
Classical Generalized Probabilistic Satisfiability ∗

Carlos Caleiro
SQIG - Instituto de Telecomunicações
DMath, Instituto Superior Técnico
Universidade de Lisboa, Portugal
carlos.caleiro@tecnico.ulisboa.pt

Filipe Casal
CMAF-CIO, Portugal

DMath, Instituto Superior Técnico
Universidade de Lisboa, Portugal
filipe.casal@tecnico.ulisboa.pt

Andreia Mordido
INOV INESC Inovação, Portugal

andreia.mordido@inov.pt

Abstract

We analyze a classical generalized probabilistic sat-
isfiability problem (GGenPSAT) which consists in
deciding the satisfiability of Boolean combinations
of linear inequalities involving probabilities of clas-
sical propositional formulas. GGenPSAT coincides
precisely with the satisfiability problem of the prob-
abilistic logic of Fagin et al. and was proved to be
NP-complete. Here, we present a polynomial re-
duction of GGenPSAT to SMT over the quantifier-
free theory of linear integer and real arithmetic.
Capitalizing on this translation, we implement and
test a solver for the GGenPSAT problem. As previ-
ously observed for many other NP-complete prob-
lems, we are able to detect a phase transition be-
havior for GGenPSAT.

1 Introduction
The starting point of a deep analysis of the propositional sat-
isfiability (SAT) problem was due to Cook in [Cook, 1971],
where it was shown that this problem is NP-complete. Given
its simplicity and expressiveness, the SAT problem has be-
come the standard NP-complete problem to study and, be-
cause of that, SAT solvers became extremely efficient. Due to
this, several extensions and generalizations have been devel-
oped, taking advantage of the referred solvers. An example
of this is the satisfiability modulo theories problem (SMT)
[De Moura and Bjørner, 2011] where instead of working in
propositional logic, one tries to decide if a formula is valid
in some specific first-order theory. This area has had a great
impact in industry, especially in hardware and software verifi-
cation. One other direction for generalization of propositional
satisfiability consists in the introduction of probabilities into
the classical reasoning, allowing one to express quantitative
assertions about propositional formulas.

∗Work done under the scope of Project UID/EEA/50008/2013, financed by the ap-
plicable financial framework (FCT/MEC through national funds and when applicable
co-funded by FEDER–PT2020) and partially supported by Fundação para a Ciência
e a Tecnologia by way of grant UID/MAT/04561/2013 to Centro de Matemática,
Aplicações Fundamentais e Investigação Operacional of Universidade de Lisboa
(CMAF-CIO). AM was supported by FCT under the grant SFRH/BD/77648/2011 and
by the Calouste Gulbenkian Foundation under Programa de Estı́mulo à Investigação
2011. FC acknowledges the support from the DP-PMI and FCT (Portugal) through
scholarship SRFH/BD/52243/2013. CC acknowledges the support of EU FP7 Marie
Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing Truth-Functionality.

In this sense, there was an effort to extend propositional
logic in order to handle probabilistic reasoning. Fagin et
al. [Fagin et al., 1990] developed a widely used probabilis-
tic logic and showed that its satisfiability problem is NP-
complete. Recently, several satisfiability solvers were pro-
posed for fragments of this probabilistic logic. Finger and
Bona developed a PSAT solver [Finger and Bona, 2011;
2015] in the context of the probabilistic satisfiability prob-
lem (PSAT) [Boole, 1853; Nilsson, 1986], which consists in
deciding the satisfiability of a set of assignments of probabil-
ities to propositional formulas. Afterwards, the PSAT prob-
lem was generalized to handle Boolean combinations of as-
signments of probabilities to propositional formulas leading
to GPSAT in [Bona et al., 2015]. After that, in [Caleiro et al.,
2016a], Caleiro et al. introduced the generalized probabilistic
satisfiability problem (GenPSAT) which consists in deciding
the satisfiability of linear inequalities involving probabilities
of classical propositional formulas. Given this, it is only nat-
ural to think about the extension of this problem to Boolean
combinations of probabilistic formulas. This is our goal for
this paper: extend the GenPSAT problem to allow Boolean
combinations of probabilistic formulas as well as present a
solver for this more expressive problem.

