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1 I n t r o d u c t i o n 
Compared to the curvature-based shape descrip­
tions [Mokhtarian and Mack worth, 1986; He and Kundu, 
1991; Sederberg et a/., 1993; Siddiqi and Kimia, 1995], 
the axis-based methods [Blum, 1967; Blum and Nagel, 
1978; Brady and Asada, 1984; Rosenfeld, 1986; Leyton, 
1988; Saint-Marc ei al., 1993; Rom and Medioni, 1993; 
Zhu and Yuille, 1995; Ogniewicz and Kubler, 1995] are 
known to be capable of describing shapes in terms of 
the region surrounded by the boundary, as well as the 
boundary itself, simultaneously. Although this is not 
dealt with in this paper, we intuitively know that shapes 
with holes, as shown in Figure 1(a), also can be rep-
resented directly by the axis-based description without 
using any other intermediate representation. 

Several axis-based descriptions [Blum and Nagel, 
1978][Zhu and Yuille, 1995] require the analysis of axis 
connections to find branch points where shapes are par­
titioned into their parts. However, it is difficult to find 
stable branch points, as discussed in [Zhu and Yuille, 
1995], in which they used a top-down approach using 
shape models to solve the problem, which can deal with 
only the formal shapes, as shown in Figure 1(b). Blum's 
medial axis transformation (MAT) [Blum, 1967] and its 
effective calculation [Lee, 1982] has conventionally been 
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Figure 1: (a) A planar shape with a hole, (b) An exam­
ple of formal shapes, (c) The rectangle can be described 
using the axis obtained by applying medial axis transfor­
mation to its boundary contour (left), but the descrip­
tion is greatly affected by even a slight deformation of 
the contour (right), (d) Examples of nonformal shapes. 
These are difficult to describe using verbal representa­
tion and to decompose into parts. 

used to calculate the axis. However, the use of MAT has 
been criticized because the axis obtained is very sensi­
tive even to a slight deformation of shapes, as shown in 
Figure 1(c). Although several ideas [Blum and Nagel, 
1978][Ogniewicz and Kiibler, 1995] have been proposed 
to solve this problem, a more systematic approach is re­
quired. 

In this paper, we present a new planar shape descrip­
tion called the chain of circles (CoCs). As an axis (or 
region)-based representation, the CoCs is rich and in­
variant to rotation and translation of shapes. The CoCs 
also has hierarchical description capability, i.e, the ca­
pability to represent shapes at various levels of detail 
on demand. Using this capability, it is shown how we 
can get robust representation against noise and local de­
formation of shapes. Examples of shape matching and 
recognition using the CoCs are presented for fairly com­
plex shapes such as those shown in Figure 1(d). 

2 C h a i n of C i rc les 

2.1 Med ia l Ax is Trans format ion 
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A b s t r a c t 

Based on a resulting medial axis configuration 
of planar shapes, a new shape descriptor called 
the chain of circles (CoCs) is defined herein. 
The CoCs representation is directly extracted 
along the boundary contour of silhouette im­
ages, and can be controlled in a hierarchical 
manner which appeals to intuit ion. The coarse-
to-fine hierarchy makes matching of shapes pos­
sible with less computational complexity and 
greater robustness to noise, spatial quantiza­
tion and local deformation of shapes. The dis­
similarity vector calculated in the matching, 
which is executed via the dynamic program­
ming technique, may be used to facilitate the 
searching process in the digital library. The 
capability of the proposed method is shown by 
matching several complex shapes such as map 
images. 

Chain of Circles 
for Ma tch ing and Recogni t ion of Planar Shapes 



Figure 2: A collection of the maximal disks (MDs) ob­
tained for the inner part of a map of Australia. A max­
imal disk has its center at a point on the medial axis of 
the boundary curve. 

The idea of MAT was developed by Blum [Blum, 
1967] to extract the medial (or symmetric) axis of planar 
shapes. From the physics of grass fire1 it can be said 
that the medial axis is uniquely determined for a planar 
shape. 

The medial axis generated by applying MAT to a 
boundary curve can also be considered as the locus of the 
center of the maximal disk (MD), as shown in Figure 2. 
MD is a circle which does not cross the boundary curve 
and touches at least two points on the curve. Several al­
gorithms have been proposed for effective computation of 
MAT of a curve approximated by a polygon [Lee, 1982]. 
The vertexes of the polygon are sampling points on the 
curve. 

