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Abs t rac t 

Identifying user-dependent information that 
can be automatically collected helps build a 
user model by which to predict what the user 
wants to do next and to do relevant preprocess­
ing. Such information is often relational and is 
best represented by a set of directed graphs. A 
machine learning technique called graph-based 
induction {GBI) efficiently extracts regularities 
from such data, based on which a user-adaptive 
interface is bui l t that can predict next com­
mand, generate scripts and prefetch files in a 
mult i task environment. The heart of GBI is 
pairwise chunking. The paper shows how this 
simple mechanism applies to the top down in­
duction of decision trees for nested attr ibute 
representation as well as finding frequently oc­
curring patterns in a graph. The results clearly 
shows that the dependency analysis of compu­
tational processes activated by the user com­
mands which is made possible by GBI is indeed 
useful to bui ld a behavior model and increase 
prediction accuracy. 

1 I n t r o d u c t i o n 
Computers are sti l l not easy to use. The main reason 
is their ignorance about the user. The user information 
that is available to an interactive computer system is l im­
ited, and thus, the user model acquisition is a difficult 
problem. Classical acquisition methods like user inter­
views, application-specific heuristics, and stereotypical 
inferences are often not appropriate, and a better auto­
mated method is being sought. 

Finding regularities in data is a basis of knowledge 
acquisition, and extracting behavioral patterns from the 
user information is one such problem. Each user has a 
different way of doing the same thing and identifying the 
information that can characterize the user and be auto­
matically collected is crucial. Once such information is 
found and if an appropriate machine learning technique 
can induce regularities in each user's behavior to carry 
out his/her intended task, we can use them to guide the 

daily work and to do some preprocessing, which may 
facilitate easiness of usage and increase efficiency. 

We discuss three learning tasks, command prediction, 
script generation and file prefetching in mul t i task en­
vironments. The scope of user behavior is l imited to 
a sequence of task execution (e.g., edit ing, formatt ing, 
viewing, etc.) using plural application programs. 

Most studies that attempted to develop a user-
adaptive interface system only analyzed the sequence of 
user behaviors, from which to automate the repetitions 
(See 7). In this setting, the data can easily be repre­
sented by at tribute-value pairs, each attr ibute denoting 
the sequence order and its value, the command. Since 
the command sequence does not necessarily typify the 
user's behavior, the user model constructed from only 
the sequence information may not adequately capture 
the user's behavior. We focused on the process I /O in­
formation that is also automatically collected along wi th 
the command sequence. Since this is dependency infor­
mation and its relationship cannot be fixed in advance, 
it is not straightforward to represent this by attr ibute-
value pairs. 

We show that graph-based induction [Yoshida and 
Motoda, 1995] can nicely be applied to the three learning 
tasks. In this paper, we revisit GBI, show how it can ex­
tract typical patterns from a set of directed graphs and 
how it can induce classification rules using a similar tech­
nique in the Top Down Decision Tree Induction (TDDT) 
algorithm. The first and the second learning tasks are 
implemented as ClipBoard which is a window like UNIX 
shell [Yoshida and Motoda, 1996], and the th i rd task is 
implemented as Prefetch daemon that is hidden from the 
user. The results clearly show that the dependency anal­
ysis of computational processes activated by the user's 
commands, which is made possible by GBI, is indeed 
useful. ClipBoard is in daily use and its prediction ac­
curacy and response t ime are satisfactory. Prefetch dae­
mon works as expected only for I /O intensive task due 
to an implementation problem, and thus needs further 
improvement. 

The following section introduces the three learning 
tasks. Subsequent sections describe the learning method 
GBI and summarize the results of learning experiments 
performed to date. The last two sections consider lessons 
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learned from this study and directions for future re­
search. 

