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1 In t roduc t i on 
Many science and engineering applications require the 
user to find solutions to systems of nonlinear constraints 
over real numbers or to optimize a nonlinear function 
subject to nonlinear constraints. This includes appli­
cations such the modeling of chemical engineering pro­
cesses and of electrical circuits, robot kinematics, chemi­
cal equil ibrium problems, and design problems (e.g., nu­
clear reactor design). The field of global optimization is 
the study of methods to find all solutions to systems of 
nonlinear constraints and all global opt ima to optimiza­
tion problems. Nonlinear problems raise many issues 
from a computation standpoint. On the one hand, de­
ciding if a set of polynomial constraints has a solution 
is NP-hard. In fact, Canny [Canny, 1988] and Rene-
gar [Renegar, 1988] have shown that the problem is in 
PSPACE and it is not known whether the problem lies 
in NP. Nonlinear programming problems can be so hard 
that some methods are designed only to solve problems 
up to, say, 20 variables. On the other hand, computing 
over real numbers raises numerical problems because of 
the finite nature of computers. 

N U M E R I C A [Van Hentenryck et a/., 1997c] is a mod­
eling language for global optimization which makes it 
possible to solve nonlinear problems written in a form 
close to the statements tradit ionally found in textbooks 
and scientific papers. In addit ion, and contrary to most 
nonlinear programming tools, N U M E R I C A provides many 
guarantees on its results (modulo implementation er­
rors): 

• Co r rec tness : N U M E R I C A never produces any 
wrong solution; 

• Comp le teness : Under reasonable assumptions, 
NUMERICA is guaranteed to isolate all solutions to 
nonlinear equation systems and all global opt ima to 
unconstrained and constrained optimization prob­
lems. 

• F in i t eness : N U M E R I C A is guaranteed to converge; 

• C e r t a i n t y : N U M E R I C A can prove the existence of 
solutions and the absence of solutions. 

These functionalities should be contrasted with tradi­
tional numerical methods (e.g., quasi-Newton methods). 

Tradit ional methods are inherently local: they converge 
quickly when they are close to a solution or to a local 
opt imum but it is outside the scope of these methods 
to find all solutions (or global optima) or to prove the 
existence or absence of solutions. Tradit ional methods 
may also fail to converge on hard problems. 

The l imitat ions of local methods come from their in­
abil i ty to obtain global information on nonlinear func­
tions. There is no way to collect global information on 
a function by probing finitely many points. In contrast, 
N U M E R I C A has the abil i ty to evaluate nonlinear func­
tions over intervals, which provides global information 
on the value of the function on any point in the intervals. 
The global nature of this information makes it possible 
to bound numerical errors automatically and to prune 
away entire regions of search space. As a consequence, 
the use of intervals makes it possible to implement global 
search algorithms for nonlinear programming. 

Of course, the use of intervals in numerical compu­
tations is hardly new, since it originated from Moore's 
thesis in 1966 [Moore, 1966] and is a very active re­
search area (e.g., [Hammer et al., 1993; Hansen, 1992; 
Hansen and Greenberg, 1983; Hansen and Sengupta, 
1981; Hong and Stahl, 1994; Kearfott, 1990; 1991; 
1997; Krawczyk, 1969; Moore, 1966; Neumaier, 1990; 
Rump, 1988]). What distinguishes the constraint-solving 
algorithm of N U M E R I C A is the combination of techniques 
from numerical analysis and artif icial intelligence to ob­
tain effective pruning techniques (for many problems). 
At a very abstract level, NUMERICA can be viewed as 
mapping continuous problems into discrete problems, 
which is exactly the opposite of tradit ional relaxation 
techniques (e.g., in integer programming [Garfinkel and 
Nemhauser, 1972]). Once nonlinear programming prob­
lems are viewed as discrete problems, it is natural to 
apply consistency techniques such as arc- and path-
consistency (e.g., [Montanari, 1974; Mackworth, 1977; 
Mack worth and Freuder, 1985]) which have been suc­
cessfully applied in many areas [Van Hentenryck and 
Saraswat, 1996]. 

