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Abs t rac t 

This paper addresses the recovery of structure 
and motion from two uncalibrated images of a 
scene under ful l perspective or under affine pro-
jection. Epipolar geometry, projective recon­
struction, and affine reconstruction are elab­
orated in a way such that everyone having 
knowledge of linear algebra can understand the 
discussion without difficulty. A general expres­
sion of the fundamental matr ix is derived which 
is valid for any projection model without lens 
distortion (including ful l perspective and affine 
camera). A new technique for affine reconstruc­
t ion from two affine images is developed, which 
consists in first estimating the affine epipolar 
geometry and then performing a triangulation 
for each point match wi th respect to an implicit 
common affine basis. This technique is very ef­
ficient. 

K e y w o r d s : Mot ion Analysis, Epipolar Geom­
etry, Uncalibrated Images, Non-Metric Vision, 
3D Reconstruction, Fundamental Matr ix . 

1 I n t r oduc t i on 
Since the work of Koenderink and van Doom [Koen-
derink and van Doom, 1991] on affine structure from 
motion and that of Forsyth et al. [Forsyth et al, 
1991] on invariant description, the development of non-
metric vision has attracted quite a number of re­
searchers [Faugeras, 1992; Hartley et a/., 1992] (to cite a 
few). We can find a range of applications: object recog­
nit ion, 3D reconstruction of scenes, image matching, v i ­
sual navigation, motion segmentation, image synthesis, 
etc. 

This paper addresses the recovery of structure and 
motion from two uncalibrated images of a scene un­
der full perspective or under affine projection. There 
is already a large amount of work reported in the l i t­
erature [Faugeras, 1992; 1995; Hartley et al, 1992; 
Shashua, 1994; Zisserman, 1992], and it is known that 

*On leave f rom I N R I A Sophia-Antipol is, France 

the structure of the scene can only be recovered up to 
a projective transformation for two perspective images 
and up to an affine transformation for two affine im­
ages. We cannot obtain any metric information from a 
projective or affine structure: measurements of lengths 
and angles do not make sense. However, projective or 
affine structure sti l l contains rich information, such as 
coplanarity, collinearity and ratios. The latter is some­
times sufficient for artif icial systems, such as robots, to 
perform tasks such as navigation and object recognition. 
We believe that these results are important to the whole 
community of computer vision. However, they are usu­
ally stated using tools from Projective Geometry, which 
is not accessible to most researchers. One objective of 
this paper is to present these results in a way such that 
everyone having knowledge of linear algebra can under­
stand without difficulty. 

Other contributions of this paper are the following: 
• A general expression of the fundamental matr ix for 

any projection model is presented. Previously, the 
fundamental matr ix is formulated separately for ful l 
perspective and affine projection. Our formula is 
valid for both. 

• A new efficient technique for affine reconstruction 
from two affine images is developed. We decom­
pose the problem into two subproblems: recovery 
of affine epipolar geometry and 3D reconstruction 
w i th respect to an implici t affine basis. 

This paper is organized as follows. Section 2 presents 
different camera projection models. Section 3 derives 
an expression of fundamental matr ix which is valid for 
any projection model (ignoring the lens distortion). Sec­
t ion 4 describes the projective reconstruction from two 
uncalibrated perspective images. In Section 5, we first 
specialize the general fundamental matr ix to the case of 
affine cameras and then show that only affine structure 
can be recovered, and finally a new technique for affine 
reconstruction is proposed. 

2 Perspective Pro jec t ion and i ts 
Approx imat ions 

If the lens distortion can be ignored, the projection from 
a space point M = [X, Y, Z]T to its image point m = 
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[x, y]T can be represented linearly by where is the pseudo-inverse of matr ix P': 

(1) 

where and P is the 3 x 
4 projection matr ix which varies with projection model 
and w i th the coordinate system in which space points M 
are expressed. Given a vector , we use 
to denote its augmented vector by adding 1 as the last-
element, i.e., Now we can rewrite the 
above formula concisely as 

(2) 
where s = 5 is an arbitrary nonzero scalar. 