2 Learn ing Tasks 
Command prediction is a real t ime task that takes a 
user's operational history and predicts the next com­
mand. Figure 1 shows, in a simplified form, an example 
of operational history when a user is making a document 
using a latex document formatter. The bold arrows show 
the command sequence. The history includes, in addi­
tion to this, I /O relationships between commands, and 
thus, takes the form of a directed graph. Each link has 
a label that corresponds to a file extension. For exam­
ple, the link connecting latex to emacs has a label tex. 
However, one l ink is reserved for sequence information. 
ClipBoard keeps recording and updating the history, and 
at any point of operation, predicts the next command. 
The learning task is to induce classification rules from 
the past history. For each command in the past, a di­
rected graph of a certain depth (number of sequentially 
connected links) and width (number of sibling links) is 
taken out1 . Each directed graph forms a training exam­
ple. Its root is a class and the rests are considered to be 
nested attributes. 

Figure 1: I /O relationships between commands (appli­
cations) 

Script generation is a batch task that extracts fre­
quently occurring patterns from a large graph represent­
ing a history of order of days, generalizes the arguments 
and generates shell scripts to execute a sequence of oper­
ations by a single command. Figure 2 shows an example 
of the generated scripts when a user repeatedly calls up 
emacs, latex and xdvi 

File prefetching is a real t ime task that predicts files to 
be used in the immediate future and prefetches them into 
the cache. Unlike the command prediction, prefetching 
must predict a few steps ahead and thus more than one 
file. The learning task is done in a batch mode using a 
large directed graph. The task is to extract frequently 
occurring patterns first like script generation, from each 

1In the experiments described in 4.1, the depth was set 
5 and the width 128 (this is maximum and automatically 
adjusted). 

Figure 2: Example of a generated script 

of which a prefetch rule is generated and then to merge 
them into a single trie structure (example shown in 
Fig. 10). The prefetching is made in real time based 
on this trie. Since prefetching is automatic, this task is 
invisible. 

3 G r a p h - b a s e d I n d u c t i o n 
3.1 F i n d i n g Regular i t ies in a D i rec ted 

G r a p h 
GBI was originally intended to find interesting concepts 
from inference patterns by extracting frequently appear­
ing patterns in the inference trace. In [Yoshida and Mo 
toda, 1995], it is shown that GBI was able to discover 
the notion of NOT and NOR from the simulation traces 
of an electric circuit. In this application, the original in­
puts are causal relations of voltage and current between 
various nodes of the circuit; there is no notion of logical 
operation. However, by finding regularities in the input 
traces, it was able to lift up the abstraction level and find 
more abstract concepts. Later, we showed that the same 
idea can be applied to other types of learning (speed up 
learning and classification rule learning) [Yoshida et a/., 
1994]. " 

The original GBI was so formulated to minimize the 
graph size by replacing each found pattern with one node 
that it repeatedly contracted the graph. The graph size 
definition reflected the sizes of extracted patterns as well 
as the size of contracted graph. This prevented the al­
gorithm from continually contracting, which meant the 
graph never became a single node. Because finding a 
subgraph is known to be NP-hard, the ordering of links 
is constrained to be identical if the two subgraphs are 
to match, and an opportunistic beam search similar to 
genetic algorithm was used to arrive at suboptimal solu­
tions. In this algorithm, the primitive operation at each 
step in the search was to find a good set of linked pair 
nodes to chunk (pairwise chunking). 

Because the search is local and stepwise, we can adopt 
an indirect index rather than a direct estimate of the 
graph size to find the promising pairs. On the basis of 
this notion, we generalize the original GBI, and further 
extend it to cope wi th the classification problem. The 
idea of pairwise chunking is given in Fig. 3, and the gen­
eral algorithm in Fig. 4. 

The selection criterion of the pair nodes should be such 
that its use can find interesting patterns (e.g., patterns 
occurring more frequently than others or patterns more 

MOTODA & YOSHIDA 1623 



Figure 3: The idea of graph contraction by pairwise 
chunking 

easily identifiable than others). Proper termination con­
dit ion must be used in accordance wi th the selection cri­
terion (e.g., iteration number, chunk size, change rate 
of selection indexes, etc.). Examples of such indexes are 
information gain [Quinlan, 1986], information gain ra­
t io [Quinlan, 1993] and gini index [Breiman et a/., 1984]. 

