
Let 's plan i t deductively! 

W. Bibel 
Technical University Darmstadt, Germany 

Abstract 
The paper describes a transition logic, TL , and 
a deductive formalism for i t . It shows how var­
ious important aspects (such as ramification, 
qualification, specificity, simultaneity, indeter-
minism etc.) involved in planning can be mod­
elled in TL in a rather natural way. (The 
deductive formalism for) TL extends the l in­
ear connection method proposed earlier by the 
author by embedding the latter into classical 
logic, so that classical and resource-sensitiv rea­
soning coexist within T L . The attraction of a 
logical and deductive approach to planning is 
emphasised and the state of automated deduc­
t ion briefly described. 

1 I n t r oduc t i on 
Arti f ic ial Intelligence (A I , or intellectics [Bibel, 1992a]) 
aims at creating artificial intelligence. Were there no 
natural intelligence, the sentence would be meaningless 
to us. Hence understanding natural intelligence by ne­
cessity has always been among the goals of intellectics 
(and is also the goal of cognitive science). 

Different points of view for approaching the goal 
of creating artif icial intelligence have been distin­
guished [Kushmerick, 1996]. Logicism [Nilsson, 199l], 
cognitivism [Laird et a/., 1987], and situated ac­
t ion [Agre, 1995] are three out of several such points 
of view. In a nutshell, the logicistic point of view argues 
that man can describe his creations (including an artif i­
cial intelligence) only by natural linguistic, hence logical 
means; thus any way towards artificial intelligence must 
in some sense be a logical one. This author is strongly 
committed to the logicistic approach. As a consequence 
he believes that any other approach is in fact a logicistic 
one in disguise. 

Intelligence has many features. Clearly one of them is 
the abil i ty to plan ahead in time. Intuitively, planning is 
logical reasoning of some kind. Al l the more one might 
expect that planning is the domain where logic and its 
deductive machinery excel. The fact is that it does not. 
There are many software systems in everyday use solving 
planning tasks, but to the author's best knowledge none 

of them is based on logic and has a deductive component. 
Does this imply that logic is irrelevant for planning and 
for artificial intelligence for that matter? 

While intelligence implies the ability for planning, the 
converse has not necessarily to be true. It very much 
depends on what kind of planning is meant. In a fixed 
and relatively restricted domain (such as text layout) 
planning may well be realized in a purely functional way 
and with standard programming techniques. But func­
tional (or procedural) programming has its l imits as we 
enter more complex and unpredictable domains; in par­
ticular it wil l never be able to produce a behavior which 
rightly deserves to be named "intelligent" (surely as a 
user of computers you noticed the stupidity of text lay-
out systems). Section 7, as well as numerous texts in 
the literature, give arguments for this statement. It also 
gives reasons which explain the resistance of the soft­
ware industry to a bolder move into a logic technology 
for planning and for other applications. In other words, 
logic is essential for intelligent planning in the true sense 
of the term, but industry is not ready to build intelligent 
systems. 

It is not the task of intellecticians to lament about this 
state of affairs but rather to prepare for the coming day 
when the market wil l be ripe for a broader use of a truly 
intelligent technology and to develop the best possible 
technological basis for i t . In fact, if we are frank there 
is yet a lot to be developed before we can comfortably 
go out to industry and offer a coherent set of methods 
for dealing with the many facets of intelligence including 
planning. 

In the present paper I review the state of the art 
in deductive planning with an emphasis on the con­
tributions from research groups influenced by my own 
work. While much of the work in deductive planning 
has focused on representational issues we have always ap­
proached the problem with the necessary and available 
deductive techniques in mind. Since the methods and 
systems growing out of our work have finally achieved 
a leading position in the deduction community by win­
ning the CADE-96 competition in automated theorem 
proving with the SETHEO system [Lets et a/., 1992; 
Moser et a/., 1997], we are perhaps also well placed to 
import the best possible techniques into the planning 

BIBEL 1549 



community. In other words, the paper wi l l focus on de­
ductive planning as well as on the underlying deduction 
techniques. Since the author sees planning as just one 
among a number of aspects for achieving artificial in­
telligence, the case for deductive planning is presented 
in this paper in form of a paradigm case for achieving 
the grander goal of artificial intelligence. The paper wi l l 
therefore not only point the way to intelligent planning 
but to some extent also the author's proposed way to 
artificial intelligence (the " i t " in the t i t le). 