PSAT
Pr(φ) ▷◁ b

SAT

GPSAT∧∨
Pr(φ) ▷◁ b

GGenPSAT∧∨∑
aiPr(φ) ▷◁ b

GenPSAT∑
aiPr(φ) ▷◁ b

Satisfiability problem of
the Probabilistic

Logic [Fagin et al., 1990] ≡

Figure 1: Inclusion diagram of several fragments of the probabilistic
logic

In this paper, we present the classical generalized proba-
bilistic satisfiability problem GGenPSAT, which consists in
deciding the satisfiability of Boolean combinations of lin-
ear inequalities involving probabilities of classical proposi-
tional formulas. This problem was proved to be NP-complete
in [Fagin et al., 1990]. We stress that the formulas ex-
pressible in GGenPSAT are precisely the formulas in the
probabilistic logic by Fagin et al. We develop an algo-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

908

rithm for the GGenPSAT problem by constructing a poly-
nomial reduction to the quantifier-free theory of linear in-
teger and real arithmetic (QF LIRA) [Barrett et al., 2016;
King, 2014]. We also provide an implementation of the al-
gorithm and study its phase transition behavior.
As the main contribution of this work, we develop the

theoretical framework that allows the translation between
GGenPSAT and SMT problems, which then allows the im-
plementation of a provably correct solver for GGenPSAT.
With the GGenPSAT solver in hands, we are able to detect
and study the phase transition behavior.
This paper is outlined as follows: in Section 2 we re-

call some basic notions on probabilistic satisfiability; in Sec-
tion 3, we introduce the GGenPSAT problem; in Section 4,
we present the polynomial reduction to SMT and prove the
correctness of the algorithm; in Section 5, we describe the
implemented tool and study the phase transition behavior of
the GGenPSAT problem; finally, Section 6 concludes the pa-
per and discusses avenues for further research.

2 Preliminaries
Let us begin by fixing a set of propositional variables P =
{x1, . . . , xn}. The set of classical propositional formulas is
defined, as usual, by

LCPL ::= P | ¬LCPL | LCPL ∧ LCPL .

A propositional literal is either a propositional variable or its
negation. A propositional clause is a non-empty disjunction
of one or more propositional literals. A propositional valua-
tion is a map v : P → {0, 1}, which is extended to propo-
sitional formulas as usual. A set of valuations V satisfies a
propositional formula φ if, for each v ∈ V , v(φ) = 1. This
notion is naturally extended to sets of propositional formulas.
Let V∗ = {v1, . . . , v2n} be the set of all valuations defined
over variables of P . We define a probability distribution π
over V∗ as a probability vector of size 2n.
We recall from [Fagin et al., 1990] the set of probabilis-

tic atoms (used herein to define probabilistic formulas) com-
posed by linear inequalities of probabilities of propositional
formulas with rational coefficients:

PAt ::= Q · Pr(LCPL) + . . .+Q · Pr(LCPL) ≥ Q .

The set of probabilistic formulas is defined as a Boolean
combination of probabilistic atoms as follows:

Prob ::= PAt | ¬Prob | Prob ∧ Prob .

Observe that the other relational symbols {<,>,≤,=, ̸=}
can be defined by abbreviation, as well as the logical connec-
tives→,∨,↔.
To interpret probabilistic formulas, we consider a probabil-

ity distribution π over V∗. The satisfaction relation is induc-
tively defined as:
• π ⊩ q1 · Pr(φ1) + . . . + qℓ · Pr(φℓ) ≥ q iff∑ℓ

i=1

(
qi

(∑2n

j=1 vj(φi) · πj
))

≥ q;

• π ⊩ ¬δ iff π ̸⊩ δ;

• π ⊩ δ1 ∧ δ2 iff π ⊩ δ1 and π ⊩ δ2,

where δ, δ1, δ2 ∈ Prob, q, qi ∈ Q and φi ∈ LCPL where i ∈
{1, . . . , ℓ}. A probability distribution π satisfies δ ∈ Prob if
π ⊩ δ and satisfies a set of probabilistic formulas if it satisfies
each one of them.

2.1 The PSAT Problem
A simple probabilistic formula is a probabilistic formula of
the form Pr(c) ▷◁ q where q ∈ Q, 0 ≤ q ≤ 1, ▷◁ ∈ {=,≤,≥}
and c ∈ LCPL is a propositional clause. Note that a probability
distribution π satisfies a formula Pr(c) ▷◁ q if

2n∑
j=1

(vj(c) · πj) ▷◁ q .

We now recall the PSAT problem [Nilsson, 1986; Geor-
gakopoulos et al., 1988; Finger and Bona, 2011].
Definition 1 (PSAT problem). Given a set of propositional
variables P and a set of simple probabilistic formulas Σ =
{Pr(ci) ▷◁ pi | 1 ≤ i ≤ k}, the Probabilistic Satisfiability
problem (PSAT) consists in determining whether there exists
a probability distribution π over V∗ that satisfies Σ.
The PSAT problem for {Pr(ci) ▷◁i pi | 1 ≤ i ≤ k} can be

formulated algebraically as the problem of finding a solution
π for the system of inequalities

V π ▷◁ p∑
πi = 1

π ≥ 0

where V is the k × 2n matrix such that Vij = vj(ci), i.e.,
Vij = 1 iff the j-th valuation satisfies the i-th clause, p = [pi]
is the k vector of all pi and ▷◁= [▷◁i] is the k vector of all ▷◁i.
A SAT problem can be modeled as a PSAT instance where

the entries pi of the probability vector are all identical to 1.
The PSAT problem was shown to be NP-complete [Geor-
gakopoulos et al., 1988; Fagin et al., 1990], even when the
clauses consist of the disjunction of only two literals, 2PSAT.