We use information gain as an index here, but the 
other indexes can be used in the same way. Unlike de­
cision tree bui lding where the index is used for selecting 
an attr ibute, here we have to select linked pair nodes. 
Each node has a value (color) and each link has a la­
bel. We can interpret the tr iplet as saying 
that the value of the i-th attr ibute of the parent Ak 

is or when the i- th at tr ibute takes the value Bj, 
its immediate result is Ak. The problem is which ( i , j , k) 
to select to chunk. A natural way is to focus on one of 
the three elements, and select the best remaining two to 
identify the chosen element. Three alternatives exist: a) 
focus on k, b) focus on i and c) focus on j. Case a) tries 
to find the at tr ibute and its value pair that best char­
acterizes the chosen immediate result. Likewise, case b) 
tries to find the result and the attr ibute value pair that 
best characterizes the chosen attr ibute, and case c) tries 
to find the at tr ibute and its result pair that best charac­
terizes the chosen at t r ibute value. Which one to adopt 
depends on what the directed graph represents in terms 
of the original problem description. The default is to 
choose a). 

In what follows, only case a) is described. The other 
two are obtained by permutating the subscripts. Let the 
underline in the subscript mean its complement (e.g., i 
means the attr ibutes other than the i-th.), the overline 
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This is recursively repeated unti l each subgroup, after 
testing, contains a single class value or some stopping 
condition is satisfied. 

4 C l i pBoa rd Interface 
Figure 5 shows the system configuration for ClipBoard 
Interface and Prefetch Daemon. The process I/O 
recorder is a part of the operating system and records 
all the I /O operations of each command issued. This 
information is represented together wi th the command 
sequence by a directed graph as operation history. GBI 
program runs on this graph and generates prediction 
(classification) rules and typical patterns. The mouse-
based command controller uses these to 1) select the 
next command, and to 2) create UNIX shell scripts. The 
prefetch daemon uses the typical patterns to generate 
prefetch rules and merges them into a trie structure to 
3) prefetch files. 

(c) ClipBoard suggests emacs for paper.tex 

Figure 6: Screen image of ClipBoard 

Figure 5: ClipBoard and prefetch system configuration 4.1 C o m m a n d P r e d i c t i o n 

Figure 6 displays the screen images of ClipBoard dur­
ing a simple document processing task. When ClipBoard 
starts wi thout any information, the screen lists only file 
names (Fig. 6 (a)). At this stage, after selecting a file 
to be processed, the dialogue box appears so that the 
user can specify the command (Fig. 6 (b)). If the user 
specifies emacs, it treats emacs as the default for the 
file w i th the extension tex. ClipBoard tries to learn the 
appropriate command for each file extension, and rec­
ommends the command by icons (Fig. 6 (c)). ClipBoard 
never asks the user for information. The user can always 
override Clip Boards recommendation, which triggers the 
learning task. Icons for the same files change over time 
reflecting context changes. 

Currently, ClipBoard interface is wri t ten by 
The G B I program has both C and Lisp versions. The 
prefetch daemon is wri t ten by Java. 

I / O I n f o r m a t i o n Ana lys i s 
Consider an operation history in Table 1. As shown 

in steps (A), (B), and (C), the file paper.dvi is processed 
by three different commands: xtex, xdvi and dvi2ps. Fig­
ure 7 shows the corresponding directed graphs that are 
inputs to GBI. The algorithm described in 3.2 first 
chooses the dvi attr ibute and its value latex 
for testing, and chunks the triplets (xdvi, dvi, latex) in 
(B) and in (C). The No branch con­
tains only one instance, (A) , and the Yes branch contains 
two instances, (B) and (C). Next, the algorithm chooses 
the sequential attr ibute and its value xdvi for testing and 
chunks the tr iplet , . This 
separates (C) from (B) and the induction stops3. The 

3In reality, there are many occasions in history where dvi 
files are used by the same command that has different de-
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shaded parts in Fig. 7 are the typical patterns. Figure 8 
is the interpretation of the extracted patterns. 

Figure 8: Interpretation as prediction rules 

GBI assumes the existence of a strong correlation be­
tween the linked attributes. As described in 3.2, the 
algorithm follows the standard T D D T induction, but 
the attributes to be selected are dynamically modified 
in the process. Note that it is impractical to represent 
the graph structure by a single table of attribute-value 
pairs. 