In the next section we introduce the logical language 
used in our approach and discuss the deductive as­
pects thereafter. The resulting computational logic is 
called transition logic (TL) which has classical as well 
as resource-sensitive features. Section 4 shows what TL 
has to do wi th planning and computation (or wi th tem­
poral prediction or postdiction for that matter). Sec­
t ion 5 compares the logic wi th other known logics. Sec­
tion 6 shows how the various aspects involved in reason­
ing about actions and causality can be taken into account 
within T L . Specifically, we discuss ramification, qualifi­
cation, specificity, simultaneity, in determinism, continu­
ity, hierarchies etc. Finally, we briefly describe the ten­
sions between the specialistic and logistic approaches in 
AI and explain it by outl ining the underlying pattern. 
Given the impressive recent achievements in automated 
deduction we conclude wi th making a case for a logical 
path towards an artificial intelligence. 

2 A logical language 
Any textbook on AI also contains some introduction to 
first-order logic so that we may assume the reader to be 
familiar wi th i t . Only to communicate our notational 
conventions we mention that there are objects named 
by constants (a,b,c), (n-ary) functions named by func­
t ion symbols (f,g,h) and (n-ary) relations named by 
predicate symbols (P, Q, R). Terms (r, s , t ) , built from 
variables (x ,y , z, ranging over objects), constants and 
function symbols, again denote objects. Literals (K, L) 
are relations among objects or the negation thereof. 
They correspond to simple factual sentences in natural 
language (such as "John is married to the mother of 
BUT). 

For building more complicated sentences represented 
as formulas (F , G, H) we use the well-known classi­
cal (logical) operators as well as the 
resource-sensitive operators & (non-idempotent conjunc­
t ion), | (non-idempotent exclusive disjunction), and 
(transition). The latter need explanation which follows. 

The language of predicate logic has been designed to 
express natural language sentences formally and unam­
biguously. This was done in a biased way since many of 
those involved in the design (such as Frege [Frege, 1879]) 
had mainly sentences of a mathematical nature in mind. 
Sentences involving actions were not taken into serious 
consideration unt i l the publication of the situation cal­
culus in 1969 [McCarthy and Hayes, 1969] in which any 
n-ary relation P is extended to an (n + 1)-ary one by 

an argument for determining the situation in which the 
relation is meant to hold (see Section 5.4). 

Natural language apparently does not need such an 
extra vehicle. A (static) mathematical sentence (such as 
" i f a number is greater than zero then it is positive") 
looks exactly like a (dynamic) one about actions (such 
as " i f I take the book then it is mine"). In [Bibel, 1986a] 
the main idea for a logic has been outlined which re-
sembles natural language more closely in this aspect of 
treating actions than does the situation calculus. The 
approach then was called linear connection method or 
shortly L C M ; for the logic we introduce here on the 
basis of L C M we propose the name transition logic or 
T L . The idea underlying L C M spawned a great number 
of studies based on this idea such as [Fronhofer, 1987; 
Bibel et a/., 1989; Holldobler and Schneeberger, 1990; 
Grofie et a/., 1992; Bruning et a/., 1992; 1993; Holldobler 
and Thielscher, 1993; 1995; Grofie et a/., 1996; Fronhofer, 
1996; Herrmann and Thielscher, 1996; Thielscher, 1996; 
Eder et a/., 1996; Thielscher, 1997b; Bornscheuer and 
Thielscher, 1997; Thielscher, 1997a] to mention several 
of them. Here facts may be treated as resources which 
may be consumed by actions. Two different formalisms 
are used to achieve this. One, T L , employs the addi­
tional set of resource-sensitive operators &, |, just in­
troduced (the other achieves their effects on the term 
level of classical logic as we wil l see in Section 5.3). 