2.2 The GenPSAT Problem
In [Caleiro et al., 2016a], probabilistic satisfiability was ex-
tended to handle linear inequalities involving assignments of
values to propositional formulas.
An instance of GenPSAT is a pair (Γ,Σ) where Γ is a

set of propositional clauses (also called hard constraints) and
Σ is a set of probabilistic atoms (soft constraints). We say
that a probability distribution π satisfies a GenPSAT instance
(Γ,Σ) if it satisfies the set of probabilistic atoms

Ξ(Γ,Σ) = Σ ∪ {Pr(γ) = 1 | γ ∈ Γ} . (1)

Definition 2 (GenPSAT problem). Given a GenPSAT in-
stance (Γ,Σ), the Generalized Probabilistic Satisfiability
problem (GenPSAT) consists in determining if there exists a
probability distribution π over V∗ that satisfies (Γ,Σ).

3 The GGenPSAT Problem
We now aim to extend the GenPSAT problem in order to cope
with Boolean combinations of probabilistic atoms.
An instance of GGenPSAT is a pair (Γ,Ψ) where Γ is a

set of classical propositional formulas (also called hard con-
straints) and Ψ is a set of probabilistic formulas (soft con-
straints). We say that a probability distribution π satisfies a
GGenPSAT instance (Γ,Ψ) if it satisfies the set of probabilis-
tic formulas

Ξ(Γ,Ψ) = Ψ ∪ {Pr(γ) = 1 | γ ∈ Γ} . (2)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

909

Despite the similarities between a GenPSAT and a
GGenPSAT instance, the latter allows more expressive prob-
abilistic formulas by allowing Boolean combinations of prob-
abilistic atoms.
Definition 3 (GGenPSAT problem). Given a GGenPSAT in-
stance (Γ,Ψ), the Classical Generalized Probabilistic Satis-
fiability problem consists in determining if there exists a prob-
ability distribution π over V∗ that satisfies (Γ,Ψ).
GGenPSAT extends the scope of PSAT and GenPSAT by

dealing with Boolean combinations of probabilistic formulas.
In this way, we are not only able to assign values to probabili-
ties of propositional variables or linear inequalities involving
them, but also able to express powerful probabilistic asser-
tions. For instance, we can easily model and reason about
a framework where a variable x is either true or false with
probability 1 but we do not know which is the case:

Pr(x) = 0 ∨ Pr(x) = 1 .
In this way, we can, in a sense, model the universal quan-

tification of propositional formulas. To notice the impact of
this generalization on the available models of a formula, con-
sider the following example.
Example 1. Consider a game of Odds and Evenswhere play-
ers A and B play x, y ∈ Z2, respectively, and player A wins
iff x ⊕ y = 0. We can easily study the effectiveness and ex-
istence of strategies for this game in GGenPSAT: the term
Pr(¬(x ⊕ y)) represents the probability that player A wins
the game; with this, we can determine that there is a strategy
in which player B wins sometimes, Pr(x ⊕ y) > 0, and that
player A wins twice as much as player B, Pr(¬(x ⊕ y)) ≥
2 · Pr(x⊕ y) by checking the satisfiability of such formulas.
However, if we additionally assume that player A always

plays 0, Pr(x) = 0, and that playerB always plays the same,
Pr(y) = 0∨Pr(y) = 1, then the above formulas are no longer
satisfiable.
In these examples, we studied the existence of strategies

by determining the satisfiability of formulas. Additionally, we
could also determine if some strategies are always better than
others, by determining if a certain formula is valid. ♢
A GenPSAT instance is also a GGenPSAT instance.
Notice that GGenPSAT has been studied in the context of

the decision problem for the probabilistic logic introduced by
Fagin, Halpern and Megiddo in [Fagin et al., 1990]. Hence,
the computational complexity of this problem is known and
addressed in the following theorem.
Theorem 1 ([Fagin et al., 1990]). GGenPSAT is NP-
complete.