The projection matr ix corresponding to the full per­
spective is of the form: 

(3) 

which is defined up to a scalar factor. This implies that 
there are only 11 degrees of freedom in a full perspective 
projection matr ix. In terms of the intrinsic and extrinsic 
parameters of a camera, P can be decomposed as P = 
A [ R t ] , where A is a 3 x 3 matrix defined by the intrinsic 
parameters (see e.g., [Faugeras, 1993]), and (R, t) is the 
rotation and translation (extrinsic parameters) relating 
the world coordinate system to the camera coordinate 
system. 

The affine camera, introduced by Mundy and Zisser-
man [Mundy and Zisserman, 1992] as a generalization 
of orthographic, weak perspective and paraperspective 
projections, has the following form: 

(4) 

The elements P 3 1 ,P 3 2 and P33 are equal to 0. This is an 
approximation to the ful l perspective, and works quite 
well when object size and depth is small compared wi th 
the distance between the camera and object. 

3 Fundamenta l M a t r i x for Any 
Pro jec t ion Mode l 

Consider now the case of two images whose projection 
matrices are P and P', respectively (the prime ' is used 
to indicate a quantity related to the second image). A 
point m in the first image is matched to a point m' in 
the second image. From the camera projection model 
(2), we have 

An image point m' defines actually an optical ray, on 
which every space point projects on the second image 
at This optical ray can be writ ten in parametric 
form as 

(5) 

(6) 

and is any 4-vector that is perpendicular to all the 
row vectors of P' i.e., . Thus, is a nul l 
vector of P'. As a matter of fact, indicates the 
position of the optical center (to which all optical rays 
converge). We show later how to determine For a 
particular value s', equation (5) corresponds to a point 
on the optical ray defined by m' . Equation (5) is easily 
justified by projecting M' onto the second image, which 
indeed gives m ' . 

Similarly, an image point m in the first image defines 
also an optical ray. Requiring the two rays to intersect 
in space implies that a point M' corresponding to a par­
ticular s' in (5) must project onto the first image at m, 
that is 

Performing a cross product wi th yields 

Eliminating s and s' by mult iplying from the left 
(equivalent to a dot product), we have 

(7) 
where F is a 3 x 3 matr ix, called fundamental matrix: 

(8) 
Equation (7) is the well-known epipolar equation [Hart­
ley et a/., 1992; Faugeras et a/., 1992; Luong and 
Faugeras, 1996], but the form of the fundamental matr ix 
(8) is general and, to our knowledge, is not yet reported 
in the literature. It does not assume any particular pro­
jection model. Indeed, equation (8) only makes use of the 
pseudo-inverse of the projection matr ix (which is valid 
for full perspective as well as for affine cameras). In [Lu­
ong and Faugeras, 1996], for example, the fundamental 
matrix is formulated only for full perspective, because 
it involves the inverse of the first 3 x 3 submatrix of P 
which is not invertible for affine camera. In [Zisserman, 
1992], a separate fundamental matr ix is given for affine 
cameras. Our formula (8) works for both. We wi l l spe­
cialize it for affine cameras in Sect. 5.1. 

The fundamental matr ix F recapitulates all geometric 
information between two images. The nine elements of F 
are not independent from each other. In fact, F has only 
7 degrees of freedom. This can be seen as follows. First F 
is defined up to a scale factor because if F is multipl ied by 
any nonzero scalar, the new F sti l l satisfy (7). Second, 
the rank of F is at most 2, i.e., det(F) = 0. This is 
because the determinant of the antisymmetric matr ix 

is equal to zero. Another thing to mention is 
that the two images play a symmetric role. Indeed, (7) 
can also be rewritten as It can be shown 
that 

The vector sti l l needs to be determined. We first 
note that such a vector must exist because the difference 
between the row dimension and the column dimension is 
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4.2 P ro jec t i ve Recons t ruc t i on one, and that the row vectors are generally independent 
from each other. Indeed, one way to obtain is 

(9) 

where is an arbitrary 4-vector. To show that is 
perpendicular to each row of P' , we mult iply by P' 
from the left: 
which is indeed a zero vector. The action of 
is to transform an arbitrary vector to a vector that is 
perpendicular to every row vector of P'. If P' is of rank 
3 (which is usually the case), then is unique up to a 
scale factor. See [Xu and Zhang, 1996] for more details. 