N U M E R I C A , and its constraint-solving algori thm, does 
not aim at replacing focal methods. Local methods 
are extremely effective tools when they apply and are 
probably the only way to approach large-scale nonlin-
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ear programming problems involving thousands of vari­
ables. However, there are many applications where the 
additional functionalities of N U M E R I C A are needed, ei­
ther because of the nature of the application, or because 
the problem is too hard for local methods, or simply be­
cause the robustness of the approach simplifies the task. 
This is especially true for small-scale highly nonlinear 
problems as those found in chemical and electrical engi­
neering where tradit ional methods are likely to diverge, 
are unable to locate all solutions or to prove the absence 
of solutions (a requirement in these problems). Refer­
ence [Gehrke and Marquardt, 1996] in fact indicates that 
progress in chemical engineering increases the need for 
these functionalities. 

The rest of this extended abstract illustrates the ad­
vantages of N U M E R I C A and contrasts it wi th tradi­
tional methods. More information about N U M E R I C A 
can be found in [Van Hentenryck et a/., 1997c; 1997a; 
Michel and Van Hentenryck, 1997; Van Hentenryck et 
a/., 1997b]. 

2 W h a t is Possible and W h a t is Not? 

Today's computers can manipulate and store only a fi­
nite amount of information. Since the solution of a non­
linear problem may be a real number that cannot be 
represented in finite space or displayed on a screen in 
finite t ime, the best we can hope for in general is a point 
close to a solution (preferably wi th some guarantee on 
its proximity to the solution) or an interval enclosing a 
solution. 

Computer methods for solving nonlinear problems 
typically use floating-point numbers to approximate real 
numbers. Since there are only finitely many floating-
point numbers, these methods are bound to make nu­
merical errors. These errors, although probably small 
considered in isolation, may have fundamental implica­
tions on the results. Consider, for instance, Wilkinson's 
problem, which consists in finding all solutions to the 
equation 

in the interval [—20.4, —9.4]. When p — 0, the equation 
obviously has 11 solutions. When it has no 
solution. Wilkinson's problem clearly indicates that a 
small numerical error (e.g., assume that p is the output 
of some numerical computation) can have fundamental 
implications for the results of an application. These nu­
merical issues require users of numerical software to ex­
ercise great care when interpreting their results. Wi th 
this in mind, consider the combustion problem, which 
consists in finding positive values for 

satisfying the equations 

Using (0 .5 , . . . , 0.5) as starting point and the default set­
t ing of the system, a well-known commercial system pro­
duces a point, say a. In the same conditions but with 
the defaults set to obtain the highest numerical precision, 
the same commercial system produces another point, say 
6, and prints a warning that the machine precision is 
not sufficient to achieve the desired accuracy. It is not 
obvious in this case how to interpret these results in a 
meaningful way. 

It is also interesting to mention the common belief 
that proving the existence or uniqueness of solutions is 
outside the scope of computer algorithms. For instance, 
Dennis and Schnabel in their excellent text [Dennis and 
Schnabel, 1983] present the three functions 

and state 

It would be wonderful if we had a general-
purpose computer routine that would tell us: 

It is unlikely that there will ever be such a rou­
tine. In general, the questions of existence and 
uniqueness —does a problem have a solution 
and is it unique?— are beyond the capabilities 
one can expect of algorithms that solve non­
linear problems. In fact, we must readily ad­
mit that for any computer algorithm there ex­
ist nonlinear functions (infinitely continuously 
differentiate, if you wish) perverse enough to 
defeat the algorithm. Therefore, all a user can 
be guaranteed from any algorithm applied to a 
nonlinear problem is the answer, "An approx­
imate solution to the problem is . . . " or "No 
approximate solution to the problem was found 
in the allocated time." 

This statement is not correct in general and applies 
mainly to local methods. Such wonderful procedures in 
fact exist (within the l imits imposed by the finite nature 
of computers) and one of them is used in N U M E R I C A . 