A rule K L, called an action (or transition) rule 
(or effect axiom), models an action which consumes K 
and produces L. For instance, 

can be seen as the equivalent in TL of the situation cal­
culus rule 

In classical logic is equivalent wi th L according 
to the rule of idempotence. In real-world scenarios it 
does matter, however, whether you have the same thing 
(say a dollar) once or twice. Similarly, it does matter 
whether you take your dollar or mine. That is why we 
need the two extra operators &, | which behave just like 
their classical counterparts except for the rule of 
idempotence, which does not hold for them, and for | 
modelling an exclusive (rather than an inclusive) alter­
native. In consequence, we wi l l not have the law of dis-
t r ibut iv i ty which allows | to be distributed over &. 

Formulas built from literals by means of the quanti­
fiers and the resource-sensitive operators only are called 
r-formulas, r-formulas without | are also called conjunc­
tive r-formulas. General formulas of TL are r-formulas, 
and any expression built from those by means of the clas­
sical operators. For instance, is an 
r-formula, hence a formula, 

is a formula but not an r-formula, and 
is not a formula (nor an r-formula) 

since the definition does not allow classical operators 
(other than quantifiers) below a resource-sensitive one in 
the formula tree. An r-subformula which is not a proper 

1550 INVITED SPEAKERS 



subformula of an r-subformula is also called an r-part in 
the given formula. 

S Basic deduct ive machinery 
We wi l l deal in this paper with a restricted class 
of r-formulas only which have the form 

H whereby does not oc­
cur in Semantic e n t a i l m e n t f o r the result­
ing class of formulas wil l be introduced only informally. 

holds if F is classically en­
tailed by depending of the state 
reached by not performing or performing the transition 

in the r-part which, if executed, consumes K 
and produces L. 

As we see two different states, say are to be 
distinguished in this example, the one before and the 
other after the transition. Semantic entailment is de­
pendent on these states. For instance, we might write 

As more tran­
sitions get involved we obtain more such states to be 
distinguished.1 Validity, is then defined as usual. 
Section 5 wi l l resume the discussion of the semantics of 
TL while in the present section we focus on its deductive 
aspects. 

As the original name of our approach, linear connec­
tion method (LCM) , suggests, the basic deductive ma­
chinery is based on the connection method [Bibel, 1993; 
1987]. This deductive method is characterized by the 
fundamental theorem which in turn characterizes valid­
i ty of a formula by the so-called spanning property ex­
plained shortly. Many different logical calculi can be 
based on this method. 

In order to explain the spanning property we need the 
concepts of a path through a formula and of a connec­
tion. A path through a formula F is the set of literals 
of any conjunct of the conjunctive normal form of F. 
Paths can best be illustrated if formulas are displayed 
as matrices. Matrices (positively) represent disjunctions 
of clauses which in turn represent conjunctions of l it­
erals (or, in general, matrices). Consider the formula 

(expressing the well-known logical 
rule of modus ponens). In negation normal form the 
same formula reads which is a dis­
junct ion of three clauses. Hence as a matrix it looks as 
follows. 

As an aside we mention that a rotation of this matrix by 
90° (counterclockwise) basically yields the corresponding 
PROLOG program except for the differences due to the 
negative representation used in PROLOG. 

1[Thielscher, 1997a] gives a precise semantics which, how­
ever, needs adaption to TL and the view just outlined. 

A path through such a matrix (or the formula it repre­
sents, or the corresponding PROLOG program) is now 
the set of literals obtained by selecting exactly one l i t ­
eral from each clause (or, in other words, traversing the 
matrix say from left to right). In the present example 
there are exactly two such paths, namely 
and The disjunction of the literals of these 
two paths are obviously the disjuncts of the conjunctive 
normal form of 

A connection is a subset of a path of the form {R, - R } . 
There are two connections in our present example illus­
trated as arcs in the following display. 

A set of connections (or mating) is called spanning if 
each path through the matrix contains at least one con­
nection. This is the case for the two connections of our 
example, hence the formula is (of course) valid according 
to the fundamental theorem mentioned at the outset of 
the section. Recall that the matrix form is used just for 
illustration and is thus not essential for the connection 
method. The connections (and the spanning property) 
could as well have been identified in the original formula 
as follows. 