E v a l u a t i o n 
The above algorithm for the classification problem was 
implemented and tested for the command prediction 
problem using both artif icially generated and real op­
eration data. 

Art i f ic ial data were generated approximating user's 
behavior by a Markov model that comprises five differ­
ent tasks. The model used is shown in Fig. 9. About 

2000 different sequences were generated, in which com­
mands that were not in the model (e.g., Is , df, etc.) were 
added as noise. Three fold cross validation was used to 
evaluate the prediction accuracy. The results are shown 
in Table 2. This table includes the results obtained by 
other methods for comparison. 

Figure 9: Markov model used to generate artificial data 

Table 2: Prediction accuracy for artificial data 

There are two cases for GBI. G B I 1 is the case where 
dependency information is used only for the commands 
(nodes) preceding the root node. In other words, no de­
pendency information is used for the root node. This re­
flects the fact that the argument is not known in advance 
to predict the next command. GBI2 is the case where 
the dependency information for the root node (command 
to predict) is also used. This corresponds to a case where 
the file to process is specified, and this is exactly what 
the current ClipBoard Interface does4. In [Yoshida and 
Motoda, 1996] the former is called command prediction 
and the latter, application selection. 

Default is the simplest way of prediction that al­
ways assumes the most frequently used command to 
be the next command. LD is a linear discrimination 
method [James, 1984], which gave the same answer as 
the default and did not improve the accuracy. The best 
result by the conventional method was achieved by the 
decision-tree learning method CART [Breiman et al., 
1984]. LD and CART use only sequential informa­
tion because these methods cannot deal w i th information 

pendency, in which case the chunking process becomes more 
complicated. 

4 This is not a strong restriction because files associated 
with a given task are generally known and the prediction of 
the command for each of these files can be made with this 
method. 
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GBI\: Without dependency info, for the root node 

(command to prediCt) 
GBI2. With dependency info, for the root node 



having a graph structure. From these results, it is clear 
that the I /O dependency information (in particular, the 
one immediately before the command to predict) plays 
an important role in increasing the accuracy of predic­
t ion. 

The same algorithm was tested against the real data 
that had been taken from the log of daily usage over 
three months of a single user. The data include about 
2000 kinds of commands. Two-thirds of them was used 
as a training data set and the rest as a test data set. 
The result is shown in Table 3. It is clear that GDI 
outperforms the other methods. Interestingly G B I 1 is 
much better than CART in real data. This is probably 
because the number of commands actually used is much 
larger than the artificial data case and the noise level 
is also higher. Unfortunately the value for GBI2 is not-
available for the same data set. It is instead estimated 
by the daily usage when the performance approached the 
steady state. Once again, the role of I /O dependency is 
clear. 

Table 3: Prediction accuracy for real data 

The non-essential commands such as Is and df can be 
naturally ignored by a mouse-based interface system. If 
we ignore these effects and focus on the important com­
mands, we obtain the results shown in Table 4, which 
is by far better. Whi le evaluation of ClipBoard is still 
ongoing, most of the important commands predicted by 
ClipBoard is quite adequate, and the user does not feel 
any burden in using i t . 

Table 4: Prediction accuracy of selected commands 
(GBI1) 

4 .2 S c r i p t G e n e r a t i o n 
I / O I n f o r m a t i o n Ana l ys i s 
To be precise, the I /O recorder keeps track of 1) all pro­
cess creations in the operating system, and 2) all I /O 
operations (open system calls). Thus, even in a mult i -
window and/or a multi-task environments, it is possi­
ble to extract relationships between commands that may 
have been issued across the different shells. We use the 
whole graph to extract patterns. The extracted pat­
terns are frequently appearing ones in the history, and 
we convert them to shell scripts. The input file name is 
changed to the argument of the script wi th extensions 
retained (See Fig. 2). 

E v a l u a t i o n 
Table 5 lists the scripts generated from the sample his­
tory, which involves about 10,000 process creations and 

about 130,000 I/O operations. The number of processes 
includes system programs that were not invoked by the 
user (e.g., telnet daemon, line printer spooler daemon, 
etc.), some user commands (e.g., shell scripts), and cre­
ated child processes. The number of the actual com­
mands invoked by the user was approximately 2000. 