2.2 C h a i n o f C i r c l e s ( C o C s ) 

As shown in Figure 3(a), in shapes represented by a 
collection of MDs, a MD generally has two points x\ and 
x2 which contact the boundary contour of the shapes. 
The two points are mutually corresponding. The cor­
respondence arises from the fact that the two contact 
points share a common MD. The CoCs is defined by 
r(x) and along the arc length x of a boundary con­
tour curve. (See Appendices A and B for proof of the 
validity of the CoCs as a shape representation). 

At each point, for example x l the MD is described by 
r(xi) the radius of the MD and the angle from x1 

to the corresponding point X2 around the center of the 
MD in the clockwise direction. The point x2 is described 
in the same manner. The range of is between 0 and 

Although the CoCs can be extracted for both the in­
ternal area and the exterior of the boundary contour of 
shapes, we here use only the internal area, as shown in 
Figures 3(b) and (c). Depending on the local geometry 
of shapes, there is a MD that has more than two contact 
points. For the uniqueness of description in this case, we 
use a value closest to 

l I n the case that we fire the boundary line of a shape writ­
ten on grass simultaneously, the line of extinction is uniquely 
determined depending on the shape. 

Figure 3: Definition of chain of circles, represented by (a) 
r(x) and along contour arc length x. (b) A rectangle 
and its axis, (c) Extracted CoCs representation for one 
rotation of (b) starting from the upper left corner and 
moving in a clockwise direction. The dotted and solid 
lines correspond to r(x) and respectively. 

2.3 C o n t r o l o f C o C s : R o b u s t D e s c r i p t i o n 
Prior to describing the control of CoCs, we redefine v(x) 
and r n (x ) as 
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Figure 4: Control of CoCs. Each numeral on solid lines 
indicate T values when both rc and vc are 0. The dot­
ted line is for ( r=1500, r r = 0 , v c = - 1 0 ) , the dashed line 
(1500,10,0) and the dot-dash line (1500,10,-10). 

Figure 7: (a) A noisy image of the rectangle. (b)(d) 
Uncontrolled and (c)(e) controlled CoCs representations. 

Figure 5: Controlled CoCs representations with r=1500, 
(a) The thick points on the boundary 

contour line display contour points used in each repre­
sentation, and thin points show unused points, (b) The 
lines show interpolated results for unused contour points 
using the neighboring used contour points. 

Figure 6: (a) A notched image of the rectangle. (b)(d) 
Uncontrolled and (c)(e) controlled CoCs representations. 

Figures 6 and 7 show the robustness of shape descrip-
tion obtained from the control of the CoCs representa­
t ion. The parameter values used are the same as those 
used in Figure 5. Note that Figures 6(e) and 7(e) become 
similar to Figure 5(b) due to the control, even though 
their uncontrolled original was corrupted. 

3 Hierarchical Approx imat ion of 
Nonformal Shapes 

Figure 8 shows how nonformal shapes are hierarchically 
approximated based on CoCs representation. The values 
of parameters and in equation (3) are selected to be 
10 and —10, respectively. The hierarchy of the descrip­
tion is obtained by controlling the value of T. Figure 9 
shows the corresponding CoCs representation. 

4 Match ing and Recognit ion 
4.1 M a t c h i n g Us ing DP 
The dynamic programming (DP) technique is used to 
match a pair of CoCs representations. We can expect 
computational efficiency because matching is possible 
based on the ordering constraint, as used in [Sakoe and 
Chiba, 1978; Geiger et al, 1995]. 

If there are / points in one and J points in the other of 
a pair of CoCs which must be matched, and / is greater 
than /, a match sequence of length A" is a set of point 
matches P, as 

(4) 

where twice the number of J points must be made for a 
match which does not depend on starting points of the 
two CoCs representations in the matching process. The 
score 5 for the match sequence P is defined as the sum 
of the individual similarity scores s as 

(5) 
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Figure 8: The hierarchical approximation of the map of 
Australia, each of which is displayed as the collection of 
MDs used. The values of T and the numbers of contour 
points are (a) 0, 204 points (b) 1000, 98 (c) 1500, 66 (d) 
2000, 46 (e) 3000, 32 and (f) 4000, 23, respectively. 