Let us conclude this section by showing the behavior 
of NUMERICA on the above examples. On Wilkinson's 
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problem, N U M E R I C A returns —20, —19, . . . , —10 as solu­
tions and proves their existence when p = 0; it proves 
the absence of solutions when On the com­
bustion problem whose statement is depicted in Figure 
1, NUMERICA returns the unique positive solution and 
proves its existence in about 0.1 second. Solution 6 pro­
duced by the commercial system mentioned previously 
is close to being contained in this output box. On the 
functions 

and for an in i t ia l range N U M E R I C A returns 
the four ranges enclosing the solutions and proves the 
existence of a solution in each of them for f\; it returns 
two ranges and proves the existence of a solution in each 
of them for f2 it shows the absence of solutions for f3. 
The computation times for these examples are negligible. 
More precisely, the N U M E R I C A statement 

3 Local Versus Global O p t i m u m 
Tradit ional globally convergent methods when applied 
to a minimizat ion problem converge to a local opt imum 

from almost all starting points. They are unable however 
to isolate all local opt ima and the global opt ima. This 
l imitat ion is well il lustrated by the minimization of the 
function 

and the maximization of the function 

as well as by the minimization of the function 
f{x\,..., xn) defined as 

These functions have many local minima. For instance, 
the last function has 1010 local min ima when n = 10 but 
only a single global min imum. It is unlikely that a local 
method wi l l converge towards a global min imum with­
out external knowledge about these problems.1 Also, a 
local method wi l l never be able to prove that the global 
min imum has been found. In contrast, N U M E R I C A iso­
lates all global opt ima to these functions without diffi­
culty. Figure 2 is the N U M E R I C A statement for the last 
problem and it involves several of the features of the 
languages: input constant, minimizat ion, function, and 
summation. In addit ion, it uses a trigonometric function 
s i n and a predefined constant p i . N U M E R I C A seems to 
be essentially quadratic in the number of variables on 
this problem, as shown in Table 1. 

4 Convergence 
In addit ion to the above theoretical l imitat ions, local 
methods also suffer f rom practical problems when im­
plemented on a computer. One of the main problems 
is of course convergence. An interesting example in this 
context is the transistor modeling example of Ebers and 

1Of course, there always exists a starting point that will con­
verge towards the global opt imum. 
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Figure 3: The Transistor Model Problem 

Table 1: Performance Results on Levy 8'. 

Mol l [Ebers and Mol l , 1954]. The problem is to find a 
solution to the system of nonlinear equations depicted in 
Figure 3 where the variables xi must take their values in 
[0, 10] and the constants are given by 

0.485 
0.369 

5.2095 
23.3037 
28.5132 

0.752 
1.254 

10.0677 
101.779 

111.8467 

0.869 
0.703 

22.9274 
111.461 

134.3884 

0.982 
1.455 

20.2153 
191.267 

211.4823 

The article [Ratschek and Rokne, 1993] summarizes 
various attempts to find a solution to this problem using 
local methods and states 

In 1974, Cutteridge [Cutteridge, 1971] com-
bined local damped Newton-Raphson steps with 
the conjugate gradient method and a second-
order gradient-descent method with eigenvalue 
determination where the two latter methods 
were applied to the least squares problem [...] 
Cutteridge emphasized that only the sophisti­
cated combination of the three methods had led 
to a positive result, i.e., it did not suffice to only 
use the first two approaches mentioned above 

NUMERICA finds the unique solution to the transistor 
modeling problem in the box [0.10]9 and proves its exis­
tence and the absence of other solutions in less than 40 
minutes. The previous interval solution required more 
than 14 months on a network of workstations. 