Table 5: Generated scripts with more than three com­
mands 

Since the algorithm only considers the frequency or its 
equivalent as measured by the index, evaluation of the 
usefulness or importance of the generated scripts must 
be rendered to the user. Unlike the case for command 
prediction, there is no direct feedback from the user. The 
scripts in Table 5 have clear meanings except script 3. 
Wi thout having knowledge about the C compiler, Clip-
Board could generate scripts 4 and 6. ClipBoard did not 
use any pre-specified knowledge about latex and related 
commands in generating script 5. Script 1 is a unique 
script for this particular user. Without ClipBoard the 
user has to write this by him or herself. 

5 Prefetch Daemon 
I / O I n f o r m a t i o n Ana lys i s 
In a multi-task environment different users work on the 
same machine for different tasks (e.g., editing and p r o 
gramming). Even though the I /O operation sequence of 
each task has regularity, the overall I /O sequence is af­
fected by the subtle t iming of each task progress. The 
graph structure can encode the correct information even 
in a multi-task environment. Just like in the case of 
script generation, GBI analyzes the process data and 
represents them by a set of directed graphs, from which 
it extracts typical patterns. Each of the patterns repre­
sents an aspect of the user (we call it user model for con­
venience). Figure 10 shows how these patterns are used 
to prefetch files. First, each of the patterns is converted 
into a prefetch rule. Unlike the command predictions, 
the point here is not to predict the root node from the 
rest, but to predict from the bottom (first) node in the 
sequence how certain files are going to be used along the 
subsequent command execution. Each rule consists of a 
sequence of events, i.e., command executions and I/O 
operations, wi th a list of files to be prefetched. Next, 
each rule is merged into a single trie structure. The sys­
tem checks the common event sequences in the rules and 
merges the same parts into a single structure. For ex­
ample, in Fig. 10, the first nodes of the two user models, 
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A and B, are the same and are thus merged. In order 
to improve the prefetch accuracy, the frequency informa­
tion in the log is used to prune files5. The generation of 
trie structure is performed as a batch process. 

Figure 10: User models and a merged trie structure for 
prefetching 

E v a l u a t i o n 
After the batch process constructs the trie structure, the 
prefetch daemon uses this tr ie structure to prefetch files. 
The daemon maintains the status information for each 
process. If a new process is activated, the prefetch dae-
mon creates a new pointer which points the root node 
of the trie structure. If the process executes command 
emacs (i.e., the program memorized in the succeeding 
trie node), the daemon prefetches program files make 
and bibtex and updates the pointer. In Fig. 10 process 
(a) shows the position of the pointer after it executed 
emacs and then bibtex. Each time it updates the pointer, 
it also looks for the same command from the root (i.e., 
the command just below the root node) as if a new pro­
cess wi th this command was init iated. When it finds the 
command, it also prefetches the associated files. This is 
recursive. If the actual events of the process exhibit a 
different sequence from the trie, all the pointers for this 
process are removed and the prefetch daemon ignores 
the process unt i l a new process is init iated. 

The above prefetch mechanism was tested for the daily 
usage data (the length of the log was about 38,000). The 
prefetch cache size was automatically adjusted by OS. 
The trie had approximately 1000 nodes. Although fur­
ther experiments are necessary, the preliminary experi­
ments show that the trie structure has high prediction 
accuracy. For the experiment we conducted, the hit rate 
was almost 100%. 

Unfortunately, even wi th the high hit rate, the current 
implementation slows down the CPU intensive tasks due 

5There are many patterns that partially overlap and/or 
are subpatterns of the others. A threshold can be set to the 
number of occurences of the files for them to be prefetched. 

to the CPU resources used by the prefetch daemon. We 
could only speed up I /O intensive tasks. It could indeed 
speed up the invocation of a large program such as X-
windows and mule to the extent that we did not feel 
we had waited. The process switching overhead and the 
JAVA byte code interpretation are the sources of the 
problem. A kernel embedded file prefetcher that is coded 
by C and assembler would solve the problem. 