4 Pro ject ive Reconst ruct ion 

We show in this section how to estimate the position of a 
point in space, given its projections in two images whose 
epipolar geometry is known. The problem is known as 
3D reconstruction in general, and triangulation in partic­
ular. We assume that the fundamental matr ix between 
the two images is known (e.g., computed wi th the meth­
ods described in [Zhang et a/., 1995]), and we say that 
they are weakly calibrated. 

4 . 1 F u n d a m e n t a l M a t r i x f o r F u l l 
P e r s p e c t i v e 

We now derive a usual form of fundamental matr ix for 
ful l perspective from the general expression (8). Let A 
and A' be the 3 x 3 matrices containing the intrinsic 
parameters of the first and second image. Without loss 
of generality, we choose the second camera coordinate 
system as the world coordinate system. Then, the cam­
era projection matrices are P = A [R t] and P; = 
A' [I 0] , where (R, t) is the rotation and translation re­
lating the two camera coordinate systems, and I is the 
3 x 3 identity matr ix and 0 is a zero 3-vector. 

It is not difficult to see that 

Using the property 
and the general expression of the fundamen­

tal matr ix (8), we have 

where means "equal" up to a scale factor. The above 
equation is the usual form of the fundamental matr ix 
(see e.g., [Luong and Faugeras, 1996]). 

In the calibrated case, a 3D structure can be recovered 
from two images only up to a r igid transformation and an 
unknown scale factor (this transformation is also known 
as a similarity), because we can choose an arbitrary co-
ordinate system as a world coordinate system (although 
one usually chooses it to coincide w i th one of the cam­
era coordinate systems). Similarly, in the uncalibrated 
case, a 3D structure can only be performed up to a pro­
jective transformation of the 3D space [Faugeras, 1992; 
Hartley et a/., 1992; Maybank, 1992; Faugeras, 1995]. A 
4 x 4 nonsingular matr ix H defines a linear transforma­
t ion from one projective point to another, and is called 
the projective transformation. The matr ix H, of course, 
is also defined up to a nonzero scale factor, and we write 

if is mapped to by H. Here p is a nonzero 
scale factor. 

Now we are given two perspective images of a scene. 
The intrinsic parameters of the images are unknown. 
Assume that the true camera projection matrices are 
P and P' . From (8), we have the following relation 

Given 8 or more point matches 
in general position, the fundamental matr ix F can be 
uniquely determined from two images. We are now in­
terested in recovering P and P' from F, and once they 
are recovered, tr iangulation can be conducted to recon­
struct the scene in 3D space. 

P r o p o s i t i o n 1 Given two perspective images of a scene 
whose epipolar geometry (i.e., the fundamental matrix) 
is known, the camera projection matrices can only be 
determined up to an unknown projective transformation. 

The proof of this proposition is omitted due to space 
l imitat ion. The consequence of this proposition is the 
following: if P and P' are two camera projection ma­
trices consistent wi th the fundamental matr ix F, then 

are also consistent w i th the 
same F, where H is any projective transformation of the 
3D space. If the true structure is M, then the structure 
reconstructed from image points is , up to a 
projective transformation. This is because 
gives the exact projection for the first image; the same 
is true for the second image. Although the above result 
has been known for several years, we believe that it is 
easier to understand our discussion than what has been 
presented in the literature. 

In order to reconstruct points in 3D space, we need to 
compute the camera projection matrices from the funda­
mental matr ix F wi th respect to a projective basis, which 
can be arbitrary because of Proposition 1. One way is to 
use a canonical representation [Luong and VieVille, 1994; 
Beardsley et a/., 1994]: 
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5 Aff ine Reconstruct ion 
This section deals wi th two images taken by an affine 
camera at two different instants or by two different affine 
cameras. 

5.1 A f f i ne Fundamenta l M a t r i x 
In the case of a general affine camera, the projection 
matr ix (4) can be rewritten as 

We now derive the specific tundamental matr ix for affine 
cameras from the general form (8). 

For any affine camera, we can construct as 

It is evident that Q cannot be uniquely determined. For 
us, any Q that satisfies the above equation suffices. 