Another important practical problem is convergence 
to an undesired solution, i.e., a solution that fails to sat­
isfy some external constraints not included in the prob­
lem statement. Globally convergent algorithms are guar­
anteed to converge to some solution or some local mini­
mum from almost any starting point, but they may fail 
to produce a given solution. For instance, a traditional 
quasi-Newton method applied to the transistor model­
ing problem almost always converges to a solution in 
which some variables have negative values. Solution a 
produced by the commercial system on the combustion 

Table 2: Performance Results on Broyden's Function. 

problem has some negative components. Morgan [Mor­
gan, 1987] also mentions that these undesired conver­
gences are typical of chemical equilibrium systems: 

The other day an electrochemist friend came by 
my office with a problem. He was trying to work 
out part of a battery-plate manufacturing pro­
cess. He had set up a math model to deter­
mine the amounts of various metal compounds 
that would be present in the plating bath at var­
ious times. He had ended up with a system of 
10 polynomial equations in 10 unknowns. His 
problem was that Newton's method kept con­
verging to nonphysical solutions. [...] This in­
cident has been repeated in various guises many 
times. 

5 Pract ical i ty 
The functionalities of NUMERICA of course come at 

a price. The intractable nature of nonlinear program­
ming precludes any guarantee on the computation times 
of interval methods. Conventional wisdom claims that 
interval methods are too slow to be of practical use and 
that their guarantees and ease of use come at too high 
a price. The performance of NUMERICA indicates that, 
for a rich collection of nonlinear problems, the price to 
pay is reasonable. Moreover, even when the full func­
tionality of global methods is not needed, NUMERICA 
avoids the tedious work necessary to tune local meth­
ods and find suitable starting points. As a consequence, 
N U M E R I C A ' S ease of use and robustness frequently com­
pensate for a longer running time and may even reduce 
the actual time to obtain a solution. In this context, it 
may be useful to mention that NUMERICA takes essen­
tially linear time in the number of variables to isolate 
the zeros of the Broyden banded function, a traditional 
benchmark from numerical analysis, even when the ini­
tial range of the variable is as large as or larger than, 
say, [ -108 ,108 ] . See Figure 4 for a description of the 
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Broyden banded function in N U M E R I C A and Table 2 for 
experimental results. 

In addit ion, NUMERICA compares well and frequently 
outperforms continuation methods on their benchmarks. 
This good performance comes from a novel combination 
of interval analysis methods (e.g., Hansen-Sengupta's 
operator) and constraint satisfaction techniques. The 
combination of these orthogonal techniques gives sur­
prisingly good results on many problems, although un­
derstanding its strengths and l imitat ions more formally 
requires further research. 

Of course, there are also classes of problems for which 
interval methods are not appropriate at this point be­
cause interval evaluations may lose too much precision. 
For instance, nonlinear least-squares problems are not 
amenable to effective solution wi th the interval methods 
of which we are aware. Interval methods converge, of 
course, on these applications but they do not compare 
well in efficiency wi th local methods. 

6 Challenges and Oppor tun i t ies 
There are many possible ways to improve global meth­
ods for nonlinear programming and we mention some of 
them without t ry ing to be exhaustive. A particularly in­
teresting research avenue (studied by F. Benhamou and 
D. Kapur for instance) is the combination of symbolic 
and numerical methods. New pruning techniques wi th 
a more global view of the problem is also of paramount 
importance to improve the pruning when far from a solu­
t ion. Similarly, it would be interesting to study ways of 
collecting global information beyond intervals. Finally, 
constraint satisfaction techniques have been a driving 
force behind the development of NUMERICA but only a 
tiny fraction of the existing research is exploited in N u -
MERICA. It is an exciting field and it is likely to evolve 
substantially in the coming years. 

A c k n o w l e d g m e n t N U M E R I C A was developed jo in t ly 
wi th Laurent Michel and Yves Deville. N U M E R I C A is 
also based on previous work on Newton wi th Frederic 
Benhamou, Deepak Kapur, and David McAllester. 
Thanks to al l of them for their invaluable contributions. 

Part of this research was supported by the Office of Naval 
Research under grant ONR Grant N00014-94-l-1153 and 
a NSF National Young Investigator Award. 
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