6 Discussion 
6.1 Learning Semantics from Syntax 
Although what OBI does is simply extracting the syn­
tactic/statistical nature of what a user has done in the 
past, it is sti l l possible to extract useful semantics of 
the user's behavior. The user never tells the start of 
his/her task to ClipBoard, but the scripts generated by 
GDI does capture a piece of meaningful tasks. Most cru­
cial is the information source. The surface form of the 
user's input (i.e., command sequence) was not enough. 
Other information that is hidden and invisible (i.e., pro­
cess I /O) contributed much. Standard techniques (e.g., 
index based on information theory, cross validation, etc.) 
that statisticians have developed are also important fac­
tors. 

6 .2 I n f o r m a t i o n t o C a p t u r e U s e r B e h a v i o r 
[Piernot, 1993] addresses the importance of the context 
in an interface system. File extensions we used in our 
analysis to capture the I /O information helped provide 
rich context. Other information that may help capture 
the user's behavior is command exit status and time of 
execution. For example, if the user fails to compile a 
program because of a simple syntactic error, the next 
step tends to be an editing task. If s/he succeeds, it 
tends to be a test run. Thus, the exit status seems to be 
informative. Since most users tend to check e-mail in the 
morning, the time of day also seems to be informative. 
Experiments using ClipBoard uti l izing such information 
are currently under investigation. 

The method of encoding information is also important. 
We encoded the I /O information from how a file was 
made by application program. The experimental results 
suggest the adequacy of this encoding, but this is not the 
only way to use the I /O information. For example, how 
a file was used by application program is another way 
of encoding. Figure 11 shows a graph format that was 
designed to emphasize this aspect. We confirmed the 
usefulness of this encoding wi th a version of ClipBoard 
that uses this as an alternative to the sequence infor­
mation. Note that this encoding has a noise-tolerant 
nature. User errors, such as mistyping and wrong com­
mand selection, and unexpected interrupts, such as new 
mail arrival, sometimes cause noise in sequence informa­
tion. The replaced I /O information is less affected by 
such noise. 

6 .3 M e t h o d o f A n a l y z i n g U s e r B e h a v i o r 
If the user is always logical and consistent, the analyti­
cal methods, such as explanation-based learning, are ad-
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(C) is the directed graph of the history information at Step 
(C) in Figure 1. The shaded part indicates that paper, dvi 
was previously used by xdvi. (C)' is the reconstructed graph. 
The dvi node is removed for brevity and the (used by) xdvi 
node replaces the sequence information. 

Figure 11: Graph encoding the knowledge of how a file 
was used. 

equate in making the user behavior model. Unfortu­
nately, the user is sometimes illogical and inconsistent, 
and capriciousness makes it difficult to apply analyti­
cal methods to the interface problem. The statistical 
methods, such as linear discrimination and k-nearest-
neighbor [Jlames, 1984], and empirical learning methods, 
such as [Quinlan, 1986], seem to be more adequate. The 
errors, i.e., mistyping and wrong command selection, are 
naturally ignored as noises in these methods. However, 
these methods are not suited to handle structural data 
as was the case for this study. 

If we set the maximum width (number of input files) 
per command and the maximum depth (number of 
chains of I /O relationship), it is possible to design a table 
of attributes and values that can record all the necessary 
information. If we take the maximum width as 50 and 
the maximum depth as 5, a table wi th attributes 
is created6. This is only for one instance. If the analysis 
requires 1000 cases, the table size becomes huge. 

Inductive logic programming (ILP) [Quinlan, 1990; 
Muggleton and Feng, 1992; Pazzani and Kibler, 1992], 
on the other hand, is more expressive and captures the 
relations most naturally in first-order logic. It can also 
handle noise [Quinlan, 1990; Pazzani and Kibler, 1992]. 
To explore the potential of this approach, we tried to use 
FOCL, one of the most efficient ILP systems, to analyze 
the real data used in Section 4.1. However, FOCL took 
more than 4 hours to find the first test condition of the 
first rule; therefore we had to give up this approach7. 