4 Reducing GGenPSAT to Satisfiability
Modulo Theories

Our goal now is to effectively build a decision procedure
for this problem. In [Caleiro et al., 2016a], Caleiro et al.
constructed an effective procedure for the GenPSAT prob-
lem by a polynomial reduction to Mixed-Integer Program-
ming (MIP). However, in that framework, one cannot han-
dle Boolean combinations of linear inequalities, at least in-
tuitively. A framework where this problem is naturally ex-
pressed is in Satisfiability Modulo Theories (SMT) with re-
spect to the theory of Quantifier-Free Linear Integer and

Real Arithmetic, QF LIRA, which is also in NP [Barrett
et al., 2016; King, 2014]. We will now explore the NP-
completeness of GGenPSAT and provide a polynomial re-
duction to QF LIRA. The variables of the theory can be of
one of three sorts: Boolean, integer or real, and the signa-
ture is composed of the function symbols F={0, 1,+, ·} and
the usual predicates P={≥,≤, <,>,=, ̸=}. The atoms of
the theory are either Boolean variables or linear inequalities
involving real and integer variables.
We explore some preliminary steps that lead to an algo-

rithm to solve the GGenPSAT problem.

On the details of the GGenPSAT instance: Assume we
are given a GGenPSAT instance (Γ,Ψ), where Γ is a set
of classical propositional formulas (hard constraints), Γ =
{φ1, . . . , φk}, and Ψ is a set of probabilistic formulas (soft
constraints), Ψ = {δ1, . . . , δs}. Recall that a formula δj is a
Boolean combination of probabilistic atoms of the form

q1 · Pr(ψ1) + . . .+ qℓ · Pr(ψℓ) ▷◁ q ,

where ▷◁ ∈ {≥,≤, <,>,=, ̸=}.
When ghosts attack: Driven by GenPSAT and PSAT devel-
opments, it is simpler to deal with probabilities of proposi-
tional variables than with probabilities of propositional for-
mulas. To this end, we introduce propositional ghost vari-
ables which will represent the propositional formulas occur-
ring inside the probabilistic formulas. Let us define the set of
fresh variables that will be used. For this purpose, collect in
InsidePr(δ) ⊆ LCPL all the propositional formulas occurring
inside the probabilistic formula δ ∈ Prob, which is defined
inductively on the structure of δ:
• InsidePr(q1·Pr(ψ1)+. . .+qℓ·Pr(ψℓ) ▷◁ q) = {ψ1, ..., ψℓ};
• InsidePr(¬δ) = InsidePr(δ);
• InsidePr(δ1 ∧ δ2) = InsidePr(δ1) ∪ InsidePr(δ2).

This notion is extended for a set ∆ of probabilistic formulas
as usual, InsidePr(∆) =

∪
δ∈∆ InsidePr(δ). According to

this, and recalling that the propositional formulas in Γ need to
be satisfied with probability 1, we consider the set of relevant
propositional formulas, RelF defined by:

RelF = Γ ∪ InsidePr(Ψ) .

Consider the set of propositional ghost variables correspond-
ing to each element of RelF:

G = {pψ | ψ ∈ RelF} .

Furthermore, we will use the real [0, 1]-variable αψ to rep-
resent the probability of ψ ∈ RelF.
For ease of notation, we denote by Gi the i-th element of

G and ψi the corresponding propositional formula in RelF.
We also denote by |G| the cardinality of a set G. The set of
propositional variables of interest is B = P ∪G.

Algebraic formulation: Motivated by the algebraic formula-
tion of PSAT and GenPSAT, we express the probabilistic as-
sertions about the elements in RelF algebraically as follows:

V π = α∑
πj = 1

π ≥ 0

(3)

where:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

910

• V = [Vij] is a matrix of size |G|×2n, where Vij is defined
from the jth valuation vj ∈ V∗ and from the ith proposi-
tional ghost variable Gi, by Vij = vj(ψi);

• π = [πj] is a vector of size 2n, where each πj is a real
[0, 1]-variable representing the probability valuation vj ;

• α = [αi] is a vector of size |G| and each αi is a real [0, 1]-
variable that represents the probability of ψi.

Using the following Lemma by Chvátal [Chvátal, 1983], we
can take a step forward in the choice of the right valuations.
Lemma 1 ([Chvátal, 1983; Fagin et al., 1990]). If a system
of ℓ linear inequalities with integer coefficients has a nonneg-
ative solution, then it has a nonnegative solution with at most
ℓ positive entries.
Lemma 1 tells us that a system with |G|+1 linear inequali-

ties has a solution iff it has a solution with |G|+1 nonnegative
entries. Furthermore, if a GGenPSAT instance is satisfiable
then system (3) has a solution. Let us collect inH = [hij], the
|G|+1 columns of V given by Lemma 1, where h|G|+1,j = 1
for each j, and consider the corresponding probability assign-
ments in π: {

Hπ = α

π ≥ 0
. (4)

When variables multiply: Inspired by the previous argu-
ments, we consider |G|+1 copies of each propositional vari-
able of interest in B. Each copy is intended to represent the
valuations underlying the columns of matrixH . We represent
them by

B(k) = {x(k) | x ∈ P} ∪ {p(k) | p ∈ G} .