The problem in matching is to find the match sequence 
with the highest score, and the computational complex­
ity corresponds to the number of steps, O( I 2 (2J) 2 ) [Ota 
and Kanade, 1985]. Here the individual similarity score 
is defined as 

4.2 Diss imi lar i ty Vector for Recogni t ion 
For the matched pairs of shapes, the dissimilarity vector 
D is calculated by averaging each of the differences of r, 

and between the matched points as 

where A denotes the number of matched points between 
two CoCs representations. 

4.3 Computa t iona l Complex i ty 
Figure 10 shows an example of computational complex­
ity for self-matching of CoCs representations shown in 
Figure 8. From this, we can see that computational 
complexity in the matching process is greatly reduced 
by using the approximated shape representation of the 
CoCs. Compared to matching with no approximation 
(T=0), which takes about 1 hour, for example, match­
ing with an approximation (T=3000) takes just 1 s. 

Figure 10: Computational complexity depending on the 
value of T: (a) global and (b) local displays. The hori­
zontal and vertical axes are for the degree of shape ap-
proximation denoted by the values of T, and computa­
tional complexity in matching, respectively. 

6 Discussions 
Figure 14 shows the robustness of the controlled CoCs 
to digitization of shapes. With much computational effi­
ciency, matching using the approximated CoCs was suc­
cessful not only for variously disturbed shapes, but for 
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Figure 11: Shapes used in experiments, (a) A noisy im­
age of the map of Australia and its display of collection 
of MDs. (b) Collections of MDs to the maps of rotated 
Australia, England and Africa, for T = 0. Rotated Aus­
tralia is used to investigate the effect of spatial quanti­
zation arising from the shift of sampling points on the 
contour curve. 

different shapes, as shown in Figure 12, in which the 
correctness may be improved, by some means, in the 
programming of the method. The matching of different 
shapes is necessary for searching shapes from a digital 
database. 

Table 1 shows that the dissimilarity vector calcu­
lated via matching has different values depending on 
the resemblance between shapes. The values of self-

Figure 12: The results of matching of the map of Aus­
tralia to (a) its noisy and (b) oriented images, and (c) 
the maps of Africa and (d) England. In each of the 
matches, squares show the contour points determined in 
matching among the points used in each CoCs repre­
sentation (T = 2000). The lines connecting the squares 
show matched points between two contour lines. 

Table 1: The dissimilarity vectors between the map of 
Australia (shown in Figure 8) and the shapes shown in 
Figure 11 when case of the values of T are 2000 and 
3000. The columns of Aus, n(A), r(A), Afr and Eng are 
for self-matching of Australia, matching of Australia to 
noisy Australia, rotated Australia, Africa and England, 
respectively. 

matching (Aus) and matching wi th disturbed shapes 
(n(A) and r(A)) are zero and relatively small, respec­
tively. As expected, the Australia-England match (Eng) 
has much higher dissimilarity than the Australia-Africa 
match (Afr). 

Fundamentally, open curve matching is also possible 
based on the CoCs if the greatest MD in each curve is 
determined. Although the determination seems to be 
possible via iteration, we expect to obtain a more con­
crete approach by a theoretical analysis on the CoCs. 

A Local Geometric Analysis 
As shown in Figure 13, the local geometry of the shape 

represented by a collection of MDs is analyzed as follows. 
If y(s) denotes a vector from the origin of a coordinate 
system to the center of a MD, i.e., a vector on an arc 
length s of the axis, x a vector from the origin to a 
point on the edge of the MD, and r(s) the radius of the 
MD, the shape can be formulated as 

Because the envelope of the collection of these MDs 
arises from the intersection of two adjacent MDs, it can 
be calculated from 

(9) 

From equation (9), we can deduce 

Figure 13: Local geometry of MDs. 
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where y(s) and r(s) denote the derivatives of y(s) and 
r(s) with respect to s, respectively, and y(s) is in the 
tangential direction of the axis on s. 

Let be the unit tangent vector to the axis curve and 
formed with the unit normal vector An orthonormal 
frame is a moving frame and a function of arc length 
s along the axis curve, as shown in Figure 13. At every 
intersection point between MDs, a vector x-y(s) makes 
an angle with an unit tangent vector From equation 
(9), the value of the angle is 

B Global Geometric Proper ty 
Compared to Figure 5(b), Figure 14(d) shows that the 
bending of the axis is reflected in the CoCs representa-
tion. There is an apparent difference in the lengths of 
the upper and lower edges between the two figures. 
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