GBI's expressiveness lies in between the attr ibute-
value pairs and the first-order logic. It is a l imited form 
of propositional calculus. Its learning potential is much 
weaker than that of ILP, but stronger than that of the 
attribute-value representations and yet as efficient. We 
demonstrated that command prediction we addressed in 
this paper is a class of the problem that GBI's framework 
fits well. 

6.4 O t h e r App l i ca t i ons 
The idea of ClipBoard seems to be useful in designing 
interface systems of other kinds such as automatic chart 

6Note that a typical (not maximum) single run of the latex 
command receives 50 input files (e.g., .tex, .aug, . sty. .bbl, 
.eps, .tfm, .fmt, etc). 

7We have not taken advantage of the search strategy used 
in GBI. 

format selection in spread sheet and data base, naive-
user guidance and installation guidance-and-diagnosis 
systems. The last two are meant to apply the knowl­
edge learned from expert behavior to non-expert users. 
During the development of ClipBoard, we were able to 
use the I /O information itself, i.e., the raw history data, 
for debugging purposes. A good display system of this 
information seems to be beneficial even for an expert 
user. 

We are aware of some minor things that could improve 
ClipBoard's ease of use. For example, we could improve 
ClipBoard's selection function by highlighting the second 
suggestion shown in the dialog box (See Fig. G (b)) when 
the user wants to override ClipBoard''s first suggestion 
(which is displayed by icon). 

One promising application that goes beyond those 
within a single machine is dynamic World Wide Web 
caching. The rapid growth of information gathering 
through W W W causes a heavy network overload, and 
the resulting slow response is causing a problem. Dis­
tributed caching is a promising approach. Our prelimi­
nary study [Yoshida, 1997] by GBI shows that it is pos­
sible to reduce the overload by extracting frequent oc­
curring data transmission patterns from the wide area 
network flow and using this to allocate distribute cache 
storage. The simulation assumed the situation where 
32,000 W W W servers are accessed simultaneously by 16 
clients. Each client and router had a 32 MB cache capac­
ity. The data were taken from the access log of our proxy 
server that included 2.3 mill ion data transfers (18.7 GB 
in size). Figure 12 shows how the traffic changes with 
the time of day with and without cache, from which we 
observe 26% reduction of traffic between 10 am and 8 
pm. The traffic reduction at the peak time amounts to 
100 MB. 

Figure 12: Network traffic distribution over the time of 
day wi th and without cache 

7 Related Work 
Intellectual assistance by computers has attracted many 
people, and various attempts have been undertaken with 

MOTODA 8c YOSHIDA 1629 



different approaches and for different tasks. There are 
many terms that characterize these approaches such as 
learning apprentice, software agent, learning agent, in­
terface agent, programming by example or demonstra­
t ion, personal knowledge based system, etc. What is 
common to many of them is that they observe repetition 
or regularity in the user's behavior and use them for au­
tomation, prediction and customization in one way or 
another. 

The amount of knowledge that has to be provided in 
advance varies among the approaches. General remarks 
are that making the user program everything requires 
too much insight, understanding and effort from the user, 
and having to encode a lot of domain-specific background 
knowledge about the task and the user also requires a 
huge amount of work from the knowledge engineer. Both 
have fixed competence, and are hard to customize to 
individual user differences or changes of habits. Some 
sort of automatic knowledge acquisition that can capture 
each user's habits is needed. 

EAGER [Cypher, 1991] is an example of program by 
demonstration (PBD), which is a Hyper' Text system that 
keeps watching a user's actions, detects an iteration and 
offers to run the iterative procedure to completion by 
generalizing the repetitions and making macros. My­
ers 's demonstrational formatter [Myers, 1991] is also an 
example of PBD. It does not focus on the repetit ion, 
but generalizes a single example to create a template 
for later use, which enables the formatting of headers, 
itemized lists, tables, references, etc. Another example 
is Gold [Myers et a/., 1994] which is a business chart ed­
itor. It is given the knowledge of properties of the data 
and the typical graphics in business charts to generalize 
a single, or a very few examples, by interpreting them as 
a combination of primitives. 