We extend this notation to propositional formulas as ex-
pected – given a propositional formula ψ, ψ(k) represents the
formula ψ where each of its variables x was replaced by its
appropriate copy, x(k). Denote by B̃ =

∪|G|+1
k=1 B(k) the set

of all copies of all propositional variables.

Probabilistic formulas seen as linear restrictions: To han-
dle probabilistic formulas in the QF LIRA formalism, we
make use of linear inequalities. Since the variable αψ repre-
sents the probability of each ψ ∈ InsidePr(Ψ), we can repre-
sent a probabilistic atom q1 ·Pr(ψ1)+. . .+qℓ ·Pr(ψℓ) ▷◁ q as a
linear arithmetic formula of the form q1 ·αψ1+. . .+qℓ ·αψℓ

▷◁
q. This translation, denoted by PrToLIRA, can be inductively
extended to probabilistic formulas (which are Boolean com-
binations of probabilistic atoms):
• PrToLIRA(q1 · Pr(ψ1) + . . . + qℓ · Pr(ψℓ) ▷◁ q) is the
assertion q1 · αψ1 + . . .+ qℓ · αψℓ

▷◁ q;
• PrToLIRA(¬δ) is the assertion ¬PrToLIRA(δ);
• PrToLIRA(δ1 ∧ δ2) is the assertion PrToLIRA(δ1) ∧
PrToLIRA(δ2).

All together now: To verify the satisfiability of the
GGenPSAT instance, we will need to satisfy the following
constraints:
(hard constr)

∧
φ∈Γ αφ = 1;

(soft constr)
∧
δ∈Ψ PrToLIRA(δ);

(cons) hik = 1 ↔ G
(k)
i for each i ∈ {1, ..., |G|}, k ∈

{1, ..., |G|+ 1};

(val1)
∑|G|+1
j=1 bij = αψi for each i ∈ {1, . . . , |G|};

(val2) (0 ≤ bij ≤ hij) ∧ (hij − 1 + πj ≤ bij ≤ πj) for each
i ∈ {1, . . . , |G|}, j ∈ {1, . . . , |G|+ 1};

(sums1)
∑|G|+1
j=1 πj = 1;

(prop prob)
∧|G|+1
k=1

(
G

(k)
i ↔ ψ

(k)
i

)
for each i∈{1, ..., |G|}.

All these restrictions amount to:
• 3 assertions from (hard constr), (soft constr) and
(sums1);

• 2 · |G| · (|G|+ 1) assertions from (cons) and (val2);
• 2 · |G| assertions from (val1) and (prop prob).
Hence, we have a total of O(|G| · (|G|+ 1)) assertions, each
of polynomial size on the length of (Γ,Ψ) over:
• |G| · (|G|+ 1) binary variables hij ;
• |G| · (|G|+ 1) real variables bij ;
• |G| real variables 0 ≤ αψi ≤ 1;
• |G|+ 1 real variables 0 ≤ πj ≤ 1;

• (|G|+ 1) · (|G|+ n) propositional variables in B̃.
With this, we can conclude that the presented procedure

translates a GGenPSAT instance into a problem in QF LIRA
of polynomial size.

The solver: We test the satisfiability of a GGenPSAT in-
stance (Γ,Ψ) by translating it to a QF LIRA problem and
then solving the latter appropriately. The procedure presented
in Algorithm 1, begins by initializing an empty QF LIRA
problem and uses the following auxiliary procedures:
• assert(·) introduces an assertion to the QF LIRA problem;
• PrToLIRA(·) translates probabilistic formulas into
QF LIRA assertions;

• qf lira solver() returns SAT or UNSAT depending on
whether the problem is satisfiable or not.
When the resulting QF LIRA problem is satisfiable, we

conclude that (Γ,Ψ) is a satisfiable GGenPSAT instance.