Now substituting these matrices for (8), we have 

(12) 

where a^ are related to the coefficients of the camera 
projection matrices. The fact that the affine fundamen­
tal matr ix has the form of (12) is mentioned in [Zisser-
man, 1992]. Defined up to a scale factor, F>i has only 
4 degrees of freedom. The corresponding points in the 
two images must satisfy the following relation, called the 
affine epipolar equation: 

Expanding the epipolar equation, the left-hand side is a 
first-order polynomial of the image coordinates, and we 
have 

(14) 

It means that the epipolar lines are parallel everywhere 
in the image, and the orientations of the parallel epipolar 
lines are completely determined by the affine fundamen­
tal matr ix. 

5.2 Af f ine Reconst ruc t ion 
Given a sufficient number of point matches (at least 4) 
between two images, the affine fundamental matr ix FA 
can be estimated (see [Shapiro et a/., 1994]). We are now 
interested in recovering PA and P'A from FA, and once 
they are recovered, the structure can be redressed in 3D 
space. 

Since PA and PA are defined up to a scale factor, w i th­
out loss of generality, we assume Then 
the relation between a 3D point and its 2D image is given 
by Note that there is no 
more scale factor in the above equations. From the affine 
epipolar equation (13), it is easy to obtain 

We now show the following proposition. 
P ropos i t i on 2 Given two images of a scene taken by 
an affine camera, the 3D structure of the scene can be 
reconstructed up to an unknown affine transformation as 
soon as the epipolar geometry (i.e., the affine fundamen­
tal matrix) between the two images is known. 

Let the 3D structure corresponding to the true cam­
era projection matrices We need to 

show that the new structure is sti l l consistent 
wi th the same sets of image points (i.e., wi th the affine 
fundamental matr ix) , where 
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5.3 E x p e r i m e n t a l Resul ts 
We have tested the proposed technique wi th computer 
simulated data under affine projection, and very good 
results have been obtained. In this subsection, we show 
the result wi th data obtained under full perspective pro­
jection but treated as if it were obtained under affine 
projection. 

The parameters of the camera set-up are taken from 
a real stereo vision system. The two cameras are sepa­
rated by an almost pure translation (the rotation angle is 
only 6 degrees). The baseline is about 350 mm (mill ime­
ters). An object of size 400 x 250 x 300 mm3 is placed 
in front of the cameras at a distance of about 2500 mm. 
Two images of this object under ful l perspective projec­
t ion are generated as shown in Fig. 1. Line segments are 
drawn only for visual effect, and only the endpoints (12 
points) are used in our experiment. The image resolu­
tion is 512x512 pixels2, and the projection of the object 
occupies a surface of about 130 x 120 pixels2. 

Figure 1: Two perspective images of a synthetic object 

Figure 2: Two orthographic views of the affine recon­
struction 

The method described in [Shapiro et a/., 1994] is used 
to compute the affine epipolar geometry, and the root of 
the mean point-to-point distance is 0.065 pixels. This 
implies that even the images are perspective, their re­
lation can be quite reasonably described by the affine 
epipolar geometry. The affine reconstruction result ob­
tained wi th the technique described in this paper is 
shown in Fig. 2. 

In order to have a quantitative measure of the recon­
struction quality, we estimate, in a least-squares sense, 
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Figure 3: Two orthographic views of the superposition of 
the original 3D data (in solid lines) and the transformed 
affine reconstruction (in dashed lines) 

the affine transformation which brings the set of affinely 
reconstructed points to the original set of 3D points. The 
root of the mean of the squared distances between the 
corresponding points is 10.4 mm, thus the error is less 
than 5%. The superposition of the two sets of data is 
shown in Fig. 3. It is interesting to observe that the re­
construction of the near part is larger than the real size 
while that of the distant part is smaller. This is because 
the assumption of an affine camera ignores the perspec­
tive distortion in the image. 

6 Conclusion 
We have addressed in this paper the problem of deter­
mining the structure and motion from two uncalibrated 
images of a scene under ful l perspective or under affine 
projection. Epipolar geometry, projective reconstruction 
and affine reconstruction have been elaborated in a way 
such that everyone having knowledge of linear algebra 
can understand without difficulty. A general expression 
of the fundamental matr ix has been derived which is 
valid for any projection model without lens distortion 
(including ful l perspective and affine camera). A new 
and efficient technique for affine reconstruction from two 
affine images has been developed, which consists in first 
estimating the affine epipolar geometry and then per­
forming a triangulation wi th respect to an implicit affine 
basis for each point match. 
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