[Greenberg and Wi t ten , 1988] analyzes repetitive pat­
terns in the U N I X command histories and observes some 
regularities. [Masui and Nakayama, 1994] also uses the 
repetitive nature for a predictive user interface. When a 
user types a repeat key after doing repetitive operations, 
an editing sequence corresponding to one iteration is de­
tected, defined as a macro, and executed at the same 
time. Although being simple, it covers a wide range 
which had to formerly be covered by keyboard macro. 

Al l of the above approaches do not use machine learn­
ing techniques although they do guess and generalize. 
The Interface agent of [Maes and Kozierok, 1993] takes 
a machine learning approach. They address the problem 
of self-customizing software at a much more task inde­
pendent level. The core is to learn by observing the user, 
i.e., by find reguralities in the user's behavior and using 
them for prediction. They also adapt two other learning 
modes: learning from user feedback and learning by be­
ing told. They used memory-based learning (k-nearest 
neighbor) which is good for explanation. Situations in 
the user are described in terms of a set of attributes 
which are hand-coded. The tasks that they applied are a 
calendar management agent and an electronic mail clerk. 

The personal learning apprentice CAP [Dent et a/., 

1992] is similar to the above. It is an interactive assis­
tance that learns continually from the user to predict de­
fault values. Their application is a calendar management 
apprentice which learns preferences as a knowledgeable 
secretary might do. Two competing leaning methods are 
used: decision tree learning and backpropagation neural 
net. The attr ibute value representation suffices for this 
purpose. Another related system addresses the task of 
form-fil l ing [Hermens and Schlimmer, 1993]. They use 
decision tree learning to predict default values for each 
field on the form by referring to values observed on other 
fields and the previous form copy. 

[Schlimmer and Hermens, 1993]'s pen-based interac­
tive note taking system is a self-customizing software to 
eliminate the need for user customization. It starts wi th 
partially-specified software and applies a machine learn­
ing technique to complete any remaining customization. 
The system learns a finite state machine to character­
ize the syntax of user's notes and learns decision tree to 
generate predictions. Letizia [Lieberman, 1995] is an in­
terface agent that assists a user browsing the W W W . It 
tracks user behavior and attempts to anticipate items of 
interest by doing concurrent, autonomous exploration of 
links from the user's current positions. Intelligent agent 
for information browsing is a hot area and many sys­
tems are being pursued (e.g., [Etzioni94 and Weld, 1994; 
Perkowits and Etzioni, 1995]. 

The research on prefetching is carried out by a sep­
arate community. The standard Least Recently Used 
(LRU) based caching offers some assistance, but ignoring 
any relationships that exist between file system events 
fails to make ful l use of available information. The clos­
est work that uses the relationship would be [Kroeger 
and Long, 1994]. They use trie structure to memo-
rize previous I /O sequence but no explicit learning is 
performed. Their results indicate that the predictive 
caching gains on the average 15% more cache hits than 
the LRU based caching. However, since they are using 
only sequential information, their method does not work 
well in a multi-task environment. 

A l l of the applications that use machine learning tech­
niques do not require relational representations. The 
data are represented by a set of features. Analysis of se­
quential information is enough for the selected applica­
tions. Some require additional task specific knowledge. 
We showed in this paper that there are other applica­
tions that this success cannot be easily generalized, and 
proposed the GBI as a general induction mechanism for 
this type of applications. 

8 Conclusion 
We have modeled a user adaptive interface that can pre­
dict next command, generate scripts and prefetch files 
in a multi-task environment. The analysis of behavioral 
data indicated that the directly observable sequential 
records are not enough to capture the behavior, and that 
simultaneous use of process I /O information that is hid­
den from the user is beneficial. An efficient induction 
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algorithm that can handle relational data was needed 
and a technique called graph-based induction was ap­
plied. It can find frequently occurring patterns from a 
graph representation. It also induces classification rules 
from structured data that have intra-relationship. Pair-
wise chunking, which is the heart of the algorithm, does 
not guarantee an optimal solution by any means, but 
empirical study shows that use of statistical measure re­
sults in a good solution. It is efficient and can run in 
real time. The command prediction module is in daily 
use. Shell script generation works as expected but is less 
used. Prefetching daemon sti l l needs a better implemen­
tation to enjoy the real benefit . 
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