Algorithm 1 GGenPSAT solver based on SMT−QF LIRA

1: procedure GGenPSAT({xi}ni=1, Γ, Ψ)
2: assume: G = {pψ | ψ ∈ RelF}
3: declare: propositional variables: B̃ =

∪|G|+1
k=1 B(k)

4: declare: binary variables: hij
5: declare: [0, 1]-variables: αψi , πj , bij
6: for i = 1 to |G| do
7: assert(

∑
j bij = αψi) ▷ (val1)

8: assert(
∧
k(G

(k)
i ↔ ψ

(k)
i)) ▷ (prop prob)

9: for j = 1 to |G|+ 1 do
10: assert(hij = 1 ↔ G

(j)
i) ▷ (cons)

11: assert(0 ≤ bij ≤ hij) ▷ (val2)
12: assert(hij − 1 + πj ≤ bij ≤ πj) ▷ (val2)

13: assert(
∧
φ αφ = 1) ▷ (hard constr)

14: assert(
∧
δ PrToLIRA(δ)) ▷ (soft constr)

15: assert(
∑
πi = 1) ▷ (sums1)

16: return qf lira solver()

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

911

Proposition 1. A GGenPSAT instance (Γ,Ψ) is satisfiable
iff Algorithm 1 returns Sat.
Proof. Assume that a GGenPSAT instance (Γ,Ψ) is satisfi-
able. Then, there exists a probability distribution ρ over the
set of valuations V∗ satisfying (Γ,Ψ). Our goal is to present a
model for the QF LIRA problem obtained by the translation
of (Γ,Ψ) describe above. We denote the obtained solutions
by α∗

ψ, π
∗
j , b

∗
ij and h∗ij and construct a valuation ṽ over the

extended set of propositional variables B̃.
For each pψ ∈ G, let α∗

ψ be the probability of the proposi-
tional variable pψ induced by the probability distribution ρ in
the following manner:

α∗
ψ =

∑
v:v(ψ)=1

ρ(v) . (5)

Then, consider the algebraic formulation as in (3):
V π = α∗∑
πj = 1

π ≥ 0

(6)

where now the vector α∗ = [α∗
ψi
] is defined as in (5) and

• V = [Vij] is a matrix of size |G|×2n, where Vij is defined
from the jth valuation vj ∈ V∗ and from the ith proposi-
tional ghost variable Gi, by Vij = vj(ψi);

• π = [πj] is a vector of size 2n, where each πj is a real
[0, 1]-variable representing the probability valuation vj .
Note that ρ∗ = [ρj] where ρj = ρ(vj) is a solution for (6).

By Lemma 1, there exists a matrix H = [h∗ij] composed by
|G|+ 1 columns of V such that{

Hπ∗ = α∗

π∗ ≥ 0
(7)

where h∗|G|+1,j = 1 for each j and π∗ corresponds to the
appropriate entries of ρ∗.
Since π∗ is also a probability distribution, the assertion

(sums1) is satisfied and, considering b∗ij = h∗ij · π∗
j , the as-

sertions (val1) and (val2) are also satisfied.
The propositional valuation ṽ of the variables in B̃ inherent

to the QF LIRA model is defined in the following manner:

• ṽ(x
(k)
i) = vk(xi);

• ṽ(p
(k)
i) = vk(ψi).

This implies that (prop prob) is satisfied since the valuation ṽ
atributes the same truth value to p

(k)
i and ψ(k)

i . Furthermore,
the assertion (cons) is also satisfied as the truth value of G(k)

i
is given by h∗ik.
Provided that the original probability distribution ρ sat-

isfies the GGenPSAT instance, we immediately conclude
that (hard constr) and (soft constr) are satisfied, which con-
cludes the proof of the direct implication.
Reciprocally, assume that the associated QF LIRA prob-

lem is satisfiable, and consider the components of its model:
a valuation ṽ of the variables in B̃, and define by y∗ the value
that the model gives to the variable y. Our aim, is to define a
probability distribution ρ over the set of valuations V∗ of the
variables in P .

With this purpose, we will refine the valuation ṽ, reduce it
to valuations over B, and finally define the probability distri-
bution ρ. Since ṽ is a valuation over B̃ =

∪|G|+1
k=1 B(k), define

its reduct to each copy of B, vk(p) = ṽ(p(k)) , for each p ∈
B. Let W = {v1, . . . , v|G|+1} be the set of such valuations.
Then, consider the probability distribution π : W → [0, 1]
defined as π(vk) = π∗

k. The probability distribution ρ : V∗ →
[0, 1] we seek is now easily defined recalling that B = P ∪G:{

ρ(vi|P) = π∗
i for each i ∈ {1, . . . , |G|+ 1}

ρ(v) = 0 otherwise

We now need to check that this valuation is well defined,
i.e., that if vi|P = vj |P then π∗

i = π∗
j . We will do this by

showing that if vi ̸= vj then vi|P ̸= vj |P : if for some x ∈ P ,
vi(x) ̸= vj(x) then obviously their reducts to P will also dif-
fer in x; on the other hand, if for every x ∈ P , vi(x) = vj(x),
and there is a p ∈ G such that vi(p) ̸= vj(p) we obtain
a contradiction – let ψ be the propositional formula corre-
sponding to p. Since vi(x) = vj(x) for every x ∈ P , then
vi(ψ) = vj(ψ) which means that ṽ(ψ(i)) = ṽ(ψ(j)). Since
ṽ satisfies (prop prob), this means that ṽ(p(i)) = ṽ(p(j)) and
so vi(p) = vj(p).
Since (sums1) is satisfied, ρ constitutes a well-defined

probability distribution. To conclude that the hard constraints
are satisfied, observe that for each φ ∈ Γ, since α∗

