only failing on 1 out of 10 for the 20-segment models. 

Because the local search algorithm does not depend upon 
key features, we do not expect it to have difficulty with these 
problems. Figure 3b shows that this is in fact the case, with lo­
cal search solving all 40 problems reliably in less than 1,000 
trials. Moreover, it may surprise some readers to know that 
the average ta for 95% confidence decreases as these models 
get larger. For the problem instances with models of 5 seg­
ments, while for the models of 20 segments 

t-test on this data indicates that the drop is 
statistically significant: t = 5.03 and p 0.001. While 
far fewer than 1,000 trials are actually needed, for the sake of 
consistency, the times reported in Figure 3b are all based upon 
1,000 trials. 

53 A Real World Example 

It should now be apparent that the key feature algorithm has 
profound computational advantages over random starts local 
search. When it succeeds, it requires one to two orders of 
magnitude less computation. Real world examples can be 
found where it works well, including many of the fairly clean 
2D line matching problems common in the literature. 

Let us now consider a very difficult problem, the building 
shown in Figure 1. There are 4 model line segments and 443 
data segments, generating 1,772 possible pairs of segments. 
More important in terms of problem difficulty, there are multi­
ple instances of buildings interacting with other buildings and 
roads, creating a combinatorial explosion of possible partial 
matches. Also, the globally best match 2 is highly fragmented 
and must be pieced together by a search algorithm before it 
appears more attractive than many of the other more obvious 
partial rectangles. 

To fully test random starts local search on this problem, 
10,000 trials have been run. The best match is found in only 
12 of these trials: the estimated probability of success 

2Strictly speaking, we do not know the match shown in Figure Id 
to be the global optimum. However, through extensive study of this 
problem and our ability to eye-ball the results, we are relatively cer­
tain it is best. 
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0.0012 is tiny. Required trials ts = 2,494 and average time 
to run a trial is 24 seconds. Consequently, local search re­
quires nearly 18 hours to reliably solve this problem. 

(c) E = 0.141 (d) E = 0.149 

Figure 5: Second through fifth ranked matches for aerial image, 
a) second best and match found using key features, b) third best, c) 
fourth best, d) fifth best. 

While random starts local search has allowed us to find this 
best match, 18 hours is far too much time for any practical on-
line system to spend looking for one building. In contrast, the 
key feature algorithm is very fast, completing in a matter of 
minutes. However, it fails to find the best match. Instead, it 
finds the match shown in Figure 5a. This is not totally uninter-
esting, since according to the local search algorithm, this is the 
second best match in the image. However, it has a markedly 
larger match error: 0.125 as opposed to 0.101 for the global 
optimum. Local search also, in some sense, finds two other 
buildings: Figures 5c and 5d show the fourth and fifth ranked 
matches. Figure5b shows that the third ranked match is a vari­
ant on the global optimum, sharing many of the same features. 

6 Conclusion 
We have presented a variant upon key feature matching. It 
operates within an optimal matching framework and uses the 
same criterion function to rank both key features and final ob­
ject model matches. On controlled problem sets, it has been 
shown that the underlying proximity heuristic yields key fea­
tures which allow an algorithm to quickly find many but not 
all optimal matches. In an example of the cost versus gener­
ality trade-off typical in Artificial Intelligence, random starts 
local search is shown to be both more robust and more com­
putationally demanding. 
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