A chain of two (or more) connections like the two dis­
played in the matrix may thus be regarded as an en­
coding of one (or more) applications of modus ponens. 
This illustration also demonstrates that it is connections 
which lie at the heart of deductive reasoning (more so 
than rules like the in the example). In some 
sense a connection may also be seen as an encoding of 
an application of the well-known resolution rule. So far 
connections have been illustrated for propositional exam­
ples. They apply to first-order formulas in the obvious 
way, connecting literals wi th opposite signs and unifiable 
terms. An example is the following matrix. 

Here validity is established by the two spanning connec­
tions along with the substitution x \ a , which makes the 
connected hterals complementary. 

Up to this point we have restricted our discussion to 
deduction for purely classical formulas. The characteris­
ing spanning property carries over to the case of general 

BIBEL 1551 



formulas in our logical language wi th one minor modi­
fication to be explained shortly. In fact, if we take the 
r-formula as our first example then 
we may use exactly the same matr ix as the one before 
to represent the formula in a two-dimensional way. In 
fact, in spite of the modification in the formula exactly 
the same proof for validity is obtained. 

In order to distinguish it f rom the classical matr ix we 
use a box rather than brackets. One should note, how­
ever, that the semantics of the operations represented by 
the structural arrangement this t ime is quite a different 
one. As in the classical case the matr ix representation is 
more of an i l lustrative relevance, since the connections 
also here could as well have been placed in the original 
formula. 

Let us now consider a general formula like 
which in its classical part 

expresses that P' is jus t another name for P and which 
is represented by the following matr ix. 

The r-submatrix is boxed.2 The three connections are 
obviously spanning. Hence the formula is again valid. 

The need for a modification becomes clear if we com­
pare the classically valid formula 

whose proof is 

w i th the analogical r-formula 
Whi le the validity of the first formula 

is clear f rom the spanning property obviously satisfied 
for the matr ix , the second formula should intuit ively not 
be valid. Namely, if a dollar (P) buys a coffee (Q), and if 
a dollar buys a tea (R), and if I have just one dollar (as 
the formula suggests) then clearly I cannot buy both cof­
fee and tea since I would rather need two dollars for that 
purpose. Since the matr ix and its connections would be 
exactly the same for the second formula as for the first 
one, we are lead to conclude that the spanning prop­
erty (characterising validity in the classical case) needs 
some modif ication. The kind of modification becomes 

2For simplicity we do not box the literals, which formally 
are r-parts, in the classical part. 

clear if we add another P to the present r-formula, ie. 
P& P& which intu­
itively is valid as just i l lustrated and compare its proof 

wi th the previous one. In the latter matr ix each literal 
is contained in at most one connection while in the for­
mer this linearity restriction in its original form [Bibel, 
1986a]) is not satisfied because the l i teral is con­
tained in more than one, namely in two connections. To 
cover the general case considered in the present paper 
this linearity restriction needs a more general definition. 

For that purpose we inductively introduce the concept 
of the directionality3 0 (for consumption) and 1 (for re­
source) of the nodes in the formula tree of an r-formula. 
The root has directionality 0. If a node w i th direction­
ality d is labelled by & or by | then its successor nodes 
have the same directionality d; if it is labelled then the 
directionality of the left successor node is (d + 1) mod 2 
while that of the right successor node is d. The direction­
ality partit ions the occurrences of literals in an r-formula 
(or r-matrix) into resource literals if their directionality 
in the formula is 1, and consumption literals if it is 0. 
We attach this directionality to a l i teral if needed as an 
upper index. In all our matr ix examples the direction­
ality is 1 for a negated l i teral and 0 for an unnegated 
one. 

1552 INVITED SPEAKERS 

These definitions go a bi t beyond what is intended 
wi th this paper simply because they are novel and have 
not been published before. In fact it could well be that 
they need further adjustment once the structure of for­
mulas and their semantics are finally settled. We just 
mention here that the definitions aim at yielding the 

3Note that directionality is not the same as polarity. 