φ = 1
it follows that h∗ij = 1 for each j such that π∗

j > 0 and
by (cons) and (prop prob) it means that ρ satisfies φ with
probability 1. For soft constraints, the reasoning is similar –
observe that (cons) and (prop prob) links the algebraic rea-
soning with the valuations. To show that ρ satisfiesΨ, i.e., the
soft constraints, since the assertion (soft constr) is satisfied,
it is enough to show that Pr(ψ) coincides with α∗

i , where ψ is
the i-th formula of InsidePr(Ψ). In fact, the probability of ψ

Pr(ψ) =
∑
v∈V∗

v(ψ) · ρ(v) =
∑
v∈W

v(ψ) · ρ(v)

=

|G|+1∑
j=1

vj(ψ) · π∗
j =

|G|+1∑
j=1

ṽ(ψ(j)) · π∗
j

=

|G|+1∑
j=1

h∗ij · π∗
j
▷
=

|G|+1∑
j=1

b∗ij = α∗
i . ▷ by (val2)

We detail the second to last step of the deduction: either h∗ij
is 0 and by the first (val2) assertion then b∗ij is also 0 and so
h∗ij ·π∗

j = 0 = b∗ij ; or h
∗
ij is 1 and by the (val2) assertions we

obtain that b∗ij equal to π
∗
j and so h

∗
ij · π∗

j = 1 · π∗
j = b∗ij .

This shows that ρ satisfies the formulas in Ψ and so it is a
model for the GGenPSAT instance (Γ,Ψ).

5 Phase Transition
In this section we describe the open-source tool [Caleiro
et al., 2016c] developed to implement the algorithm that
solves the GGenPSAT problem. With this in hands, we
generate batches of random GGenPSAT instances and study
the behavior of the implemented solver, in terms of time and
satisfiability.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

912

For this, we measure the proportion of satisfiable instances
as well as the average time the solver spent to solve them. The
software was written in Python, and we used Yices [Dutertre,
2014], version 2.5.1, to solve the SMT problem. Our tool
takes as input a GGenPSAT written in an (smt-lib)-style no-
tation enriched with the probability operator (pr φ). As an
example, the second problem from Example 1 can be formu-
lated as follows:
(define x::bool)
(define y::bool)
(assert (>= (pr (not (xor x y))) (* 2 (pr (xor x y)))))
(assert (> (pr (xor x y)) 0))
(assert (or (= (pr y) 0) (= (pr y) 1)))
(assert (= (pr x) 0))
(check)

The machine used for the tests was a Mac Pro at 3.33 GHz
6-Core Intel Xeon with 6 GB of memory.
A phase transition behavior is characterized by a sharp

transition between two clearly distinct states. Regarding sat-
isfiability problems, these states correspond to states in which
the problems are either satisfiable or not satisfiable. In [Gent
andWalsh, 1994], this behavior was studied for random 3SAT
problems and, heuristically, shown that the ratiom/n of num-
ber of clauses over the number of variables characterizes the
phase transition. That is, there is a value (close to 4.3 on
3SAT) of m/n for which the random problems rapidly tran-
sition from being satisfiable to not being satisfiable. It is also
noteworthy that the harder random instances lie in this critical
area, as we can heuristically observe a peak in time taken to
solve problems.
We now present some results regarding the behavior of ran-

dom instances of 3SATwhen embedded in GGenPSAT. The
embedding of PSAT and GenPSAT was also studied but not
included due to size limitations. Besides revealing the phase
transition behavior, our results show that the presented solver
is more efficient than the solver for GenPSAT, [Caleiro et al.,
2016b]. This is not unexpected since the translation used here
for theGGenPSAT problem is much more natural and concise
than the one used for GenPSAT.
We denote by n the number of variables and m the num-

ber of propositional clauses. In random 3SAT instances, we
detect the phase transition whenm/n is close to 4.3 as previ-
ously detected in [Gent and Walsh, 1994], see Figure 2.

Figure 2: 3SAT as a GGenPSAT instance, with n = 200.

As expected, being an NP-complete problem, the full
GGenPSAT problem also exhibits a phase transition behavior.
We generated the random GGenPSAT instances as follows: a

random 3SAT instance with n variables andm clauses is gen-
erated and then, each variable xi is replaced by a problem Gi
which is a conjunction of k random probabilistic atoms over
n variables. The results are seen in Figure 3.

Figure 3: Random GGenPSAT instances with n = 30 and k = 2
(above) and n = 20 and m = 10 (below).

In summary, the developed tool (due to the size of the trans-
lation) is able to solve reasonably sized instances, surpassing
as well the GenPSAT dedicated tool developed in [Caleiro et
al., 2016a] for those instances. Given this, we are able to de-
tect the phase transition behavior and heuristically determine
parameters for which random instances are hard to solve.

6 Conclusions and Future Work
In this paper, we aimed to study a generalization of the prob-
abilistic satisfiability problem. The GGenPSAT problem nat-
urally models Boolean combinations of linear inequalities in-
volving probabilities of propositional formulas. We devel-
oped a satisfiability procedure by a polynomial reduction to
the quantifier-free theory of integer and real arithmetic, and
proved its correctness. We also implemented a tool that trans-
lates problems in GGenPSAT to QF LIRA and solves them
with an off-the-shelf SMT solver such as Yices. With this tool
in hands we are able to detect and study the phase-transition
behavior of this problem. It is also worth noting that since the
expressiveness of the GGenPSAT problem coincides with the
probabilistic logic of Fagin et al. [Fagin et al., 1990], this tool
also serves as a satisfiability procedure for the logic.
We believe the study of this problem and subsequent tool

implementation provides a sound foundational basis to the
development of applications where probabilistic reasoning is
required. As future work, we aim to develop applications of
this tool for the analysis of cryptographic protocols, specially
related to the existence of side-channel attacks.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

913

References
[Barrett et al., 2016] C. Barrett, P. Fontaine, and C. Tinelli.

The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[Bona et al., 2015] G.D. Bona, F. G. Cozman, and M. Fin-
ger. Generalized probabilistic satisfiability through integer
programming. Journal of the Brazilian Computer Society,
21(1):1–14, 2015.

[Boole, 1853] G. Boole. Investigation of The Laws of
Thought On Which Are Founded the Mathematical The-
ories of Logic and Probabilities. 1853.

[Caleiro et al., 2016a] C. Caleiro, F. Casal, and A. Mordido.
Generalized probabilistic satisfiability. In LSFA 2016 -
11th Workshop on Logical and Semantic Frameworks,
with Applications, 2016.

[Caleiro et al., 2016b] C. Caleiro, F. Casal, and A. Mor-
dido. GenPSAT solver, 2016. Available online at
https://github.com/fcasal/genpsat.git.

[Caleiro et al., 2016c] C. Caleiro, F. Casal, and A. Mor-
dido. GGenPSAT solver, 2016. Available online at
https://github.com/fcasal/ggenpsat.git.

[Chvátal, 1983] V. Chvátal. Linear programming. Macmil-
lan, 1983.

[Cook, 1971] S. A. Cook. The complexity of theorem-
proving procedures. In Proceedings of the third annual
ACM symposium on Theory of computing, pages 151–158.
ACM, 1971.

[De Moura and Bjørner, 2011] L. De Moura and N. Bjørner.
Satisfiability modulo theories: introduction and applica-
tions. Communications of the ACM, 54(9):69–77, 2011.

[Dutertre, 2014] B. Dutertre. Yices 2.2. In Armin Biere and
Roderick Bloem, editors, CAV’2014, volume 8559 of Lec-
ture Notes in Computer Science, pages 737–744. Springer,
2014.

[Fagin et al., 1990] R. Fagin, J. Y. Halpern, and N. Megiddo.
A logic for reasoning about probabilities. Inf. Comput.,
87(1-2):78–128, 1990.

[Finger and Bona, 2011] M. Finger and G.D. Bona. Prob-
abilistic satisfiability: Logic-based algorithms and phase
transition. In IJCAI, pages 528–533. IJCAI/AAAI, 2011.

[Finger and Bona, 2015] M. Finger and G.D. Bona. Proba-
bilistic satisfiability: algorithms with the presence and ab-
sence of a phase transition. Annals of Mathematics and
Artificial Intelligence, 75(3):351–389, 2015.

[Gent and Walsh, 1994] I. P. Gent and T. Walsh. The hardest
random SAT problems. Springer, 1994.

[Georgakopoulos et al., 1988] G. Georgakopoulos, D. Kav-
vadias, and C. H Papadimitriou. Probabilistic satisfiability.
Journal of Complexity, 4(1):1 – 11, 1988.

[King, 2014] T. King. Effective Algorithms for the Satisfia-
bility of Quantifier-Free Formulas Over Linear Real and
Integer Arithmetic. PhD thesis, Courant Institute of Math-
ematical Sciences New York, 2014.

[Nilsson, 1986] N. J. Nilsson. Probabilistic logic. Artif. In-
tell., 28(1):71–88, 1986.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

914

